123456789_123456789_123456789_123456789_123456789_

Class: Integer

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Class Chain:
self, ::Numeric
Instance Chain:
Inherits: Numeric
Defined in: numeric.c,
bignum.c,
numeric.rb,
rational.c

Overview

An Integer object represents an integer value.

You can create an Integer object explicitly with:

  • An integer literal.

You can convert certain objects to Integers with:

  • Method #Integer.

An attempt to add a singleton method to an instance of this class causes an exception to be raised.

What’s Here

First, what’s elsewhere. Class Integer:

  • Inherits from class Numeric and class Object.

  • Includes module Comparable.

Here, class Integer provides methods for:

  • Querying

  • Comparing

  • Converting

  • Other

Querying

  • #allbits?: Returns whether all bits in self are set.

  • #anybits?: Returns whether any bits in self are set.

  • #nobits?: Returns whether no bits in self are set.

Comparing

  • #<: Returns whether self is less than the given value.

  • #<=: Returns whether self is less than or equal to the given value.

  • #<=>: Returns a number indicating whether self is less than, equal to, or greater than the given value.

  • #== (aliased as #===): Returns whether self is equal to the given

    value.
  • #>: Returns whether self is greater than the given value.

  • #>=: Returns whether self is greater than or equal to the given value.

Converting

  • .sqrt: Returns the integer square root of the given value.

  • .try_convert: Returns the given value converted to an Integer.

  • #% (aliased as #modulo): Returns self modulo the given value.

  • #&: Returns the bitwise AND of self and the given value.

  • #*: Returns the product of self and the given value.

  • #**: Returns the value of self raised to the power of the given value.

  • #+: Returns the sum of self and the given value.

  • #-: Returns the difference of self and the given value.

  • #/: Returns the quotient of self and the given value.

  • #<<: Returns the value of self after a leftward bit-shift.

  • #>>: Returns the value of self after a rightward bit-shift.

  • #[]: Returns a slice of bits from self.

  • #^: Returns the bitwise EXCLUSIVE OR of self and the given value.

  • #|: Returns the bitwise OR of self and the given value.

  • #ceil: Returns the smallest number greater than or equal to self.

  • #chr: Returns a 1-character string containing the character represented by the value of self.

  • #digits: Returns an array of integers representing the base-radix digits of self.

  • #div: Returns the integer result of dividing self by the given value.

  • #divmod: Returns a 2-element array containing the quotient and remainder results of dividing self by the given value.

  • #fdiv: Returns the ::Float result of dividing self by the given value.

  • #floor: Returns the greatest number smaller than or equal to self.

  • #pow: Returns the modular exponentiation of self.

  • #pred: Returns the integer predecessor of self.

  • #remainder: Returns the remainder after dividing self by the given value.

  • #round: Returns self rounded to the nearest value with the given precision.

  • #succ (aliased as #next): Returns the integer successor of self.

  • #to_f: Returns self converted to a ::Float.

  • #to_s (aliased as #inspect): Returns a string containing the place-value representation of self in the given radix.

  • #truncate: Returns self truncated to the given precision.

Other

  • #downto: Calls the given block with each integer value from self down to the given value.

  • #times: Calls the given block self times with each integer in (0..self-1).

  • #upto: Calls the given block with each integer value from self up to the given value.

Constant Summary

Class Method Summary

Instance Attribute Summary

::Numeric - Inherited

#finite?

Returns true if self is a finite number, false otherwise.

#infinite?

Returns nil, -1, or 1 depending on whether self is finite, -Infinity, or +Infinity.

#integer?

Returns true if self is an Integer.

#negative?

Returns true if self is less than 0, false otherwise.

#nonzero?

Returns self if self is not a zero value, nil otherwise; uses method #zero? for the evaluation.

#positive?

Returns true if self is greater than 0, false otherwise.

#real?

Returns true if self is a real number (i.e.

#zero?

Returns true if zero has a zero value, false otherwise.

Instance Method Summary

::Numeric - Inherited

#%

Returns self modulo other as a real number.

#+@

Returns self.

#-@

Unary Minus—Returns the receiver, negated.

#<=>

Returns zero if self is the same as other, nil otherwise.

#abs

Returns the absolute value of self.

#abs2

Returns the square of self.

#angle

Alias for Numeric#arg.

#arg

Returns zero if self is positive, Math::PI otherwise.

#ceil

Returns the smallest float or integer that is greater than or equal to self, as specified by the given ndigits, which must be an integer-convertible object.

#clone

Returns self.

#coerce

Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.

#conj
#conjugate

Returns self.

#denominator

Returns the denominator (always positive).

#div

Returns the quotient self/other as an integer (via #floor), using method #/ in the derived class of self.

#divmod

Returns a 2-element array [q, r], where.

#dup

Returns self.

#eql?

Returns true if self and other are the same type and have equal values.

#fdiv

Returns the quotient self/other as a float, using method #/ in the derived class of self.

#floor

Returns the largest float or integer that is less than or equal to self, as specified by the given ndigits, which must be an integer-convertible object.

#i

Returns Complex(0, self):

#imag
#imaginary

Returns zero.

#magnitude

Alias for Numeric#abs.

#modulo

Alias for Numeric#%.

#numerator

Returns the numerator.

#phase

Alias for Numeric#arg.

#polar

Returns array [self.abs, self.arg].

#quo

Returns the most exact division (rational for integers, float for floats).

#real

Returns self.

#rect

Returns array [self, 0].

#rectangular

Alias for Numeric#rect.

#remainder

Returns the remainder after dividing self by other.

#round

Returns self rounded to the nearest value with a precision of #digits decimal digits.

#step

Generates a sequence of numbers; with a block given, traverses the sequence.

#to_c

Returns self as a ::Complex object.

#to_int

Returns self as an integer; converts using method #to_i in the derived class.

#truncate

Returns self truncated (toward zero) to a precision of #digits decimal digits.

#singleton_method_added

Trap attempts to add methods to ::Numeric objects.

::Comparable - Included

#<

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0.

#<=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0.

#==

Compares two objects based on the receiver’s #<=> method, returning true if it returns 0.

#>

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0.

#>=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0.

#between?

Returns false if obj #<=> min is less than zero or if obj #<=> max is greater than zero, true otherwise.

#clamp

In (min, max) form, returns min if obj #<=> min is less than zero, max if obj #<=> max is greater than zero, and obj otherwise.

Class Method Details

.sqrt(numeric) ⇒ Integer

Returns the integer square root of the non-negative integer n, which is the largest non-negative integer less than or equal to the square root of numeric.

Integer.sqrt(0)       # => 0
Integer.sqrt(1)       # => 1
Integer.sqrt(24)      # => 4
Integer.sqrt(25)      # => 5
Integer.sqrt(10**400) # => 10**200

If numeric is not an Integer, it is converted to an Integer:

Integer.sqrt(Complex(4, 0))  # => 2
Integer.sqrt(Rational(4, 1)) # => 2
Integer.sqrt(4.0)            # => 2
Integer.sqrt(3.14159)        # => 1

This method is equivalent to Math.sqrt(numeric).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.

Integer.sqrt(10**46)    # => 100000000000000000000000
Math.sqrt(10**46).floor # => 99999999999999991611392

Raises an exception if numeric is negative.

[ GitHub ]

  
# File 'numeric.c', line 6042

static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
    unsigned long n, sq;
    num = rb_to_int(num);
    if (FIXNUM_P(num)) {
        if (FIXNUM_NEGATIVE_P(num)) {
            domain_error("isqrt");
        }
        n = FIX2ULONG(num);
        sq = rb_ulong_isqrt(n);
        return LONG2FIX(sq);
    }
    else {
        size_t biglen;
        if (RBIGNUM_NEGATIVE_P(num)) {
            domain_error("isqrt");
        }
        biglen = BIGNUM_LEN(num);
        if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
        /* short-circuit */
        if (biglen == 1) {
            n = BIGNUM_DIGITS(num)[0];
            sq = rb_ulong_isqrt(n);
            return ULONG2NUM(sq);
        }
#endif
        return rb_big_isqrt(num);
    }
}

.try_convert(object) ⇒ Object, ...

If object is an Integer object, returns object.

Integer.try_convert(1) # => 1

Otherwise if object responds to :to_int, calls object.to_int and returns the result.

Integer.try_convert(1.25) # => 1

Returns nil if object does not respond to :to_int

Integer.try_convert([]) # => nil

Raises an exception unless object.to_int returns an Integer object.

[ GitHub ]

  
# File 'numeric.c', line 6090

static VALUE
int_s_try_convert(VALUE self, VALUE num)
{
    return rb_check_integer_type(num);
}

Instance Attribute Details

#even?Boolean (readonly)

Returns true if self is an even number, false otherwise.

[ GitHub ]

  
# File 'numeric.rb', line 188

def even?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_even_p(self)'
end

#integer?Boolean (readonly)

Since self is already an Integer, always returns true.

[ GitHub ]

  
# File 'numeric.rb', line 197

def integer?
  true
end

#odd?Boolean (readonly)

Returns true if self is an odd number, false otherwise.

[ GitHub ]

  
# File 'numeric.rb', line 207

def odd?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_odd_p(self)'
end

#zero?Boolean (readonly)

Returns true if self has a zero value, false otherwise.

[ GitHub ]

  
# File 'numeric.rb', line 283

def zero?
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_zero_p(self)'
end

Instance Method Details

#%(other) ⇒ real_number Also known as: #modulo

Returns self modulo other as a real number.

For integer n and real number r, these expressions are equivalent:

n % r
n-r*(n/r).floor
n.divmod(r)[1]

See Numeric#divmod.

Examples:

10 % 2              # => 0
10 % 3              # => 1
10 % 4              # => 2

10 % -2             # => 0
10 % -3             # => -2
10 % -4             # => -2

10 % 3.0            # => 1.0
10 % Rational(3, 1) # => (1/1)
[ GitHub ]

  
# File 'numeric.c', line 4378

VALUE
rb_int_modulo(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_mod(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_modulo(x, y);
    }
    return num_modulo(x, y);
}

#&(other) ⇒ Integer

Bitwise AND; each bit in the result is 1 if both corresponding bits in self and other are 1, 0 otherwise:

"%04b" % (0b0101 & 0b0110) # => "0100"

Raises an exception if other is not an Integer.

Related: #| (bitwise OR), #^ (bitwise EXCLUSIVE OR).

[ GitHub ]

  
# File 'numeric.c', line 5034

VALUE
rb_int_and(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_and(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_and(x, y);
    }
    return Qnil;
}

#*(numeric) ⇒ numeric_result

Performs multiplication:

4 * 2              # => 8
4 * -2             # => -8
-4 * 2             # => -8
4 * 2.0            # => 8.0
4 * Rational(1, 3) # => (4/3)
4 * Complex(2, 0)  # => (8+0i)
[ GitHub ]

  
# File 'numeric.c', line 4146

VALUE
rb_int_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_mul(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_mul(x, y);
    }
    return rb_num_coerce_bin(x, y, '*');
}

#**(numeric) ⇒ numeric_result

Raises self to the power of numeric:

2 ** 3              # => 8
2 ** -3             # => (1/8)
-2 ** 3             # => -8
-2 ** -3            # => (-1/8)
2 ** 3.3            # => 9.849155306759329
2 ** Rational(3, 1) # => (8/1)
2 ** Complex(3, 0)  # => (8+0i)
[ GitHub ]

  
# File 'numeric.c', line 4639

VALUE
rb_int_pow(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_pow(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_pow(x, y);
    }
    return Qnil;
}

#+(numeric) ⇒ numeric_result

Performs addition:

2 + 2              # => 4
-2 + 2             # => 0
-2 + -2            # => -4
2 + 2.0            # => 4.0
2 + Rational(2, 1) # => (4/1)
2 + Complex(2, 0)  # => (4+0i)
[ GitHub ]

  
# File 'numeric.c', line 4046

VALUE
rb_int_plus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_plus(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_plus(x, y);
    }
    return rb_num_coerce_bin(x, y, '+');
}

#-(numeric) ⇒ numeric_result

Performs subtraction:

4 - 2              # => 2
-4 - 2             # => -6
-4 - -2            # => -2
4 - 2.0            # => 2.0
4 - Rational(2, 1) # => (2/1)
4 - Complex(2, 0)  # => (2+0i)
[ GitHub ]

  
# File 'numeric.c', line 4091

VALUE
rb_int_minus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_minus(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_minus(x, y);
    }
    return rb_num_coerce_bin(x, y, '-');
}

#-Integer

Returns self, negated.

[ GitHub ]

  
# File 'numeric.rb', line 99

def -@
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_uminus(self)'
end

#/(numeric) ⇒ numeric_result

Performs division; for integer numeric, truncates the result to an integer:

 4 / 3              # => 1
 4 / -3             # => -2
 -4 / 3             # => -2
 -4 / -3            # => 1

For other {numeric}, returns non-integer result:

 4 / 3.0            # => 1.3333333333333333
 4 / Rational(3, 1) # => (4/3)
 4 / Complex(3, 0)  # => ((4/3)+0i)
[ GitHub ]

  
# File 'numeric.c', line 4283

VALUE
rb_int_div(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_div(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_div(x, y);
    }
    return Qnil;
}

#<(other) ⇒ Boolean

Returns true if the value of self is less than that of other:

  1 < 0              # => false
  1 < 1              # => false
  1 < 2              # => true
  1 < 0.5            # => false
  1 < Rational(1, 2) # => false

Raises an exception if the comparison cannot be made.
[ GitHub ]

  
# File 'numeric.c', line 4898

static VALUE
int_lt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_lt(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_lt(x, y);
    }
    return Qnil;
}

#<<(count) ⇒ Integer

Returns self with bits shifted count positions to the left, or to the right if count is negative:

n = 0b11110000
"%08b" % (n << 1)  # => "111100000"
"%08b" % (n << 3)  # => "11110000000"
"%08b" % (n << -1) # => "01111000"
"%08b" % (n << -3) # => "00011110"

Related: #>>.

[ GitHub ]

  
# File 'numeric.c', line 5173

VALUE
rb_int_lshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return rb_fix_lshift(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_lshift(x, y);
    }
    return Qnil;
}

#<=(real) ⇒ Boolean

Returns true if the value of self is less than or equal to that of other:

1 <= 0              # => false
1 <= 1              # => true
1 <= 2              # => true
1 <= 0.5            # => false
1 <= Rational(1, 2) # => false

Raises an exception if the comparison cannot be made.

[ GitHub ]

  
# File 'numeric.c', line 4945

static VALUE
int_le(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_le(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_le(x, y);
    }
    return Qnil;
}

#<=>(other) ⇒ 1, ...

Returns:

  • -1, if self is less than other.

  • 0, if self is equal to other.

  • 1, if self is greater then other.

  • nil, if self and other are incomparable.

Examples:

1 <=> 2              # => -1
1 <=> 1              # => 0
1 <=> 0              # => 1
1 <=> 'foo'          # => nil

1 <=> 1.0            # => 0
1 <=> Rational(1, 1) # => 0
1 <=> Complex(1, 0)  # => 0

This method is the basis for comparisons in module ::Comparable.

[ GitHub ]

  
# File 'numeric.c', line 4759

VALUE
rb_int_cmp(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_cmp(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_cmp(x, y);
    }
    else {
        rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x));
    }
}

#==(other) ⇒ Boolean Also known as: #===

Returns true if self is numerically equal to other; false otherwise.

1 == 2     #=> false
1 == 1.0   #=> true

Related: Integer#eql? (requires other to be an Integer).

[ GitHub ]

  
# File 'numeric.c', line 4697

VALUE
rb_int_equal(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_equal(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_eq(x, y);
    }
    return Qnil;
}

#==(other) ⇒ Boolean #===(other) ⇒ Boolean

Alias for #==.

#>(other) ⇒ Boolean

Returns true if the value of self is greater than that of other:

1 > 0              # => true
1 > 1              # => false
1 > 2              # => false
1 > 0.5            # => true
1 > Rational(1, 2) # => true

Raises an exception if the comparison cannot be made.

[ GitHub ]

  
# File 'numeric.c', line 4806

VALUE
rb_int_gt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_gt(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_gt(x, y);
    }
    return Qnil;
}

#>=(real) ⇒ Boolean

Returns true if the value of self is greater than or equal to that of other:

1 >= 0              # => true
1 >= 1              # => true
1 >= 2              # => false
1 >= 0.5            # => true
1 >= Rational(1, 2) # => true

Raises an exception if the comparison cannot be made.

[ GitHub ]

  
# File 'numeric.c', line 4853

VALUE
rb_int_ge(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_ge(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_ge(x, y);
    }
    return Qnil;
}

#>>(count) ⇒ Integer

Returns self with bits shifted count positions to the right, or to the left if count is negative:

n = 0b11110000
"%08b" % (n >> 1)  # => "01111000"
"%08b" % (n >> 3)  # => "00011110"
"%08b" % (n >> -1) # => "111100000"
"%08b" % (n >> -3) # => "11110000000"

Related: #<<.

[ GitHub ]

  
# File 'numeric.c', line 5229

VALUE
rb_int_rshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return rb_fix_rshift(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_rshift(x, y);
    }
    return Qnil;
}

#[](offset) ⇒ 0, 1 #[](offset, size) ⇒ Integer #[](range) ⇒ Integer

Returns a slice of bits from self.

With argument offset, returns the bit at the given offset, where offset 0 refers to the least significant bit:

n = 0b10 # => 2
n[0]     # => 0
n[1]     # => 1
n[2]     # => 0
n[3]     # => 0

In principle, n[i] is equivalent to (n >> i) & 1. Thus, negative index always returns zero:

255[-1] # => 0

With arguments offset and #size, returns #size bits from self, beginning at offset and including bits of greater significance:

n = 0b111000       # => 56
"%010b" % n[0, 10] # => "0000111000"
"%010b" % n[4, 10] # => "0000000011"

With argument range, returns range.size bits from self, beginning at range.begin and including bits of greater significance:

n = 0b111000      # => 56
"%010b" % n[0..9] # => "0000111000"
"%010b" % n[4..9] # => "0000000011"

Raises an exception if the slice cannot be constructed.

[ GitHub ]

  
# File 'numeric.c', line 5390

static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return int_aref2(num, argv[0], argv[1]);
    }
    return int_aref1(num, argv[0]);

    return Qnil;
}

#^(other) ⇒ Integer

Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits in self and other are different, 0 otherwise:

"%04b" % (0b0101 ^ 0b0110) # => "0011"

Raises an exception if other is not an Integer.

Related: #& (bitwise AND), #| (bitwise OR).

[ GitHub ]

  
# File 'numeric.c', line 5118

static VALUE
int_xor(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_xor(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_xor(x, y);
    }
    return Qnil;
}

#absInteger Also known as: #magnitude

Returns the absolute value of self.

(-12345).abs # => 12345
-12345.abs   # => 12345
12345.abs    # => 12345
[ GitHub ]

  
# File 'numeric.rb', line 132

def abs
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_abs(self)'
end

#allbits?(mask) ⇒ Boolean

Returns true if all bits that are set (=1) in mask are also set in self; returns false otherwise.

Example values:

0b1010101  self
0b1010100  mask
0b1010100  self & mask
     true  self.allbits?(mask)

0b1010100  self
0b1010101  mask
0b1010100  self & mask
    false  self.allbits?(mask)

Related: #anybits?, #nobits?.

[ GitHub ]

  
# File 'numeric.c', line 3680

static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return rb_int_equal(rb_int_and(num, mask), mask);
}

#anybits?(mask) ⇒ Boolean

Returns true if any bit that is set (=1) in mask is also set in self; returns false otherwise.

Example values:

0b10000010  self
0b11111111  mask
0b10000010  self & mask
      true  self.anybits?(mask)

0b00000000  self
0b11111111  mask
0b00000000  self & mask
     false  self.anybits?(mask)

Related: #allbits?, #nobits?.

[ GitHub ]

  
# File 'numeric.c', line 3710

static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return RBOOL(!int_zero_p(rb_int_and(num, mask)));
}

#bit_lengthInteger

Returns the number of bits of the value of self, which is the bit position of the highest-order bit that is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), returns zero.

This method returns ceil(log2(self < 0 ? -self : self + 1))>.

(-2**1000-1).bit_length   # => 1001
(-2**1000).bit_length     # => 1000
(-2**1000+1).bit_length   # => 1000
(-2**12-1).bit_length     # => 13
(-2**12).bit_length       # => 12
(-2**12+1).bit_length     # => 12
-0x101.bit_length         # => 9
-0x100.bit_length         # => 8
-0xff.bit_length          # => 8
-2.bit_length             # => 1
-1.bit_length             # => 0
0.bit_length              # => 0
1.bit_length              # => 1
0xff.bit_length           # => 8
0x100.bit_length          # => 9
(2**12-1).bit_length      # => 12
(2**12).bit_length        # => 13
(2**12+1).bit_length      # => 13
(2**1000-1).bit_length    # => 1000
(2**1000).bit_length      # => 1001
(2**1000+1).bit_length    # => 1001

For Integer n, this method can be used to detect overflow in Array#pack:

if n.bit_length < 32
  [n].pack('l') # No overflow.
else
  raise 'Overflow'
end
[ GitHub ]

  
# File 'numeric.rb', line 179

def bit_length
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_bit_length(self)'
end

#ceil(ndigits = 0) ⇒ Integer

:markup: markdown

Returns an integer that is a “ceiling” value for self, as specified by the given ndigits, which must be an [integer-convertible object](implicit_conversion.rdoc@Integer-Convertible+Objects).

  • When self is zero, returns zero (regardless of the value of ndigits):

    ```
    0.ceil(2)  # => 0
    0.ceil(-2) # => 0
    ```
  • When self is non-zero and ndigits is non-negative, returns self:

    ```
    555.ceil     # => 555
    555.ceil(50) # => 555
    ```
  • When self is non-zero and ndigits is negative, returns a value based on a computed granularity:

    - The granularity is `10 ** ndigits.abs`.
    - The returned value is the smallest multiple of the granularity
      that is greater than or equal to {self}.
    
    Examples with positive {self}:
    
    | ndigits | Granularity | 1234.ceil(ndigits) |
    |--------:|------------:|-------------------:|
    | -1      | 10          | 1240               |
    | -2      | 100         | 1300               |
    | -3      | 1000        | 2000               |
    | -4      | 10000       | 10000              |
    | -5      | 100000      | 100000             |
    
    Examples with negative {self}:
    
    | ndigits | Granularity | -1234.ceil(ndigits) |
    |--------:|------------:|--------------------:|
    | -1      | 10          | -1230               |
    | -2      | 100         | -1200               |
    | -3      | 1000        | -1000               |
    | -4      | 10000       | 0                   |
    | -5      | 100000      | 0                   |

Related: #floor.

[ GitHub ]

  
# File 'numeric.c', line 5920

static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_ceil(num, ndigits);
}

#ceildiv(numeric) ⇒ Integer

Returns the result of division self by numeric. rounded up to the nearest integer.

3.ceildiv(3)   # => 1
4.ceildiv(3)   # => 2

4.ceildiv(-3)  # => -1
-4.ceildiv(3)  # => -1
-4.ceildiv(-3) # => 2

3.ceildiv(1.2) # => 3
[ GitHub ]

  
# File 'numeric.rb', line 303

def ceildiv(other)
  -div(0 - other)
end

#chrString #chr(encoding) ⇒ String

Returns a 1-character string containing the character represented by the value of self, according to the given encoding.

65.chr                   # => "A"
0.chr                    # => "\x00"
255.chr                  # => "\xFF"
string = 255.chr(Encoding::UTF_8)
string.encoding          # => Encoding::UTF_8

Raises an exception if self is negative.

Related: #ord.

[ GitHub ]

  
# File 'numeric.c', line 3843

static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
    char c;
    unsigned int i;
    rb_encoding *enc;

    if (rb_num_to_uint(num, &i) == 0) {
    }
    else if (FIXNUM_P(num)) {
        rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
    }
    else {
        rb_raise(rb_eRangeError, "bignum out of char range");
    }

    switch (argc) {
      case 0:
        if (0xff < i) {
            enc = rb_default_internal_encoding();
            if (!enc) {
                rb_raise(rb_eRangeError, "%u out of char range", i);
            }
            goto decode;
        }
        c = (char)i;
        if (i < 0x80) {
            return rb_usascii_str_new(&c, 1);
        }
        else {
            return rb_str_new(&c, 1);
        }
      case 1:
        break;
      default:
        rb_error_arity(argc, 0, 1);
    }
    enc = rb_to_encoding(argv[0]);
    if (!enc) enc = rb_ascii8bit_encoding();
  decode:
    return rb_enc_uint_chr(i, enc);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a int represented as Integer objects or ::Float objects.

This is achieved by converting numeric to an Integer or a ::Float.

A TypeError is raised if the numeric is not an Integer or a ::Float type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]
[ GitHub ]

  
# File 'bignum.c', line 6784

static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(y)) {
        return rb_assoc_new(y, x);
    }
    else {
        x = rb_Float(x);
        y = rb_Float(y);
        return rb_assoc_new(y, x);
    }
}

#denominator1

Returns 1.

[ GitHub ]

  
# File 'numeric.rb', line 321

def denominator
  1
end

#digits(base = 10) ⇒ Integer

Returns an array of integers representing the base-radix digits of self; the first element of the array represents the least significant digit:

12345.digits      # => [5, 4, 3, 2, 1]
12345.digits(7)   # => [4, 6, 6, 0, 5]
12345.digits(100) # => [45, 23, 1]

Raises an exception if self is negative or base is less than 2.

[ GitHub ]

  
# File 'numeric.c', line 5591

static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
    VALUE base_value;
    long base;

    if (rb_num_negative_p(num))
        rb_raise(rb_eMathDomainError, "out of domain");

    if (rb_check_arity(argc, 0, 1)) {
        base_value = rb_to_int(argv[0]);
        if (!RB_INTEGER_TYPE_P(base_value))
            rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
                     rb_obj_classname(argv[0]));
        if (RB_BIGNUM_TYPE_P(base_value))
            return rb_int_digits_bigbase(num, base_value);

        base = FIX2LONG(base_value);
        if (base < 0)
            rb_raise(rb_eArgError, "negative radix");
        else if (base < 2)
            rb_raise(rb_eArgError, "invalid radix %ld", base);
    }
    else
        base = 10;

    if (FIXNUM_P(num))
        return rb_fix_digits(num, base);
    else if (RB_BIGNUM_TYPE_P(num))
        return rb_int_digits_bigbase(num, LONG2FIX(base));

    return Qnil;
}

#div(numeric) ⇒ Integer

Performs integer division; returns the integer result of dividing self by numeric:

4.div(3)              # => 1
4.div(-3)             # => -2
-4.div(3)             # => -2
-4.div(-3)            # => 1
4.div(3.0)            # => 1
4.div(Rational(3, 1)) # => 1

Raises an exception if numeric does not have method div.

[ GitHub ]

  
# File 'numeric.c', line 4319

VALUE
rb_int_idiv(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_idiv(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_idiv(x, y);
    }
    return num_div(x, y);
}

#divmod(other) ⇒ Array

Returns a 2-element array [q, r], where

q = (self/other).floor    # Quotient
r = self % other          # Remainder

Examples:

11.divmod(4)              # => [2, 3]
11.divmod(-4)             # => [-3, -1]
-11.divmod(4)             # => [-3, 1]
-11.divmod(-4)            # => [2, -3]

12.divmod(4)              # => [3, 0]
12.divmod(-4)             # => [-3, 0]
-12.divmod(4)             # => [-3, 0]
-12.divmod(-4)            # => [3, 0]

13.divmod(4.0)            # => [3, 1.0]
13.divmod(Rational(4, 1)) # => [3, (1/1)]
[ GitHub ]

  
# File 'numeric.c', line 4489

VALUE
rb_int_divmod(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_divmod(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_divmod(x, y);
    }
    return Qnil;
}

#downto(limit) {|i| ... } ⇒ self #downto(limit) ⇒ Enumerator

Calls the given block with each integer value from self down to limit; returns self:

a = []
10.downto(5) {|i| a << i }              # => 10
a                                       # => [10, 9, 8, 7, 6, 5]
a = []
0.downto(-5) {|i| a << i }              # => 0
a                                       # => [0, -1, -2, -3, -4, -5]
4.downto(5) {|i| fail 'Cannot happen' } # => 4

With no block given, returns an ::Enumerator.

[ GitHub ]

  
# File 'numeric.c', line 5701

static VALUE
int_downto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
        long i, end;

        end = FIX2LONG(to);
        for (i=FIX2LONG(from); i >= end; i--) {
            rb_yield(LONG2FIX(i));
        }
    }
    else {
        VALUE i = from, c;

        while (!(c = rb_funcall(i, '<', 1, to))) {
            rb_yield(i);
            i = rb_funcall(i, '-', 1, INT2FIX(1));
        }
        if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}

#fdiv(numeric) ⇒ Float

Returns the ::Float result of dividing self by numeric:

4.fdiv(2)      # => 2.0
4.fdiv(-2)      # => -2.0
-4.fdiv(2)      # => -2.0
4.fdiv(2.0)      # => 2.0
4.fdiv(Rational(3, 4))      # => 5.333333333333333

Raises an exception if numeric cannot be converted to a ::Float.

[ GitHub ]

  
# File 'numeric.c', line 4218

VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(x)) {
        return DBL2NUM(rb_int_fdiv_double(x, y));
    }
    return Qnil;
}

#floor(ndigits = 0) ⇒ Integer

:markup: markdown

Returns an integer that is a “floor” value for self, as specified by the given ndigits, which must be an [integer-convertible object](implicit_conversion.rdoc@Integer-Convertible+Objects).

  • When self is zero, returns zero (regardless of the value of ndigits):

    ```
    0.floor(2)  # => 0
    0.floor(-2) # => 0
    ```
  • When self is non-zero and ndigits is non-negative, returns self:

    ```
    555.floor     # => 555
    555.floor(50) # => 555
    ```
  • When self is non-zero and ndigits is negative, returns a value based on a computed granularity:

    - The granularity is `10 ** ndigits.abs`.
    - The returned value is the largest multiple of the granularity
      that is less than or equal to {self}.
    
    Examples with positive {self}:
    
    | ndigits | Granularity | 1234.floor(ndigits) |
    |--------:|------------:|--------------------:|
    | -1      | 10          | 1230                |
    | -2      | 100         | 1200                |
    | -3      | 1000        | 1000                |
    | -4      | 10000       | 0                   |
    | -5      | 100000      | 0                   |
    
    Examples with negative {self}:
    
    | ndigits | Granularity | -1234.floor(ndigits) |
    |--------:|------------:|---------------------:|
    | -1      | 10          | -1240                |
    | -2      | 100         | -1300                |
    | -3      | 1000        | -2000                |
    | -4      | 10000       | -10000               |
    | -5      | 100000      | -100000              |

Related: #ceil.

[ GitHub ]

  
# File 'numeric.c', line 5852

static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_floor(num, ndigits);
}

#gcd(other_int) ⇒ Integer

Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.

36.gcd(60)                  #=> 12
2.gcd(2)                    #=> 2
3.gcd(-7)                   #=> 1
((1<<31)-1).gcd((1<<61)-1)  #=> 1
[ GitHub ]

  
# File 'rational.c', line 1914

VALUE
rb_gcd(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_gcd(self, other);
}

#gcdlcm(other_int) ⇒ Array

Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].

36.gcdlcm(60)                  #=> [12, 180]
2.gcdlcm(2)                    #=> [2, 2]
3.gcdlcm(-7)                   #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1)  #=> [1, 4951760154835678088235319297]
[ GitHub ]

  
# File 'rational.c', line 1952

VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}

#to_s(base = 10) ⇒ String #inspect(base = 10) ⇒ String

Alias for #to_s.

#lcm(other_int) ⇒ Integer

Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.

36.lcm(60)                  #=> 180
2.lcm(2)                    #=> 2
3.lcm(-7)                   #=> 21
((1<<31)-1).lcm((1<<61)-1)  #=> 4951760154835678088235319297
[ GitHub ]

  
# File 'rational.c', line 1933

VALUE
rb_lcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_lcm(self, other);
}

#magnitude

Alias for #abs.

[ GitHub ]

  
# File 'numeric.rb', line 201

alias magnitude abs

#%(other) ⇒ real_number #modulo(other) ⇒ real_number

Alias for #%.

#nextInteger Also known as: #succ

Returns the successor integer of self (equivalent to self + 1):

1.succ  #=> 2
-1.succ #=> 0

Related: #pred (predecessor value).

[ GitHub ]

  
# File 'numeric.c', line 3759

VALUE
rb_int_succ(VALUE num)
{
    if (FIXNUM_P(num)) {
        long i = FIX2LONG(num) + 1;
        return LONG2NUM(i);
    }
    if (RB_BIGNUM_TYPE_P(num)) {
        return rb_big_plus(num, INT2FIX(1));
    }
    return num_funcall1(num, '+', INT2FIX(1));
}

#nobits?(mask) ⇒ Boolean

Returns true if no bit that is set (=1) in mask is also set in self; returns false otherwise.

Example values:

0b11110000  self
0b00001111  mask
0b00000000  self & mask
      true  self.nobits?(mask)

0b00000001  self
0b11111111  mask
0b00000001  self & mask
     false  self.nobits?(mask)

Related: #allbits?, #anybits?.

[ GitHub ]

  
# File 'numeric.c', line 3740

static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return RBOOL(int_zero_p(rb_int_and(num, mask)));
}

#numeratorself

Returns self.

[ GitHub ]

  
# File 'numeric.rb', line 313

def numerator
  self
end

#ordself

Returns self; intended for compatibility to character literals in Ruby 1.9.

[ GitHub ]

  
# File 'numeric.rb', line 217

def ord
  self
end

#pow(numeric) ⇒ Numeric #pow(integer, integer) ⇒ Integer

Returns (modular) exponentiation as:

a.pow(b)     #=> same as a**b
a.pow(b, m)  #=> same as (a**b) % m, but avoids huge temporary values
[ GitHub ]

  
# File 'bignum.c', line 7083

VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);

    if (argc == 1) {
        return rb_int_pow(num, argv[0]);
    }
    else {
        VALUE const a = num;
        VALUE const b = argv[0];
        VALUE m = argv[1];
        int nega_flg = 0;
        if ( ! RB_INTEGER_TYPE_P(b)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
        }
        if (rb_int_negative_p(b)) {
            rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
        }
        if (!RB_INTEGER_TYPE_P(m)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
        }

        if (rb_int_negative_p(m)) {
            m = rb_int_uminus(m);
            nega_flg = 1;
        }

        if (FIXNUM_P(m)) {
            long const half_val = (long)HALF_LONG_MSB;
            long const mm = FIX2LONG(m);
            if (!mm) rb_num_zerodiv();
            if (mm == 1) return INT2FIX(0);
            if (mm <= half_val) {
                return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
            }
            else {
                return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
            }
        }
        else {
            if (rb_bigzero_p(m)) rb_num_zerodiv();
            if (bignorm(m) == INT2FIX(1)) return INT2FIX(0);
            return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
        }
    }
    UNREACHABLE_RETURN(Qnil);
}

#predInteger

Returns the predecessor of self (equivalent to self - 1):

1.pred  #=> 0
-1.pred #=> -2

Related: #succ (successor value).

[ GitHub ]

  
# File 'numeric.c', line 3787

static VALUE
rb_int_pred(VALUE num)
{
    if (FIXNUM_P(num)) {
        long i = FIX2LONG(num) - 1;
        return LONG2NUM(i);
    }
    if (RB_BIGNUM_TYPE_P(num)) {
        return rb_big_minus(num, INT2FIX(1));
    }
    return num_funcall1(num, '-', INT2FIX(1));
}

#rationalize([eps]) ⇒ Rational

Returns the value as a rational. The optional argument eps is always ignored.

[ GitHub ]

  
# File 'rational.c', line 2165

static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 1);
    return integer_to_r(self);
}

#remainder(other) ⇒ real_number

Returns the remainder after dividing self by other.

Examples:

11.remainder(4)              # => 3
11.remainder(-4)             # => 3
-11.remainder(4)             # => -3
-11.remainder(-4)            # => -3

12.remainder(4)              # => 0
12.remainder(-4)             # => 0
-12.remainder(4)             # => 0
-12.remainder(-4)            # => 0

13.remainder(4.0)            # => 1.0
13.remainder(Rational(4, 1)) # => (1/1)
[ GitHub ]

  
# File 'numeric.c', line 4413

static VALUE
int_remainder(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        if (FIXNUM_P(y)) {
            VALUE z = fix_mod(x, y);
            RUBY_ASSERT(FIXNUM_P(z));
            if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0)
                z = fix_minus(z, y);
            return z;
        }
        else if (!RB_BIGNUM_TYPE_P(y)) {
            return num_remainder(x, y);
        }
        x = rb_int2big(FIX2LONG(x));
    }
    else if (!RB_BIGNUM_TYPE_P(x)) {
        return Qnil;
    }
    return rb_big_remainder(x, y);
}

#round(ndigits = 0, half: :up) ⇒ Integer

Returns self rounded to the nearest value with a precision of ndigits decimal digits.

When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:

555.round(-1)      # => 560
555.round(-2)      # => 600
555.round(-3)      # => 1000
-555.round(-2)     # => -600
555.round(-4)      # => 0

Returns self when ndigits is zero or positive.

555.round     # => 555
555.round(1)  # => 555
555.round(50) # => 555

If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:

  • :up or nil: round away from zero:

    25.round(-1, half: :up)      # => 30
    (-25).round(-1, half: :up)   # => -30
  • :down: round toward zero:

    25.round(-1, half: :down)    # => 20
    (-25).round(-1, half: :down) # => -20
  • :even: round toward the candidate whose last nonzero digit is even:

    25.round(-1, half: :even)    # => 20
    15.round(-1, half: :even)    # => 20
    (-25).round(-1, half: :even) # => -20

Raises and exception if the value for half is invalid.

Related: #truncate.

[ GitHub ]

  
# File 'numeric.c', line 5780

static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    int mode;
    VALUE nd, opt;

    if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
    ndigits = NUM2INT(nd);
    mode = rb_num_get_rounding_option(opt);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_round(num, ndigits, mode);
}

#sizeInteger

Returns the number of bytes in the machine representation of self; the value is system-dependent:

1.size             # => 8
-1.size            # => 8
2147483647.size    # => 8
(256**10 - 1).size # => 10
(256**20 - 1).size # => 20
(256**40 - 1).size # => 40
[ GitHub ]

  
# File 'numeric.rb', line 234

def size
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_size(self)'
end

#nextInteger #succInteger

Alias for #next.

#times {|i| ... } ⇒ self #timesEnumerator

Calls the given block self times with each integer in (0..self-1):

a = []
5.times {|i| a.push(i) } # => 5
a                        # => [0, 1, 2, 3, 4]

With no block given, returns an ::Enumerator.

[ GitHub ]

  
# File 'numeric.rb', line 250

def times
  Primitive.attr! :inline_block
  unless defined?(yield)
    return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, int_dotimes_size)'
  end
  i = 0
  while i < self
    yield i
    i = i.succ
  end
  self
end

#to_fFloat

Converts self to a ::Float:

1.to_f  # => 1.0
-1.to_f # => -1.0

If the value of self does not fit in a ::Float, the result is infinity:

(10**400).to_f  # => Infinity
(-10**400).to_f # => -Infinity
[ GitHub ]

  
# File 'numeric.c', line 5419

static VALUE
int_to_f(VALUE num)
{
    double val;

    if (FIXNUM_P(num)) {
        val = (double)FIX2LONG(num);
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
        val = rb_big2dbl(num);
    }
    else {
        rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
    }

    return DBL2NUM(val);
}

#to_iself

Returns self (which is already an Integer).

[ GitHub ]

  
# File 'numeric.rb', line 267

def to_i
  self
end

#to_intself

Returns self (which is already an Integer).

[ GitHub ]

  
# File 'numeric.rb', line 275

def to_int
  self
end

#to_rRational

Returns the value as a rational.

1.to_r        #=> (1/1)
(1<<64).to_r  #=> (18446744073709551616/1)
[ GitHub ]

  
# File 'rational.c', line 2152

static VALUE
integer_to_r(VALUE self)
{
    return rb_rational_new1(self);
}

#to_s(base = 10) ⇒ String Also known as: #inspect

Returns a string containing the place-value representation of self in radix base (in 2..36).

12345.to_s               # => "12345"
12345.to_s(2)            # => "11000000111001"
12345.to_s(8)            # => "30071"
12345.to_s(10)           # => "12345"
12345.to_s(16)           # => "3039"
12345.to_s(36)           # => "9ix"
78546939656932.to_s(36)  # => "rubyrules"

Raises an exception if base is out of range.

[ GitHub ]

  
# File 'numeric.c', line 3980

VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;

    if (rb_check_arity(argc, 0, 1))
        base = NUM2INT(argv[0]);
    else
        base = 10;
    return rb_int2str(x, base);
}

#truncate(ndigits = 0) ⇒ Integer

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:

555.truncate(-1)  # => 550
555.truncate(-2)  # => 500
-555.truncate(-2) # => -500

Returns self when ndigits is zero or positive.

555.truncate     # => 555
555.truncate(50) # => 555

Related: #round.

[ GitHub ]

  
# File 'numeric.c', line 5956

static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
    int ndigits;

    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
        return num;
    }
    return rb_int_truncate(num, ndigits);
}

#upto(limit) {|i| ... } ⇒ self #upto(limit) ⇒ Enumerator

Calls the given block with each integer value from self up to limit; returns self:

a = []
5.upto(10) {|i| a << i }              # => 5
a                                     # => [5, 6, 7, 8, 9, 10]
a = []
-5.upto(0) {|i| a << i }              # => -5
a                                     # => [-5, -4, -3, -2, -1, 0]
5.upto(4) {|i| fail 'Cannot happen' } # => 5

With no block given, returns an ::Enumerator.

[ GitHub ]

  
# File 'numeric.c', line 5651

static VALUE
int_upto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
        long i, end;

        end = FIX2LONG(to);
        for (i = FIX2LONG(from); i <= end; i++) {
            rb_yield(LONG2FIX(i));
        }
    }
    else {
        VALUE i = from, c;

        while (!(c = rb_funcall(i, '>', 1, to))) {
            rb_yield(i);
            i = rb_funcall(i, '+', 1, INT2FIX(1));
        }
        ensure_cmp(c, i, to);
    }
    return from;
}

#|(other) ⇒ Integer

Bitwise OR; each bit in the result is 1 if either corresponding bit in self or other is 1, 0 otherwise:

"%04b" % (0b0101 | 0b0110) # => "0111"

Raises an exception if other is not an Integer.

Related: #& (bitwise AND), #^ (bitwise EXCLUSIVE OR).

[ GitHub ]

  
# File 'numeric.c', line 5076

static VALUE
int_or(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
        return fix_or(x, y);
    }
    else if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_or(x, y);
    }
    return Qnil;
}

#~Integer

One’s complement: returns the value of self with each bit inverted.

Because an integer value is conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits:

sprintf("%X", ~0x1122334455)    # => "..FEEDDCCBBAA"
[ GitHub ]

  
# File 'numeric.rb', line 118

def ~
  Primitive.attr! :leaf
  Primitive.cexpr! 'rb_int_comp(self)'
end