123456789_123456789_123456789_123456789_123456789_

Module: Math

Relationships & Source Files
Namespace Children
Exceptions:
Defined in: math.c

Overview

::Module Math provides methods for basic trigonometric, logarithmic, and transcendental functions, and for extracting roots.

You can write its constants and method calls thus:

Math::PI      # => 3.141592653589793
Math::E       # => 2.718281828459045
Math.sin(0.0) # => 0.0
Math.cos(0.0) # => 1.0

If you include module Math, you can write simpler forms:

include Math
PI       # => 3.141592653589793
E        # => 2.718281828459045
sin(0.0) # => 0.0
cos(0.0) # => 1.0

For simplicity, the examples here assume:

include Math
INFINITY = Float::INFINITY

The domains and ranges for the methods are denoted by open or closed intervals, using, respectively, parentheses or square brackets:

  • An open interval does not include the endpoints:

    (-INFINITY, INFINITY)
  • A closed interval includes the endpoints:

    [-1.0, 1.0]
  • A half-open interval includes one endpoint, but not the other:

    [1.0, INFINITY)

Many values returned by Math methods are numerical approximations. This is because many such values are, in mathematics, of infinite precision, while in numerical computation the precision is finite.

Thus, in mathematics, cos(π/2) is exactly zero, but in our computation cos(PI/2) is a number very close to zero:

cos(PI/2) # => 6.123031769111886e-17

For very large and very small returned values, we have added formatted numbers for clarity:

tan(PI/2)  # => 1.633123935319537e+16   # 16331239353195370.0
tan(PI)    # => -1.2246467991473532e-16 # -0.0000000000000001

See class ::Float for the constants that affect Ruby’s floating-point arithmetic.

What’s Here

Trigonometric Functions

  • .cos: Returns the cosine of the given argument.

  • .sin: Returns the sine of the given argument.

  • .tan: Returns the tangent of the given argument.

Inverse Trigonometric Functions

  • .acos: Returns the arc cosine of the given argument.

  • .asin: Returns the arc sine of the given argument.

  • .atan: Returns the arc tangent of the given argument.

  • .atan2: Returns the arg tangent of two given arguments.

Hyperbolic Trigonometric Functions

  • .cosh: Returns the hyperbolic cosine of the given argument.

  • .sinh: Returns the hyperbolic sine of the given argument.

  • .tanh: Returns the hyperbolic tangent of the given argument.

Inverse Hyperbolic Trigonometric Functions

  • .acosh: Returns the inverse hyperbolic cosine of the given argument.

  • .asinh: Returns the inverse hyperbolic sine of the given argument.

  • .atanh: Returns the inverse hyperbolic tangent of the given argument.

Exponentiation and Logarithmic Functions

  • .exp: Returns the value of a given value raised to a given power.

  • .log: Returns the logarithm of a given value in a given base.

  • .log10: Returns the base 10 logarithm of the given argument.

  • .log2: Returns the base 2 logarithm of the given argument.

Fraction and Exponent Functions

  • .frexp: Returns the fraction and exponent of the given argument.

  • .ldexp: Returns the value for a given fraction and exponent.

Root Functions

  • .cbrt: Returns the cube root of the given argument.

  • .sqrt: Returns the square root of the given argument.

Error Functions

  • .erf: Returns the value of the Gauss error function for the given argument.

  • .erfc: Returns the value of the complementary error function for the given argument.

Gamma Functions

  • .gamma: Returns the value of the gamma function for the given argument.

  • .lgamma: Returns the value of the logarithmic gamma function for the given argument.

Hypotenuse Function

  • .hypot: Returns sqrt(a**2 + b**2) for the given a and b.

Constant Summary

Class Method Summary

Class Method Details

.acos(x) ⇒ Float (mod_func)

Returns the arc cosine of x.

  • Domain: [-1, 1].

  • Range: [0, PI].

Examples:

acos(-1.0) # => 3.141592653589793  # PI
acos(0.0)  # => 1.5707963267948966 # PI/2
acos(1.0)  # => 0.0
[ GitHub ]

  
# File 'math.c', line 196

static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
    math_arc(x, acos)
}

.acosh(x) ⇒ Float (mod_func)

Returns the inverse hyperbolic cosine of x.

  • Domain: [1, INFINITY].

  • Range: [0, INFINITY].

Examples:

acosh(1.0)      # => 0.0
acosh(INFINITY) # => Infinity
[ GitHub ]

  
# File 'math.c', line 371

static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    domain_check_min(d, 1.0, "acosh");
    return DBL2NUM(acosh(d));
}

.asin(x) ⇒ Float (mod_func)

Returns the arc sine of x.

  • Domain: [-1, -1].

  • Range: [-PI/2, PI/2].

Examples:

asin(-1.0) # => -1.5707963267948966 # -PI/2
asin(0.0)  # => 0.0
asin(1.0)  # => 1.5707963267948966  # PI/2
[ GitHub ]

  
# File 'math.c', line 219

static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
    math_arc(x, asin)
}

.asinh(x) ⇒ Float (mod_func)

Returns the inverse hyperbolic sine of x.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-INFINITY, INFINITY].

Examples:

asinh(-INFINITY) # => -Infinity
asinh(0.0)       # => 0.0
asinh(INFINITY)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 398

static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}

.atan(x) ⇒ Float (mod_func)

Returns the arc tangent of x.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-PI/2, PI/2] .

Examples:

atan(-INFINITY) # => -1.5707963267948966 # -PI2
atan(-PI)       # => -1.2626272556789115
atan(-PI/2)     # => -1.0038848218538872
atan(0.0)       # => 0.0
atan(PI/2)      # => 1.0038848218538872
atan(PI)        # => 1.2626272556789115
atan(INFINITY)  # => 1.5707963267948966  # PI/2
[ GitHub ]

  
# File 'math.c', line 246

static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}

.atan2(y, x) ⇒ Float (mod_func)

Returns the arc tangent of y and x in radians.

  • Domain of y: [-INFINITY, INFINITY].

  • Domain of x: [-INFINITY, INFINITY].

  • Range: [-PI, PI].

Examples:

atan2(-1.0, -1.0) # => -2.356194490192345  # -3*PI/4
atan2(-1.0, 0.0)  # => -1.5707963267948966 # -PI/2
atan2(-1.0, 1.0)  # => -0.7853981633974483 # -PI/4
atan2(0.0, -1.0)  # => 3.141592653589793   # PI
[ GitHub ]

  
# File 'math.c', line 61

static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
        if (!signbit(dx))
            return DBL2NUM(dy);
        if (!signbit(dy))
            return DBL2NUM(M_PI);
        return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
        /* optimization for FLONUM */
        if (dx < 0.0) {
            const double dz = (3.0 * M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
        else {
            const double dz = (M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}

.atanh(x) ⇒ Float (mod_func)

Returns the inverse hyperbolic tangent of x.

  • Domain: [-1, 1].

  • Range: [-INFINITY, INFINITY].

Examples:

atanh(-1.0) # => -Infinity
atanh(0.0)  # => 0.0
atanh(1.0)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 421

static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    domain_check_range(d, -1.0, +1.0, "atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-HUGE_VAL);
    if (d == +1.0) return DBL2NUM(+HUGE_VAL);
    return DBL2NUM(atanh(d));
}

.cbrt(x) ⇒ Float (mod_func)

Returns the cube root of x.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-INFINITY, INFINITY].

Examples:

cbrt(-INFINITY) # => -Infinity
cbrt(-27.0)     # => -3.0
cbrt(-8.0)      # => -2.0
cbrt(-2.0)      # => -1.2599210498948732
cbrt(1.0)       # => 1.0
cbrt(0.0)       # => 0.0
cbrt(1.0)       # => 1.0
cbrt(2.0)       # => 1.2599210498948732
cbrt(8.0)       # => 2.0
cbrt(27.0)      # => 3.0
cbrt(INFINITY)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 741

static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
    double f = Get_Double(x);
    double r = cbrt(f);
#if defined __GLIBC__
    if (isfinite(r) && !(f == 0.0 && r == 0.0)) {
        r = (2.0 * r + (f / r / r)) / 3.0;
    }
#endif
    return DBL2NUM(r);
}

.cos(x) ⇒ Float (mod_func)

Returns the cosine of x in radians.

  • Domain: (-INFINITY, INFINITY).

  • Range: [-1.0, 1.0].

Examples:

cos(-PI)   # => -1.0
cos(-PI/2) # => 6.123031769111886e-17 # 0.0000000000000001
cos(0.0)   # => 1.0
cos(PI/2)  # => 6.123031769111886e-17 # 0.0000000000000001
cos(PI)    # => -1.0
[ GitHub ]

  
# File 'math.c', line 112

static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}

.cosh(x) ⇒ Float (mod_func)

Returns the hyperbolic cosine of x in radians.

  • Domain: [-INFINITY, INFINITY].

  • Range: [1, INFINITY].

Examples:

cosh(-INFINITY) # => Infinity
cosh(0.0)       # => 1.0
cosh(INFINITY)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 278

static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}

.erf(x) ⇒ Float (mod_func)

Returns the value of the Gauss error function for x.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-1, 1].

Examples:

erf(-INFINITY) # => -1.0
erf(0.0)       # => 0.0
erf(INFINITY)  # => 1.0

Related: .erfc.

[ GitHub ]

  
# File 'math.c', line 874

static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}

.erfc(x) ⇒ Float (mod_func)

Returns the value of the complementary error function for x.

  • Domain: [-INFINITY, INFINITY].

  • Range: [0, 2].

Examples:

erfc(-INFINITY) # => 2.0
erfc(0.0)       # => 1.0
erfc(INFINITY)  # => 0.0

Related: .erf.

[ GitHub ]

  
# File 'math.c', line 899

static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}

.exp(x) ⇒ Float (mod_func)

Returns e raised to the x power.

  • Domain: [-INFINITY, INFINITY].

  • Range: [0, INFINITY].

Examples:

exp(-INFINITY) # => 0.0
exp(-1.0)      # => 0.36787944117144233 # 1.0/E
exp(0.0)       # => 1.0
exp(0.5)       # => 1.6487212707001282  # sqrt(E)
exp(1.0)       # => 2.718281828459045   # E
exp(2.0)       # => 7.38905609893065    # E**2
exp(INFINITY)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 455

static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}

.frexp(x) ⇒ Array, exponent (mod_func)

Returns a 2-element array containing the normalized signed float fraction and integer exponent of x such that:

x = fraction * 2**exponent

See IEEE 754 double-precision binary floating-point format: binary64.

  • Domain: [-INFINITY, INFINITY].

  • ::Range [-INFINITY, INFINITY].

Examples:

frexp(-INFINITY) # => [-Infinity, -1]
frexp(-2.0)      # => [-0.5, 2]
frexp(-1.0)      # => [-0.5, 1]
frexp(0.0)       # => [0.0, 0]
frexp(1.0)       # => [0.5, 1]
frexp(2.0)       # => [0.5, 2]
frexp(INFINITY)  # => [Infinity, -1]

Related: .ldexp (inverse of frexp).

[ GitHub ]

  
# File 'math.c', line 782

static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
    double d;
    int exp;

    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}

.gamma(x) ⇒ Float (mod_func)

Returns the value of the gamma function for x.

  • Domain: (-INFINITY, INFINITY] excluding negative integers.

  • Range: [-INFINITY, INFINITY].

Examples:

gamma(-2.5)      # => -0.9453087204829431
gamma(-1.5)      # => 2.3632718012073513
gamma(-0.5)      # => -3.5449077018110375
gamma(0.0)      # => Infinity
gamma(1.0)      # => 1.0
gamma(2.0)      # => 1.0
gamma(3.0)      # => 2.0
gamma(4.0)      # => 6.0
gamma(5.0)      # => 24.0

Related: .lgamma.

[ GitHub ]

  
# File 'math.c', line 930

static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("gamma");
        return DBL2NUM(HUGE_VAL);
    }
    if (d == 0.0) {
        return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
    }
    if (d == floor(d)) {
        domain_check_min(d, 0.0, "gamma");
        if (1.0 <= d && d <= (double)NFACT_TABLE) {
            return DBL2NUM(fact_table[(int)d - 1]);
        }
    }
    return DBL2NUM(tgamma(d));
}

.hypot(a, b) ⇒ Float (mod_func)

Returns sqrt(a**2 + b**2), which is the length of the longest side c (the hypotenuse) of the right triangle whose other sides have lengths a and b.

  • Domain of a: [-INFINITY, INFINITY].

  • Domain of +ab: [-INFINITY, INFINITY].

  • Range: [0, INFINITY].

Examples:

hypot(0.0, 1.0)       # => 1.0
hypot(1.0, 1.0)       # => 1.4142135623730951 # sqrt(2.0)
hypot(3.0, 4.0)       # => 5.0
hypot(5.0, 12.0)      # => 13.0
hypot(1.0, sqrt(3.0)) # => 1.9999999999999998 # Near 2.0

Note that if either argument is INFINITY or -INFINITY, the result is Infinity.

[ GitHub ]

  
# File 'math.c', line 849

static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}

.ldexp(fraction, exponent) ⇒ Float (mod_func)

Returns the value of fraction * 2**exponent.

  • Domain of fraction: [0.0, 1.0).

  • Domain of exponent: [0, 1024] (larger values are equivalent to 1024).

See IEEE 754 double-precision binary floating-point format: binary64.

Examples:

ldexp(-INFINITY, -1) # => -Infinity
ldexp(-0.5, 2)       # => -2.0
ldexp(-0.5, 1)       # => -1.0
ldexp(0.0, 0)        # => 0.0
ldexp(-0.5, 1)       # => 1.0
ldexp(-0.5, 2)       # => 2.0
ldexp(INFINITY, -1)  # => Infinity

Related: .frexp (inverse of ldexp).

[ GitHub ]

  
# File 'math.c', line 818

static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}

.lgamma(x) ⇒ Array, 1 (mod_func)

Returns a 2-element array equivalent to:

[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]

See logarithmic gamma function.

  • Domain: (-INFINITY, INFINITY].

  • ::Range of first element: (-INFINITY, INFINITY].

  • Second element is -1 or 1.

Examples:

lgamma(-4.0) # => [Infinity, -1]
lgamma(-3.0) # => [Infinity, -1]
lgamma(-2.0) # => [Infinity, -1]
lgamma(-1.0) # => [Infinity, -1]
lgamma(0.0)  # => [Infinity, 1]

lgamma(1.0)  # => [0.0, 1]
lgamma(2.0)  # => [0.0, 1]
lgamma(3.0)  # => [0.6931471805599436, 1]
lgamma(4.0)  # => [1.7917594692280545, 1]

lgamma(-2.5) # => [-0.05624371649767279, -1]
lgamma(-1.5) # => [0.8600470153764797, 1]
lgamma(-0.5) # => [1.265512123484647, -1]
lgamma(0.5)  # => [0.5723649429247004, 1]
lgamma(1.5)  # => [-0.12078223763524676, 1]
lgamma(2.5)      # => [0.2846828704729205, 1]

Related: .gamma.

[ GitHub ]

  
# File 'math.c', line 1019

static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("lgamma");
        return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
    }
    if (d == 0.0) {
        VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
        return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}

.log(x, base = Math::E) ⇒ Float (mod_func)

Returns the base base logarithm of x.

  • Domain: [0, INFINITY].

  • Range: [-INFINITY, INFINITY)].

Examples:

log(0.0)        # => -Infinity
log(1.0)        # => 0.0
log(E)          # => 1.0
log(INFINITY)   # => Infinity

log(0.0, 2.0)   # => -Infinity
log(1.0, 2.0)   # => 0.0
log(2.0, 2.0)   # => 1.0

log(0.0, 10.0)  # => -Infinity
log(1.0, 10.0)  # => 0.0
log(10.0, 10.0) # => 1.0
[ GitHub ]

  
# File 'math.c', line 505

static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
    return rb_math_log(argc, argv);
}

.log10(x) ⇒ Float (mod_func)

Returns the base 10 logarithm of x.

  • Domain: [0, INFINITY].

  • Range: [-INFINITY, INFINITY].

Examples:

log10(0.0)      # => -Infinity
log10(1.0)      # => 0.0
log10(10.0)     # => 1.0
log10(INFINITY) # => Infinity
[ GitHub ]

  
# File 'math.c', line 637

static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    domain_check_min(d, 0.0, "log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}

.log2(x) ⇒ Float (mod_func)

Returns the base 2 logarithm of x.

  • Domain: [0, INFINITY].

  • Range: [-INFINITY, INFINITY].

Examples:

log2(0.0)      # => -Infinity
log2(1.0)      # => 0.0
log2(2.0)      # => 1.0
log2(INFINITY) # => Infinity
[ GitHub ]

  
# File 'math.c', line 606

static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    domain_check_min(d, 0.0, "log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}

.sin(x) ⇒ Float (mod_func)

Returns the sine of x in radians.

  • Domain: (-INFINITY, INFINITY).

  • Range: [-1.0, 1.0].

Examples:

sin(-PI)   # => -1.2246063538223773e-16 # -0.0000000000000001
sin(-PI/2) # => -1.0
sin(0.0)   # => 0.0
sin(PI/2)  # => 1.0
sin(PI)    # => 1.2246063538223773e-16  # 0.0000000000000001
[ GitHub ]

  
# File 'math.c', line 139

static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}

.sinh(x) ⇒ Float (mod_func)

Returns the hyperbolic sine of x in radians.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-INFINITY, INFINITY].

Examples:

sinh(-INFINITY) # => -Infinity
sinh(0.0)       # => 0.0
sinh(INFINITY)  # => Infinity
[ GitHub ]

  
# File 'math.c', line 310

static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}

.sqrt(x) ⇒ Float (mod_func)

Returns the principal (non-negative) square root of x.

  • Domain: [0, INFINITY].

  • Range: [0, INFINITY].

Examples:

sqrt(0.0)      # => 0.0
sqrt(0.5)      # => 0.7071067811865476
sqrt(1.0)      # => 1.0
sqrt(2.0)      # => 1.4142135623730951
sqrt(4.0)      # => 2.0
sqrt(9.0)      # => 3.0
sqrt(INFINITY) # => Infinity
[ GitHub ]

  
# File 'math.c', line 673

static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
    return rb_math_sqrt(x);
}

.tan(x) ⇒ Float (mod_func)

Returns the tangent of x in radians.

  • Domain: (-INFINITY, INFINITY).

  • Range: (-INFINITY, INFINITY).

Examples:

tan(-PI)   # => 1.2246467991473532e-16  # -0.0000000000000001
tan(-PI/2) # => -1.633123935319537e+16  # -16331239353195370.0
tan(0.0)   # => 0.0
tan(PI/2)  # => 1.633123935319537e+16   # 16331239353195370.0
tan(PI)    # => -1.2246467991473532e-16 # -0.0000000000000001
[ GitHub ]

  
# File 'math.c', line 167

static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tan(Get_Double(x)));
}

.tanh(x) ⇒ Float (mod_func)

Returns the hyperbolic tangent of x in radians.

  • Domain: [-INFINITY, INFINITY].

  • Range: [-1, 1].

Examples:

tanh(-INFINITY) # => -1.0
tanh(0.0)       # => 0.0
tanh(INFINITY)  # => 1.0
[ GitHub ]

  
# File 'math.c', line 349

static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tanh(Get_Double(x)));
}