Class: Integer
| Relationships & Source Files | |
| Super Chains via Extension / Inclusion / Inheritance | |
|
Class Chain:
self,
::Numeric
|
|
|
Instance Chain:
self,
::Numeric,
::Comparable
|
|
| Inherits: | Numeric |
| Defined in: | numeric.c, bignum.c, numeric.rb, rational.c |
Overview
An Integer object represents an integer value.
You can create an Integer object explicitly with:
-
An integer literal.
You can convert certain objects to Integers with:
-
::Method#Integer.
An attempt to add a singleton method to an instance of this class causes an exception to be raised.
What’s Here
First, what’s elsewhere. ::Class Integer:
-
Inherits from class Numeric and class Object.
-
Includes module Comparable.
Here, class Integer provides methods for:
Querying
-
#allbits?: Returns whether all bits in
selfare set. -
#anybits?: Returns whether any bits in
selfare set. -
#nobits?: Returns whether no bits in
selfare set.
Comparing
-
#<: Returns whether
selfis less than the given value. -
#<=: Returns whether
selfis less than or equal to the given value. -
#<=>: Returns a number indicating whether
selfis less than, equal to, or greater than the given value. -
#== (aliased as #===): Returns whether
selfis equal to the givenvalue. -
#>: Returns whether
selfis greater than the given value. -
#>=: Returns whether
selfis greater than or equal to the given value.
Converting
-
.sqrt: Returns the integer square root of the given value.
-
.try_convert: Returns the given value converted to an Integer.
-
#% (aliased as #modulo): Returns
selfmodulo the given value. -
#&: Returns the bitwise AND of
selfand the given value. -
#*: Returns the product of
selfand the given value. -
#**: Returns the value of
selfraised to the power of the given value. -
#+: Returns the sum of
selfand the given value. -
#-: Returns the difference of
selfand the given value. -
#/: Returns the quotient of
selfand the given value. -
#<<: Returns the value of
selfafter a leftward bit-shift. -
#>>: Returns the value of
selfafter a rightward bit-shift. -
#[]: Returns a slice of bits from
self. -
#^: Returns the bitwise EXCLUSIVE OR of
selfand the given value. -
#|: Returns the bitwise OR of
selfand the given value. -
#ceil: Returns the smallest number greater than or equal to
self. -
#chr: Returns a 1-character string containing the character represented by the value of
self. -
#digits: Returns an array of integers representing the base-radix digits of
self. -
#div: Returns the integer result of dividing
selfby the given value. -
#divmod: Returns a 2-element array containing the quotient and remainder results of dividing
selfby the given value. -
#fdiv: Returns the
::Floatresult of dividingselfby the given value. -
#floor: Returns the greatest number smaller than or equal to
self. -
#pow: Returns the modular exponentiation of
self. -
#pred: Returns the integer predecessor of
self. -
#remainder: Returns the remainder after dividing
selfby the given value. -
#round: Returns
selfrounded to the nearest value with the given precision. -
#succ (aliased as #next): Returns the integer successor of
self. -
#to_s (aliased as #inspect): Returns a string containing the place-value representation of
selfin the given radix. -
#truncate: Returns
selftruncated to the given precision.
Other
Constant Summary
-
GMP_VERSION =
# File 'bignum.c', line 7226
The version of loaded GMP.
rb_sprintf("GMP %s", gmp_version)
Class Method Summary
-
.sqrt(numeric) ⇒ Integer
Returns the integer square root of the non-negative integer
n, which is the largest non-negative integer less than or equal to the square root ofnumeric. -
.try_convert(object) ⇒ Object, ...
If
objectis an Integer object, returnsobject.
Instance Attribute Summary
-
#even? ⇒ Boolean
readonly
Returns
trueifselfis an even number,falseotherwise. -
#integer? ⇒ Boolean
readonly
Since
selfis already an Integer, always returnstrue. -
#odd? ⇒ Boolean
readonly
Returns
trueifselfis an odd number,falseotherwise. -
#zero? ⇒ Boolean
readonly
Returns
trueifselfhas a zero value,falseotherwise.
::Numeric - Inherited
| #finite? | Returns |
| #infinite? | Returns |
| #integer? | Returns |
| #negative? | Returns |
| #nonzero? | Returns |
| #positive? | Returns |
| #real? | Returns |
| #zero? | Returns |
Instance Method Summary
-
#%(other) ⇒ real_number
(also: #modulo)
Returns
selfmodulootheras a real number. -
#&(other) ⇒ Integer
Bitwise AND; each bit in the result is 1 if both corresponding bits in
selfandotherare 1, 0 otherwise: -
#*(numeric) ⇒ numeric_result
Performs multiplication:
-
#**(numeric) ⇒ numeric_result
Raises
selfto the power ofnumeric: -
#+(numeric) ⇒ numeric_result
Performs addition:
-
#-(numeric) ⇒ numeric_result
Performs subtraction:
-
#- ⇒ Integer
Returns
self, negated. -
#/(numeric) ⇒ numeric_result
Performs division; for integer
numeric, truncates the result to an integer: -
#<(other) ⇒ Boolean
Returns
trueif the value ofselfis less than that ofother: -
#<<(count) ⇒ Integer
Returns
selfwith bits shiftedcountpositions to the left, or to the right ifcountis negative: -
#<=(real) ⇒ Boolean
Returns
trueif the value ofselfis less than or equal to that ofother: -
#<=>(other) ⇒ 1, ...
Returns:
-
#==(other) ⇒ Boolean
(also: #===)
Returns
trueifselfis numerically equal toother;falseotherwise. -
#===(other) ⇒ Boolean
Alias for #==.
-
#>(other) ⇒ Boolean
Returns
trueif the value ofselfis greater than that ofother: -
#>=(real) ⇒ Boolean
Returns
trueif the value ofselfis greater than or equal to that ofother: -
#>>(count) ⇒ Integer
Returns
selfwith bits shiftedcountpositions to the right, or to the left ifcountis negative: -
#[](offset) ⇒ 0, 1
Returns a slice of bits from
self. -
#^(other) ⇒ Integer
Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits in
selfandotherare different, 0 otherwise: -
#abs ⇒ Integer
(also: #magnitude)
Returns the absolute value of
self. -
#allbits?(mask) ⇒ Boolean
Returns
trueif all bits that are set (=1) inmaskare also set inself; returnsfalseotherwise. -
#anybits?(mask) ⇒ Boolean
Returns
trueif any bit that is set (=1) inmaskis also set inself; returnsfalseotherwise. -
#bit_length ⇒ Integer
Returns the number of bits of the value of
self, which is the bit position of the highest-order bit that is different from the sign bit (where the least significant bit has bit position 1). -
#ceil(ndigits = 0) ⇒ Integer
.
-
#ceildiv(numeric) ⇒ Integer
Returns the result of division
selfbynumeric. -
#chr ⇒ String
Returns a 1-character string containing the character represented by the value of
self, according to the givenencoding. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numericand aintrepresented asIntegerobjects or::Floatobjects. -
#denominator ⇒ 1
Returns
1. -
#digits(base = 10) ⇒ Integer
Returns an array of integers representing the
base-radix digits ofself; the first element of the array represents the least significant digit: -
#div(numeric) ⇒ Integer
Performs integer division; returns the integer result of dividing
selfbynumeric: -
#divmod(other) ⇒ Array
Returns a 2-element array
[q, r], where. -
#downto(limit) {|i| ... } ⇒ self
Calls the given block with each integer value from
selfdown tolimit; returnsself: -
#fdiv(numeric) ⇒ Float
Returns the
::Floatresult of dividingselfbynumeric: -
#floor(ndigits = 0) ⇒ Integer
.
-
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers.
-
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
-
#inspect(base = 10) ⇒ String
Alias for #to_s.
-
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers.
-
#magnitude
Alias for #abs.
-
#modulo(other) ⇒ real_number
Alias for #%.
-
#next ⇒ Integer
(also: #succ)
Returns the successor integer of
self(equivalent toself + 1): -
#nobits?(mask) ⇒ Boolean
Returns
trueif no bit that is set (=1) inmaskis also set inself; returnsfalseotherwise. -
#numerator ⇒ self
Returns
self. -
#ord ⇒ self
Returns
self; intended for compatibility to character literals in::Ruby1.9. -
#pow(numeric) ⇒ Numeric
Returns (modular) exponentiation as:
-
#pred ⇒ Integer
Returns the predecessor of
self(equivalent toself - 1): -
#rationalize([eps]) ⇒ Rational
Returns the value as a rational.
-
#remainder(other) ⇒ real_number
Returns the remainder after dividing
selfbyother. -
#round(ndigits = 0, half: :up) ⇒ Integer
Returns
selfrounded to the nearest value with a precision ofndigitsdecimal digits. -
#size ⇒ Integer
Returns the number of bytes in the machine representation of
self; the value is system-dependent: -
#succ ⇒ Integer
Alias for #next.
-
#times {|i| ... } ⇒ self
Calls the given block
selftimes with each integer in(0..self-1): -
#to_f ⇒ Float
Converts
selfto a::Float: -
#to_i ⇒ self
Returns
self(which is already an Integer). -
#to_int ⇒ self
Returns
self(which is already an Integer). -
#to_r ⇒ Rational
Returns the value as a rational.
-
#to_s(base = 10) ⇒ String
(also: #inspect)
Returns a string containing the place-value representation of
selfin radixbase(in 2..36). -
#truncate(ndigits = 0) ⇒ Integer
Returns
selftruncated (toward zero) to a precision ofndigitsdecimal digits. -
#upto(limit) {|i| ... } ⇒ self
Calls the given block with each integer value from
selfup tolimit; returnsself: -
#|(other) ⇒ Integer
Bitwise OR; each bit in the result is 1 if either corresponding bit in
selforotheris 1, 0 otherwise: -
#~ ⇒ Integer
One’s complement: returns the value of
selfwith each bit inverted.
::Numeric - Inherited
| #% | Returns |
| #+@ | Returns |
| #-@ | Unary Minus—Returns the receiver, negated. |
| #<=> | Returns zero if |
| #abs | Returns the absolute value of |
| #abs2 | Returns the square of |
| #angle | Alias for Numeric#arg. |
| #arg | Returns zero if |
| #ceil | Returns the smallest float or integer that is greater than or equal to |
| #clone | Returns |
| #coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
| #conj | Alias for Numeric#conjugate. |
| #conjugate | Returns |
| #denominator | Returns the denominator (always positive). |
| #div | |
| #divmod | Returns a 2-element array |
| #dup | Returns |
| #eql? | Returns |
| #fdiv | Returns the quotient |
| #floor | Returns the largest float or integer that is less than or equal to |
| #i | Returns |
| #imag | Alias for Numeric#imaginary. |
| #imaginary | Returns zero. |
| #magnitude | Alias for Numeric#abs. |
| #modulo | Alias for Numeric#%. |
| #numerator | Returns the numerator. |
| #phase | Alias for Numeric#arg. |
| #polar | Returns array |
| #quo | Returns the most exact division (rational for integers, float for floats). |
| #real | Returns |
| #rect | Returns array |
| #rectangular | Alias for Numeric#rect. |
| #remainder | Returns the remainder after dividing |
| #round | Returns |
| #step | Generates a sequence of numbers; with a block given, traverses the sequence. |
| #to_c | Returns |
| #to_int | Returns |
| #truncate | Returns |
| #singleton_method_added | Trap attempts to add methods to |
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
| #between? | |
| #clamp |
Class Method Details
.sqrt(numeric) ⇒ Integer
Returns the integer square root of the non-negative integer n, which is the largest non-negative integer less than or equal to the square root of numeric.
Integer.sqrt(0) # => 0
Integer.sqrt(1) # => 1
Integer.sqrt(24) # => 4
Integer.sqrt(25) # => 5
Integer.sqrt(10**400) # => 10**200
If numeric is not an Integer, it is converted to an Integer:
Integer.sqrt(Complex(4, 0)) # => 2
Integer.sqrt(Rational(4, 1)) # => 2
Integer.sqrt(4.0) # => 2
Integer.sqrt(3.14159) # => 1
This method is equivalent to Math.sqrt(numeric).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) # => 100000000000000000000000
Math.sqrt(10**46).floor # => 99999999999999991611392
Raises an exception if numeric is negative.
# File 'numeric.c', line 6047
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
if (FIXNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
n = FIX2ULONG(num);
sq = rb_ulong_isqrt(n);
return LONG2FIX(sq);
}
else {
size_t biglen;
if (RBIGNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
biglen = BIGNUM_LEN(num);
if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
/* short-circuit */
if (biglen == 1) {
n = BIGNUM_DIGITS(num)[0];
sq = rb_ulong_isqrt(n);
return ULONG2NUM(sq);
}
#endif
return rb_big_isqrt(num);
}
}
.try_convert(object) ⇒ Object, ...
If object is an Integer object, returns object.
Integer.try_convert(1) # => 1
Otherwise if object responds to :to_int, calls object.to_int and returns the result.
Integer.try_convert(1.25) # => 1
Returns nil if object does not respond to :to_int
Integer.try_convert([]) # => nil
Raises an exception unless object.to_int returns an Integer object.
# File 'numeric.c', line 6095
static VALUE
int_s_try_convert(VALUE self, VALUE num)
{
return rb_check_integer_type(num);
}
Instance Attribute Details
#even? ⇒ Boolean (readonly)
Returns true if self is an even number, false otherwise.
# File 'numeric.rb', line 188
def even? Primitive.attr! :leaf Primitive.cexpr! 'rb_int_even_p(self)' end
#integer? ⇒ Boolean (readonly)
Since self is already an Integer, always returns true.
# File 'numeric.rb', line 197
def integer? true end
#odd? ⇒ Boolean (readonly)
Returns true if self is an odd number, false otherwise.
# File 'numeric.rb', line 207
def odd? Primitive.attr! :leaf Primitive.cexpr! 'rb_int_odd_p(self)' end
#zero? ⇒ Boolean (readonly)
Returns true if self has a zero value, false otherwise.
# File 'numeric.rb', line 283
def zero? Primitive.attr! :leaf Primitive.cexpr! 'rb_int_zero_p(self)' end
Instance Method Details
#%(other) ⇒ real_number Also known as: #modulo
Returns self modulo other as a real number.
For integer n and real number r, these expressions are equivalent:
n % r
n-r*(n/r).floor
n.divmod(r)[1]
See Numeric#divmod.
Examples:
10 % 2 # => 0
10 % 3 # => 1
10 % 4 # => 2
10 % -2 # => 0
10 % -3 # => -2
10 % -4 # => -2
10 % 3.0 # => 1.0
10 % Rational(3, 1) # => (1/1)
# File 'numeric.c', line 4378
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
#&(other) ⇒ Integer
# File 'numeric.c', line 5034
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_and(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_and(x, y);
}
return Qnil;
}
#*(numeric) ⇒ numeric_result
# File 'numeric.c', line 4146
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mul(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
#**(numeric) ⇒ numeric_result
# File 'numeric.c', line 4639
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_pow(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_pow(x, y);
}
return Qnil;
}
#+(numeric) ⇒ numeric_result
# File 'numeric.c', line 4046
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_plus(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
#-(numeric) ⇒ numeric_result
# File 'numeric.c', line 4091
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_minus(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
#- ⇒ Integer
Returns self, negated.
# File 'numeric.rb', line 99
def -@ Primitive.attr! :leaf Primitive.cexpr! 'rb_int_uminus(self)' end
#/(numeric) ⇒ numeric_result
# File 'numeric.c', line 4283
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_div(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_div(x, y);
}
return Qnil;
}
#<(other) ⇒ Boolean
Returns true if the value of self is less than that of other:
1 < 0 # => false
1 < 1 # => false
1 < 2 # => true
1 < 0.5 # => false
1 < Rational(1, 2) # => false
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4898
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_lt(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lt(x, y);
}
return Qnil;
}
#<<(count) ⇒ Integer
Returns self with bits shifted count positions to the left, or to the right if count is negative:
n = 0b11110000
"%08b" % (n << 1) # => "111100000"
"%08b" % (n << 3) # => "11110000000"
"%08b" % (n << -1) # => "01111000"
"%08b" % (n << -3) # => "00011110"
Related: #>>.
# File 'numeric.c', line 5173
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_lshift(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lshift(x, y);
}
return Qnil;
}
#<=(real) ⇒ Boolean
Returns true if the value of self is less than or equal to that of other:
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
1 <= 0.5 # => false
1 <= Rational(1, 2) # => false
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4945
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_le(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_le(x, y);
}
return Qnil;
}
#<=>(other) ⇒ 1, ...
Returns:
-
-1, if
selfis less thanother. -
0, if
selfis equal toother. -
1, if
selfis greater thenother. -
nil, ifselfandotherare incomparable.
Examples:
1 <=> 2 # => -1
1 <=> 1 # => 0
1 <=> 0 # => 1
1 <=> 'foo' # => nil
1 <=> 1.0 # => 0
1 <=> Rational(1, 1) # => 0
1 <=> Complex(1, 0) # => 0
This method is the basis for comparisons in module ::Comparable.
# File 'numeric.c', line 4759
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_cmp(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_cmp(x, y);
}
else {
rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x));
}
}
#==(other) ⇒ Boolean Also known as: #===
Returns true if self is numerically equal to other; false otherwise.
1 == 2 #=> false
1 == 1.0 #=> true
Related: Integer#eql? (requires other to be an Integer).
# File 'numeric.c', line 4697
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eq(x, y);
}
return Qnil;
}
#==(other) ⇒ Boolean
#===(other) ⇒ Boolean
Boolean
#===(other) ⇒ Boolean
Alias for #==.
#>(other) ⇒ Boolean
Returns true if the value of self is greater than that of other:
1 > 0 # => true
1 > 1 # => false
1 > 2 # => false
1 > 0.5 # => true
1 > Rational(1, 2) # => true
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4806
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_gt(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_gt(x, y);
}
return Qnil;
}
#>=(real) ⇒ Boolean
Returns true if the value of self is greater than or equal to that of other:
1 >= 0 # => true
1 >= 1 # => true
1 >= 2 # => false
1 >= 0.5 # => true
1 >= Rational(1, 2) # => true
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4853
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_ge(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_ge(x, y);
}
return Qnil;
}
#>>(count) ⇒ Integer
Returns self with bits shifted count positions to the right, or to the left if count is negative:
n = 0b11110000
"%08b" % (n >> 1) # => "01111000"
"%08b" % (n >> 3) # => "00011110"
"%08b" % (n >> -1) # => "111100000"
"%08b" % (n >> -3) # => "11110000000"
Related: #<<.
# File 'numeric.c', line 5229
VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_rshift(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_rshift(x, y);
}
return Qnil;
}
#[](offset) ⇒ 0, 1
#[](offset, size) ⇒ Integer
#[](range) ⇒ Integer
0, 1
#[](offset, size) ⇒ Integer
#[](range) ⇒ Integer
Returns a slice of bits from self.
With argument offset, returns the bit at the given offset, where offset 0 refers to the least significant bit:
n = 0b10 # => 2
n[0] # => 0
n[1] # => 1
n[2] # => 0
n[3] # => 0
In principle, n[i] is equivalent to (n >> i) & 1. Thus, negative index always returns zero:
255[-1] # => 0
With arguments offset and #size, returns #size bits from self, beginning at offset and including bits of greater significance:
n = 0b111000 # => 56
"%010b" % n[0, 10] # => "0000111000"
"%010b" % n[4, 10] # => "0000000011"
With argument range, returns range.size bits from self, beginning at range.begin and including bits of greater significance:
n = 0b111000 # => 56
"%010b" % n[0..9] # => "0000111000"
"%010b" % n[4..9] # => "0000000011"
Raises an exception if the slice cannot be constructed.
# File 'numeric.c', line 5391
static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 2) {
return int_aref2(num, argv[0], argv[1]);
}
return int_aref1(num, argv[0]);
return Qnil;
}
#^(other) ⇒ Integer
# File 'numeric.c', line 5118
VALUE
rb_int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_xor(x, y);
}
return Qnil;
}
#abs ⇒ Integer Also known as: #magnitude
Returns the absolute value of self.
(-12345).abs # => 12345
-12345.abs # => 12345
12345.abs # => 12345
# File 'numeric.rb', line 132
def abs Primitive.attr! :leaf Primitive.cexpr! 'rb_int_abs(self)' end
#allbits?(mask) ⇒ Boolean
# File 'numeric.c', line 3680
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return rb_int_equal(rb_int_and(num, mask), mask);
}
#anybits?(mask) ⇒ Boolean
Returns true if any bit that is set (=1) in mask is also set in self; returns false otherwise.
Example values:
0b10000010 self
0b11111111 mask
0b10000010 self & mask
true self.anybits?(mask)
0b00000000 self
0b11111111 mask
0b00000000 self & mask
false self.anybits?(mask)
# File 'numeric.c', line 3710
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return RBOOL(!int_zero_p(rb_int_and(num, mask)));
}
#bit_length ⇒ Integer
Returns the number of bits of the value of self, which is the bit position of the highest-order bit that is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), returns zero.
This method returns ceil(log2(self < 0 ? -self : self + 1))>.
(-2**1000-1).bit_length # => 1001
(-2**1000).bit_length # => 1000
(-2**1000+1).bit_length # => 1000
(-2**12-1).bit_length # => 13
(-2**12).bit_length # => 12
(-2**12+1).bit_length # => 12
-0x101.bit_length # => 9
-0x100.bit_length # => 8
-0xff.bit_length # => 8
-2.bit_length # => 1
-1.bit_length # => 0
0.bit_length # => 0
1.bit_length # => 1
0xff.bit_length # => 8
0x100.bit_length # => 9
(2**12-1).bit_length # => 12
(2**12).bit_length # => 13
(2**12+1).bit_length # => 13
(2**1000-1).bit_length # => 1000
(2**1000).bit_length # => 1001
(2**1000+1).bit_length # => 1001
For Integer n, this method can be used to detect overflow in Array#pack:
if n.bit_length < 32
[n].pack('l') # No overflow.
else
raise 'Overflow'
end
# File 'numeric.rb', line 179
def bit_length Primitive.attr! :leaf Primitive.cexpr! 'rb_int_bit_length(self)' end
#ceil(ndigits = 0) ⇒ Integer
Returns an integer that is a "ceiling" value for self,
as specified by the given ndigits,
which must be an
integer-convertible object.
When
selfis zero, returns zero (regardless of the value ofndigits):0.ceil(2) # => 0 0.ceil(-2) # => 0When
selfis non-zero andndigitsis non-negative, returnsself:555.ceil # => 555 555.ceil(50) # => 555When
selfis non-zero andndigitsis negative, returns a value based on a computed granularity:- The granularity is
10 ** ndigits.abs. - The returned value is the smallest multiple of the granularity
that is greater than or equal to
self.
Examples with positive
self:ndigits Granularity 1234.ceil(ndigits) -1 10 1240 -2 100 1300 -3 1000 2000 -4 10000 10000 -5 100000 100000 Examples with negative
self:ndigits Granularity -1234.ceil(ndigits) -1 10 -1230 -2 100 -1200 -3 1000 -1000 -4 10000 0 -5 100000 0 - The granularity is
Related: #floor.
# File 'numeric.c', line 5921
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_ceil(num, ndigits);
}
#ceildiv(numeric) ⇒ Integer
Returns the result of division self by numeric. rounded up to the nearest integer.
3.ceildiv(3) # => 1
4.ceildiv(3) # => 2
4.ceildiv(-3) # => -1
-4.ceildiv(3) # => -1
-4.ceildiv(-3) # => 2
3.ceildiv(1.2) # => 3
# File 'numeric.rb', line 303
def ceildiv(other) -div(0 - other) end
Returns a 1-character string containing the character represented by the value of self, according to the given encoding.
65.chr # => "A"
0.chr # => "\x00"
255.chr # => "\xFF"
string = 255.chr(Encoding::UTF_8)
string.encoding # => Encoding::UTF_8
Raises an exception if self is negative.
Related: #ord.
# File 'numeric.c', line 3843
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%u out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_error_arity(argc, 0, 1);
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
#coerce(numeric) ⇒ Array
Returns an array with both a numeric and a int represented as Integer objects or ::Float objects.
This is achieved by converting numeric to an Integer or a ::Float.
A TypeError is raised if the numeric is not an Integer or a ::Float type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
# File 'bignum.c', line 6853
static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y)) {
return rb_assoc_new(y, x);
}
else {
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
}
#denominator ⇒ 1
Returns 1.
# File 'numeric.rb', line 321
def denominator 1 end
#digits(base = 10) ⇒ Integer
Returns an array of integers representing the base-radix digits of self; the first element of the array represents the least significant digit:
12345.digits # => [5, 4, 3, 2, 1]
12345.digits(7) # => [4, 6, 6, 0, 5]
12345.digits(100) # => [45, 23, 1]
Raises an exception if self is negative or base is less than 2.
# File 'numeric.c', line 5592
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
VALUE base_value;
long base;
if (rb_num_negative_p(num))
rb_raise(rb_eMathDomainError, "out of domain");
if (rb_check_arity(argc, 0, 1)) {
base_value = rb_to_int(argv[0]);
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
if (RB_BIGNUM_TYPE_P(base_value))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
if (base < 0)
rb_raise(rb_eArgError, "negative radix");
else if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
}
else
base = 10;
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
else if (RB_BIGNUM_TYPE_P(num))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
#div(numeric) ⇒ Integer
Performs integer division; returns the integer result of dividing self by numeric:
4.div(3) # => 1
4.div(-3) # => -2
-4.div(3) # => -2
-4.div(-3) # => 1
4.div(3.0) # => 1
4.div(Rational(3, 1)) # => 1
Raises an exception if numeric does not have method div.
# File 'numeric.c', line 4319
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_idiv(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_idiv(x, y);
}
return num_div(x, y);
}
#divmod(other) ⇒ Array
Returns a 2-element array [q, r], where
q = (self/other).floor # Quotient
r = self % other # Remainder
Examples:
11.divmod(4) # => [2, 3]
11.divmod(-4) # => [-3, -1]
-11.divmod(4) # => [-3, 1]
-11.divmod(-4) # => [2, -3]
12.divmod(4) # => [3, 0]
12.divmod(-4) # => [-3, 0]
-12.divmod(4) # => [-3, 0]
-12.divmod(-4) # => [3, 0]
13.divmod(4.0) # => [3, 1.0]
13.divmod(Rational(4, 1)) # => [3, (1/1)]
# File 'numeric.c', line 4489
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_divmod(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_divmod(x, y);
}
return Qnil;
}
#downto(limit) {|i| ... } ⇒ self
#downto(limit) ⇒ Enumerator
self
#downto(limit) ⇒ Enumerator
Calls the given block with each integer value from self down to limit; returns self:
a = []
10.downto(5) {|i| a << i } # => 10
a # => [10, 9, 8, 7, 6, 5]
a = []
0.downto(-5) {|i| a << i } # => 0
a # => [0, -1, -2, -3, -4, -5]
4.downto(5) {|i| fail 'Cannot happen' } # => 4
With no block given, returns an ::Enumerator.
# File 'numeric.c', line 5702
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
#fdiv(numeric) ⇒ Float
# File 'numeric.c', line 4218
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
return DBL2NUM(rb_int_fdiv_double(x, y));
}
return Qnil;
}
#floor(ndigits = 0) ⇒ Integer
Returns an integer that is a "floor" value for self,
as specified by the given ndigits,
which must be an
integer-convertible object.
When
selfis zero, returns zero (regardless of the value ofndigits):0.floor(2) # => 0 0.floor(-2) # => 0When
selfis non-zero andndigitsis non-negative, returnsself:555.floor # => 555 555.floor(50) # => 555When
selfis non-zero andndigitsis negative, returns a value based on a computed granularity:- The granularity is
10 ** ndigits.abs. - The returned value is the largest multiple of the granularity
that is less than or equal to
self.
Examples with positive
self:ndigits Granularity 1234.floor(ndigits) -1 10 1230 -2 100 1200 -3 1000 1000 -4 10000 0 -5 100000 0 Examples with negative
self:ndigits Granularity -1234.floor(ndigits) -1 10 -1240 -2 100 -1300 -3 1000 -2000 -4 10000 -10000 -5 100000 -100000 - The granularity is
Related: #ceil.
# File 'numeric.c', line 5853
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_floor(num, ndigits);
}
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
# File 'rational.c', line 1914
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180]
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
# File 'rational.c', line 1952
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Alias for #to_s.
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
# File 'rational.c', line 1933
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
#magnitude
Alias for #abs.
# File 'numeric.rb', line 201
alias magnitude abs
#%(other) ⇒ real_number
#modulo(other) ⇒ real_number
real_number
#modulo(other) ⇒ real_number
Alias for #%.
#next ⇒ Integer Also known as: #succ
# File 'numeric.c', line 3759
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_plus(num, INT2FIX(1));
}
return num_funcall1(num, '+', INT2FIX(1));
}
#nobits?(mask) ⇒ Boolean
# File 'numeric.c', line 3740
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return RBOOL(int_zero_p(rb_int_and(num, mask)));
}
#numerator ⇒ self
Returns self.
# File 'numeric.rb', line 313
def numerator self end
#ord ⇒ self
Returns self; intended for compatibility to character literals in ::Ruby 1.9.
# File 'numeric.rb', line 217
def ord self end
#pow(numeric) ⇒ Numeric
#pow(integer, integer) ⇒ Integer
Integer
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b
a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
# File 'bignum.c', line 7152
VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 1) {
return rb_int_pow(num, argv[0]);
}
else {
VALUE const a = num;
VALUE const b = argv[0];
VALUE m = argv[1];
int nega_flg = 0;
if ( ! RB_INTEGER_TYPE_P(b)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
}
if (rb_int_negative_p(b)) {
rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
}
if (!RB_INTEGER_TYPE_P(m)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
}
if (rb_int_negative_p(m)) {
m = rb_int_uminus(m);
nega_flg = 1;
}
if (FIXNUM_P(m)) {
long const half_val = (long)HALF_LONG_MSB;
long const mm = FIX2LONG(m);
if (!mm) rb_num_zerodiv();
if (mm == 1) return INT2FIX(0);
if (mm <= half_val) {
return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
}
else {
return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
}
}
else {
if (rb_bigzero_p(m)) rb_num_zerodiv();
if (bignorm(m) == INT2FIX(1)) return INT2FIX(0);
return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
}
}
UNREACHABLE_RETURN(Qnil);
}
#pred ⇒ Integer
Returns the predecessor of self (equivalent to self - 1):
1.pred #=> 0
-1.pred #=> -2
Related: #succ (successor value).
# File 'numeric.c', line 3787
static VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_minus(num, INT2FIX(1));
}
return num_funcall1(num, '-', INT2FIX(1));
}
#rationalize([eps]) ⇒ Rational
Returns the value as a rational. The optional argument eps is always ignored.
# File 'rational.c', line 2132
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 1);
return integer_to_r(self);
}
#remainder(other) ⇒ real_number
Returns the remainder after dividing self by other.
Examples:
11.remainder(4) # => 3
11.remainder(-4) # => 3
-11.remainder(4) # => -3
-11.remainder(-4) # => -3
12.remainder(4) # => 0
12.remainder(-4) # => 0
-12.remainder(4) # => 0
-12.remainder(-4) # => 0
13.remainder(4.0) # => 1.0
13.remainder(Rational(4, 1)) # => (1/1)
# File 'numeric.c', line 4413
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
if (FIXNUM_P(y)) {
VALUE z = fix_mod(x, y);
RUBY_ASSERT(FIXNUM_P(z));
if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0)
z = fix_minus(z, y);
return z;
}
else if (!RB_BIGNUM_TYPE_P(y)) {
return num_remainder(x, y);
}
x = rb_int2big(FIX2LONG(x));
}
else if (!RB_BIGNUM_TYPE_P(x)) {
return Qnil;
}
return rb_big_remainder(x, y);
}
#round(ndigits = 0, half: :up) ⇒ Integer
Returns self rounded to the nearest value with a precision of ndigits decimal digits.
When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:
555.round(-1) # => 560
555.round(-2) # => 600
555.round(-3) # => 1000
-555.round(-2) # => -600
555.round(-4) # => 0
Returns self when ndigits is zero or positive.
555.round # => 555
555.round(1) # => 555
555.round(50) # => 555
If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:
-
:upornil: round away from zero:25.round(-1, half: :up) # => 30 (-25).round(-1, half: :up) # => -30 -
:down: round toward zero:25.round(-1, half: :down) # => 20 (-25).round(-1, half: :down) # => -20 -
:even: round toward the candidate whose last nonzero digit is even:25.round(-1, half: :even) # => 20 15.round(-1, half: :even) # => 20 (-25).round(-1, half: :even) # => -20
Raises and exception if the value for half is invalid.
Related: #truncate.
# File 'numeric.c', line 5781
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
int ndigits;
int mode;
VALUE nd, opt;
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
return num;
}
return rb_int_round(num, ndigits, mode);
}
#size ⇒ Integer
Returns the number of bytes in the machine representation of self; the value is system-dependent:
1.size # => 8
-1.size # => 8
2147483647.size # => 8
(256**10 - 1).size # => 10
(256**20 - 1).size # => 20
(256**40 - 1).size # => 40
# File 'numeric.rb', line 234
def size Primitive.attr! :leaf Primitive.cexpr! 'rb_int_size(self)' end
#next ⇒ Integer
#succ ⇒ Integer
Integer
#succ ⇒ Integer
Alias for #next.
#times {|i| ... } ⇒ self
#times ⇒ Enumerator
self
#times ⇒ Enumerator
Calls the given block self times with each integer in (0..self-1):
a = []
5.times {|i| a.push(i) } # => 5
a # => [0, 1, 2, 3, 4]
With no block given, returns an ::Enumerator.
# File 'numeric.rb', line 250
def times Primitive.attr! :inline_block unless defined?(yield) return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, int_dotimes_size)' end i = 0 while i < self yield i i = i.succ end self end
#to_f ⇒ Float
# File 'numeric.c', line 5420
static VALUE
int_to_f(VALUE num)
{
double val;
if (FIXNUM_P(num)) {
val = (double)FIX2LONG(num);
}
else if (RB_BIGNUM_TYPE_P(num)) {
val = rb_big2dbl(num);
}
else {
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
#to_i ⇒ self
Returns self (which is already an Integer).
# File 'numeric.rb', line 267
def to_i self end
#to_int ⇒ self
Returns self (which is already an Integer).
# File 'numeric.rb', line 275
def to_int self end
#to_r ⇒ Rational
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
# File 'rational.c', line 2119
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
#to_s(base = 10) ⇒ String Also known as: #inspect
Returns a string containing the place-value representation of self in radix base (in 2..36).
12345.to_s # => "12345"
12345.to_s(2) # => "11000000111001"
12345.to_s(8) # => "30071"
12345.to_s(10) # => "12345"
12345.to_s(16) # => "3039"
12345.to_s(36) # => "9ix"
78546939656932.to_s(36) # => "rubyrules"
Raises an exception if base is out of range.
# File 'numeric.c', line 3980
VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
base = NUM2INT(argv[0]);
else
base = 10;
return rb_int2str(x, base);
}
#truncate(ndigits = 0) ⇒ Integer
Returns self truncated (toward zero) to a precision of ndigits decimal digits.
When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:
555.truncate(-1) # => 550
555.truncate(-2) # => 500
-555.truncate(-2) # => -500
Returns self when ndigits is zero or positive.
555.truncate # => 555
555.truncate(50) # => 555
Related: #round.
# File 'numeric.c', line 5957
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_truncate(num, ndigits);
}
#upto(limit) {|i| ... } ⇒ self
#upto(limit) ⇒ Enumerator
self
#upto(limit) ⇒ Enumerator
Calls the given block with each integer value from self up to limit; returns self:
a = []
5.upto(10) {|i| a << i } # => 5
a # => [5, 6, 7, 8, 9, 10]
a = []
-5.upto(0) {|i| a << i } # => -5
a # => [-5, -4, -3, -2, -1, 0]
5.upto(4) {|i| fail 'Cannot happen' } # => 5
With no block given, returns an ::Enumerator.
# File 'numeric.c', line 5652
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
ensure_cmp(c, i, to);
}
return from;
}
#|(other) ⇒ Integer
# File 'numeric.c', line 5076
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_or(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_or(x, y);
}
return Qnil;
}
#~ ⇒ Integer
One’s complement: returns the value of self with each bit inverted.
Because an integer value is conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits:
sprintf("%X", ~0x1122334455) # => "..FEEDDCCBBAA"
# File 'numeric.rb', line 118
def ~ Primitive.attr! :leaf Primitive.cexpr! 'rb_int_comp(self)' end