123456789_123456789_123456789_123456789_123456789_

Class: Module

Relationships & Source Files
Extension / Inclusion / Inheritance Descendants
Subclasses:
Inherits: Object
Defined in: class.c,
eval.c,
kernel.rb,
load.c,
object.c,
proc.c,
variable.c,
vm_eval.c,
vm_method.c,
yjit_hook.rb

Overview

A Module is a collection of methods and constants. The methods in a module may be instance methods or module methods. Instance methods appear as methods in a class when the module is included, module methods do not. Conversely, module methods may be called without creating an encapsulating object, while instance methods may not. (See #module_function.)

In the descriptions that follow, the parameter sym refers to a symbol, which is either a quoted string or a ::Symbol (such as :name).

module Mod
  include Math
  CONST = 1
  def meth
    #  ...
  end
end
Mod.class              #=> Module
Mod.constants          #=> [:CONST, :PI, :E]
Mod.instance_methods   #=> [:meth]

Class Method Summary

Instance Attribute Summary

Instance Method Summary

Constructor Details

.newmod .new {|mod| ... } ⇒ mod

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like #module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

[ GitHub ]

  
# File 'object.c', line 1988

static VALUE
rb_mod_initialize(VALUE module)
{
    return rb_mod_initialize_exec(module);
}

Class Method Details

.constantsArray .constants(inherited) ⇒ Array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

[ GitHub ]

  
# File 'eval.c', line 382

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
        return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
        klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            data = rb_mod_const_at(CREF_CLASS(cref), data);
            if (!cbase) {
                cbase = klass;
            }
        }
        cref = CREF_NEXT(cref);
    }

    if (cbase) {
        data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}

.nestingArray

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"
[ GitHub ]

  
# File 'eval.c', line 343

static VALUE
rb_mod_nesting(VALUE _)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
        VALUE klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            rb_ary_push(ary, klass);
        }
        cref = CREF_NEXT(cref);
    }
    return ary;
}

.used_modulesArray

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_modules

produces:

[B, A]
[ GitHub ]

  
# File 'eval.c', line 1623

static VALUE
rb_mod_s_used_modules(VALUE _)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE ary = rb_ary_new();

    while (cref) {
        if (!NIL_P(CREF_REFINEMENTS(cref))) {
            rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
        }
        cref = CREF_NEXT(cref);
    }

    return rb_funcall(ary, rb_intern("uniq"), 0);
}

.used_refinementsArray

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_refinements

produces:

[#<refinement:Object@B>, #<refinement:Object@A>]
[ GitHub ]

  
# File 'eval.c', line 1674

static VALUE
rb_mod_s_used_refinements(VALUE _)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE ary = rb_ary_new();

    while (cref) {
        if (!NIL_P(CREF_REFINEMENTS(cref))) {
            rb_hash_foreach(CREF_REFINEMENTS(cref), used_refinements_i, ary);
        }
        cref = CREF_NEXT(cref);
    }

    return ary;
}

Instance Attribute Details

#singleton_class?Boolean (readonly)

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true
[ GitHub ]

  
# File 'object.c', line 3088

static VALUE
rb_mod_singleton_p(VALUE klass)
{
    return RBOOL(RCLASS_SINGLETON_P(klass));
}

Instance Method Details

#<(other) ⇒ true, ...

Returns true if mod is a subclass of other. Returns false if mod is the same as other or mod is an ancestor of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

[ GitHub ]

  
# File 'object.c', line 1880

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}

#<=(other) ⇒ true, ...

Returns true if mod is a subclass of other or is the same as other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

[ GitHub ]

  
# File 'object.c', line 1826

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qtrue;

    if (RB_TYPE_P(arg, T_CLASS) && RB_TYPE_P(mod, T_CLASS)) {
        // comparison between classes
        size_t mod_depth = RCLASS_SUPERCLASS_DEPTH(mod);
        size_t arg_depth = RCLASS_SUPERCLASS_DEPTH(arg);
        if (arg_depth < mod_depth) {
            // check if mod < arg
            return RCLASS_SUPERCLASSES(mod)[arg_depth] == arg ?
                Qtrue :
                Qnil;
        }
        else if (arg_depth > mod_depth) {
            // check if mod > arg
            return RCLASS_SUPERCLASSES(arg)[mod_depth] == mod ?
                Qfalse :
                Qnil;
        }
        else {
            // Depths match, and we know they aren't equal: no relation
            return Qnil;
        }
    }
    else {
        if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
            rb_raise(rb_eTypeError, "compared with non class/module");
        }
        if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
            return Qtrue;
        }
        /* not mod < arg; check if mod > arg */
        if (class_search_ancestor(arg, mod)) {
            return Qfalse;
        }
        return Qnil;
    }
}

#<=>(other_module) ⇒ 1, ...

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

[ GitHub ]

  
# File 'object.c', line 1942

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
        return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
        return INT2FIX(-1);
    }
    return INT2FIX(1);
}

#==(other) ⇒ Boolean

Alias for Object#eql?. Equality — At the ::Object level, #== returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike #==, the #equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The #eql? method returns true if obj and other refer to the same hash key. This is used by ::Hash to test members for equality. For any pair of objects where #eql? returns true, the #hash value of both objects must be equal. So any subclass that overrides #eql? should also override #hash appropriately.

For objects of class ::Object, #eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing #eql? to their overridden #== method, but there are exceptions. ::Numeric types, for example, perform type conversion across #==, but not across #eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

#===(obj) ⇒ Boolean

Case Equality—Returns true if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

[ GitHub ]

  
# File 'object.c', line 1809

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}

#>(other) ⇒ true, ...

Returns true if mod is an ancestor of other. Returns false if mod is the same as other or mod is a descendant of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

[ GitHub ]

  
# File 'object.c', line 1923

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}

#>=(other) ⇒ true, ...

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

[ GitHub ]

  
# File 'object.c', line 1900

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
        rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}

#alias_method(new_name, old_name) ⇒ Symbol

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit #=> :orig_exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99
[ GitHub ]

  
# File 'vm_method.c', line 2377

static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
        rb_print_undef_str(mod, oldname);
    }
    VALUE id = rb_to_id(newname);
    rb_alias(mod, id, oldid);
    return ID2SYM(id);
}

#ancestorsArray

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]
[ GitHub ]

  
# File 'class.c', line 1579

VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();
    VALUE refined_class = Qnil;
    if (BUILTIN_TYPE(mod) == T_MODULE && FL_TEST(mod, RMODULE_IS_REFINEMENT)) {
        refined_class = rb_refinement_module_get_refined_class(mod);
    }

    for (p = mod; p; p = RCLASS_SUPER(p)) {
        if (p == refined_class) break;
        if (p != RCLASS_ORIGIN(p)) continue;
        if (BUILTIN_TYPE(p) == T_ICLASS) {
            rb_ary_push(ary, METACLASS_OF(p));
        }
        else {
            rb_ary_push(ary, p);
        }
    }
    return ary;
}

#append_features(mod) ⇒ mod (private)

When this module is included in another, ::Ruby calls #append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also #include.

[ GitHub ]

  
# File 'eval.c', line 1184

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
        Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}

#attr(name, ...) ⇒ Array #attr(name, true) ⇒ Array #attr(name, false) ⇒ Array

The first form is equivalent to #attr_reader. The second form is equivalent to attr_accessor(name) but deprecated. The last form is equivalent to attr_reader(name) but deprecated. Returns an array of defined method names as symbols.

[ GitHub ]

  
# File 'object.c', line 2346

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
        ID id = id_for_attr(klass, argv[0]);
        VALUE names = rb_ary_new();

        rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "optional boolean argument is obsoleted");
        rb_attr(klass, id, 1, RTEST(argv[1]), TRUE);
        rb_ary_push(names, ID2SYM(id));
        if (argv[1] == Qtrue) rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
        return names;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}

#attr_accessor(symbol, ...) ⇒ Array #attr_accessor(string, ...) ⇒ Array

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. ::String arguments are converted to symbols. Returns an array of defined method names as symbols.

module Mod
  attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]
[ GitHub ]

  
# File 'object.c', line 2405

static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc * 2);

    for (i=0; i<argc; i++) {
        ID id = id_for_attr(klass, argv[i]);

        rb_attr(klass, id, TRUE, TRUE, TRUE);
        rb_ary_push(names, ID2SYM(id));
        rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
    }
    return names;
}

#attr_reader(symbol, ...) ⇒ Array #attr(symbol, ...) ⇒ Array #attr_reader(string, ...) ⇒ Array #attr(string, ...) ⇒ Array

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. ::String arguments are converted to symbols. Returns an array of defined method names as symbols.

[ GitHub ]

  
# File 'object.c', line 2317

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc);

    for (i=0; i<argc; i++) {
        ID id = id_for_attr(klass, argv[i]);
        rb_attr(klass, id, TRUE, FALSE, TRUE);
        rb_ary_push(names, ID2SYM(id));
    }
    return names;
}

#attr_writer(symbol, ...) ⇒ Array #attr_writer(string, ...) ⇒ Array

Creates an accessor method to allow assignment to the attribute symbol.id2name. ::String arguments are converted to symbols. Returns an array of defined method names as symbols.

[ GitHub ]

  
# File 'object.c', line 2373

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc);

    for (i=0; i<argc; i++) {
        ID id = id_for_attr(klass, argv[i]);
        rb_attr(klass, id, FALSE, TRUE, TRUE);
        rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
    }
    return names;
}

#autoload(const, filename) ⇒ nil

Registers filename to be loaded (using Kernel.require) the first time that const (which may be a ::String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

If const in mod is defined as autoload, the file name to be loaded is replaced with filename. If const is defined but not as autoload, does nothing.

[ GitHub ]

  
# File 'load.c', line 1476

static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}

#autoload?(name, inherit = true) ⇒ String?

Returns filename to be loaded if name is registered as #autoload in the namespace of mod or one of its ancestors.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

If inherit is false, the lookup only checks the autoloads in the receiver:

class A
  autoload :CONST, "const.rb"
end

class B < A
end

B.autoload?(:CONST)          #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false)   #=> nil, not found in B itself
[ GitHub ]

  
# File 'load.c', line 1512

static VALUE
rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod)
{
    int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]);
    VALUE sym = argv[0];

    ID id = rb_check_id(&sym);
    if (!id) {
        return Qnil;
    }
    return rb_autoload_at_p(mod, id, recur);
}

#class_eval(string [, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string [, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object
Also known as: #module_eval

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. #module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class
[ GitHub ]

  
# File 'vm_eval.c', line 2360

static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, FALSE, RB_PASS_CALLED_KEYWORDS);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Also known as: #module_exec

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!
[ GitHub ]

  
# File 'vm_eval.c', line 2394

static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, FALSE, argc, argv, RB_PASS_CALLED_KEYWORDS);
}

#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean

Returns true if the given class variable is defined in obj. ::String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false
[ GitHub ]

  
# File 'object.c', line 3064

static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
        return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}

#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object

Returns the value of the given class variable (or throws a ::NameError exception). The @@ part of the variable name should be included for regular class variables. ::String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99
[ GitHub ]

  
# File 'object.c', line 3007

static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
        rb_name_err_raise("uninitialized class variable %1$s in %2$s",
                          obj, iv);
    }
    return rb_cvar_get(obj, id);
}

#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101
[ GitHub ]

  
# File 'object.c', line 3039

static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}

#class_variables(inherit = true) ⇒ Array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]
[ GitHub ]

  
# File 'variable.c', line 4154

VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;
    st_table *tbl;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
    if (inherit) {
        tbl = mod_cvar_of(mod, 0);
    }
    else {
        tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}

#const_added(const_name) (private)

Invoked as a callback whenever a constant is assigned on the receiver

module Chatty
  def self.const_added(const_name)
    super
    puts "Added #{const_name.inspect}"
  end
  FOO = 1
end

produces:

Added :FOO
[ GitHub ]

#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally ::Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback #const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a ::NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar
[ GitHub ]

  
# File 'object.c', line 2634

static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qfalse;
        return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qfalse;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }

#if 0
        mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
        if (UNDEF_P(mod)) return Qfalse;
#else
        if (!RTEST(recur)) {
            if (!rb_const_defined_at(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            if (!rb_const_defined(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get(mod, id);
        }
        else {
            if (!rb_const_defined_from(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_from(mod, id);
        }
#endif

        if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }
    }

    return Qtrue;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and ::Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a ::NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a ::NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar
[ GitHub ]

  
# File 'object.c', line 2461

static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return rb_const_missing(mod, name);
        return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
                part = rb_str_intern(part);
                mod = rb_const_missing(mod, part);
                continue;
            }
            else {
                rb_mod_const_missing(mod, part);
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
#if 0
        mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
        if (!RTEST(recur)) {
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            mod = rb_const_get(mod, id);
        }
        else {
            mod = rb_const_get_from(mod, id);
        }
#endif
    }

    return mod;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#const_missing(sym) ⇒ Object

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. For example, consider:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

As the example above shows, const_missing is not required to create the missing constant in mod, though that is often a side-effect. The caller gets its return value when triggered. If the constant is also defined, further lookups won’t hit const_missing and will return the value stored in the constant as usual. Otherwise, const_missing will be invoked again.

In the next example, when a reference is made to an undefined constant, const_missing attempts to load a file whose path is the lowercase version of the constant name (thus class Fred is assumed to be in file fred.rb). If defined as a side-effect of loading the file, the method returns the value stored in the constant. This implements an autoload feature similar to Kernel.autoload and #autoload, though it differs in important ways.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Constant not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  const_get(name, false)
end
[ GitHub ]

  
# File 'variable.c', line 2341

VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    rb_execution_context_t *ec = GET_EC();
    VALUE ref = ec->private_const_reference;
    rb_vm_pop_cfunc_frame();
    if (ref) {
        ec->private_const_reference = 0;
        rb_name_err_raise("private constant %2$s::%1$s referenced", ref, name);
    }
    uninitialized_constant(klass, name);

    UNREACHABLE_RETURN(Qnil);
}

#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a ::NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
[ GitHub ]

  
# File 'object.c', line 2583

static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_var(mod, name, const);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);

    return value;
}

#const_source_location(sym, inherit = true) ⇒ Array, Integer #const_source_location(str, inherit = true) ⇒ Array, Integer

Returns the ::Ruby source filename and line number containing the definition of the constant specified. If the named constant is not found, nil is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.

inherit specifies whether to lookup in mod.ancestors (true by default).

# test.rb:
class A         # line 1
  C1 = 1
  C2 = 2
end

module M        # line 6
  C3 = 3
end

class B < A     # line 10
  include M
  C4 = 4
end

class A # continuation of A definition
  C2 = 8 # constant redefinition; warned yet allowed
end

p B.const_source_location('C4')           # => ["test.rb", 12]
p B.const_source_location('C3')           # => ["test.rb", 7]
p B.const_source_location('C1')           # => ["test.rb", 2]

p B.const_source_location('C3', false)    # => nil  -- don't lookup in ancestors

p A.const_source_location('C2')           # => ["test.rb", 16] -- actual (last) definition place

p Object.const_source_location('B')       # => ["test.rb", 10] -- top-level constant could be looked through Object
p Object.const_source_location('A')       # => ["test.rb", 1] -- class reopening is NOT considered new definition

p B.const_source_location('A')            # => ["test.rb", 1]  -- because Object is in ancestors
p M.const_source_location('A')            # => ["test.rb", 1]  -- Object is not ancestor, but additionally checked for modules

p Object.const_source_location('A::C1')   # => ["test.rb", 2]  -- nesting is supported
p Object.const_source_location('String')  # => []  -- constant is defined in C code
[ GitHub ]

  
# File 'object.c', line 2794

static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur, loc = Qnil;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qnil;
        return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qnil;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        if (p < pend) {
            if (RTEST(recur)) {
                mod = rb_const_get(mod, id);
            }
            else {
                mod = rb_const_get_at(mod, id);
            }
            if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
                rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                         QUOTE(name));
            }
        }
        else {
            if (RTEST(recur)) {
                loc = rb_const_source_location(mod, id);
            }
            else {
                loc = rb_const_source_location_at(mod, id);
            }
            break;
        }
        recur = Qfalse;
    }

    return loc;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#constants(inherit = true) ⇒ Array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see #const_defined?.

[ GitHub ]

  
# File 'variable.c', line 3428

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);

    if (inherit) {
        return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
        return rb_local_constants(mod);
    }
}

#define_method(symbol, method) ⇒ Symbol #define_method(symbol) ⇒ Symbol

Defines an instance method in the receiver. The method parameter can be a ::Proc, a ::Method or an ::UnboundMethod object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using #instance_eval.

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.define_method(name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
  define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>
[ GitHub ]

  
# File 'proc.c', line 2347

static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
    const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
    const rb_scope_visibility_t *scope_visi = &default_scope_visi;

    if (cref) {
        scope_visi = CREF_SCOPE_VISI(cref);
    }

    return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi);
}

#deprecate_constant(symbol, ...) ⇒ mod

Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.

module HTTP
  NotFound = Exception.new
  NOT_FOUND = NotFound # previous version of the library used this name

  deprecate_constant :NOT_FOUND
end

HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated
[ GitHub ]

  
# File 'variable.c', line 3851

VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}

#extend_object(obj) ⇒ Object (private)

Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String
[ GitHub ]

  
# File 'eval.c', line 1788

static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}

#extended(othermod) (private)

The equivalent of #included, but for extended modules.

module A
  def self.extended(mod)
    puts "#{self} extended in #{mod}"
  end
end
module Enumerable
  extend A
end
 # => prints "A extended in Enumerable"
[ GitHub ]

#freezemod

Prevents further modifications to mod.

This method returns self.

[ GitHub ]

  
# File 'object.c', line 1792

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}

#include(module, ...) ⇒ self

Invokes #append_features on each parameter in reverse order.

[ GitHub ]

  
# File 'eval.c', line 1202

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    if (BUILTIN_TYPE(module) == T_MODULE && FL_TEST(module, RMODULE_IS_REFINEMENT)) {
        rb_raise(rb_eTypeError, "Refinement#include has been removed");
    }

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++) {
        Check_Type(argv[i], T_MODULE);
        if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) {
            rb_raise(rb_eTypeError, "Cannot include refinement");
        }
    }
    while (argc--) {
        rb_funcall(argv[argc], id_append_features, 1, module);
        rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}

#include?(module) ⇒ Boolean

Returns true if module is included or prepended in mod or one of mod’s ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false
[ GitHub ]

  
# File 'class.c', line 1547

VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
        if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) {
            if (METACLASS_OF(p) == mod2) return Qtrue;
        }
    }
    return Qfalse;
}

#included(othermod) (private)

Callback invoked whenever the receiver is included in another module or class. This should be used in preference to #append_features if your code wants to perform some action when a module is included in another.

module A
  def A.included(mod)
    puts "#{self} included in #{mod}"
  end
end
module Enumerable
  include A
end
 # => prints "A included in Enumerable"
[ GitHub ]

#included_modulesArray

Returns the list of modules included or prepended in mod or one of mod’s ancestors.

module Sub
end

module Mixin
  prepend Sub
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> [Sub]
Outer.included_modules   #=> [Sub, Mixin]
[ GitHub ]

  
# File 'class.c', line 1511

VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
        if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
            VALUE m = METACLASS_OF(p);
            if (RB_TYPE_P(m, T_MODULE))
                rb_ary_push(ary, m);
        }
    }
    return ary;
}

#initialize_clone(*args)

This method is for internal use only.
[ GitHub ]

  
# File 'object.c', line 2004

static VALUE
rb_mod_initialize_clone(int argc, VALUE* argv, VALUE clone)
{
    VALUE ret, orig, opts;
    rb_scan_args(argc, argv, "1:", &orig, &opts);
    ret = rb_obj_init_clone(argc, argv, clone);
    if (OBJ_FROZEN(orig))
        rb_class_name(clone);
    return ret;
}

#initialize_copy(orig)

This method is for internal use only.
[ GitHub ]

  
# File 'class.c', line 532

VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
    switch (BUILTIN_TYPE(clone)) {
      case T_CLASS:
      case T_ICLASS:
        class_init_copy_check(clone, orig);
        break;
      case T_MODULE:
        rb_module_check_initializable(clone);
        break;
      default:
        break;
    }
    if (!OBJ_INIT_COPY(clone, orig)) return clone;

    /* cloned flag is refer at constant inline cache
     * see vm_get_const_key_cref() in vm_insnhelper.c
     */
    RCLASS_EXT(clone)->cloned = true;
    RCLASS_EXT(orig)->cloned = true;

    if (!RCLASS_SINGLETON_P(CLASS_OF(clone))) {
        RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
        rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone);
    }
    RCLASS_SET_ALLOCATOR(clone, RCLASS_ALLOCATOR(orig));
    copy_tables(clone, orig);
    if (RCLASS_M_TBL(orig)) {
        struct clone_method_arg arg;
        arg.old_klass = orig;
        arg.new_klass = clone;
        RCLASS_M_TBL_INIT(clone);
        rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
    }

    if (RCLASS_ORIGIN(orig) == orig) {
        RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
    }
    else {
        VALUE p = RCLASS_SUPER(orig);
        VALUE orig_origin = RCLASS_ORIGIN(orig);
        VALUE prev_clone_p = clone;
        VALUE origin_stack = rb_ary_hidden_new(2);
        VALUE origin[2];
        VALUE clone_p = 0;
        long origin_len;
        int add_subclass;
        VALUE clone_origin;

        ensure_origin(clone);
        clone_origin = RCLASS_ORIGIN(clone);

        while (p && p != orig_origin) {
            if (BUILTIN_TYPE(p) != T_ICLASS) {
                rb_bug("non iclass between module/class and origin");
            }
            clone_p = class_alloc(RBASIC(p)->flags, METACLASS_OF(p));
            /* We should set the m_tbl right after allocation before anything
             * that can trigger GC to avoid clone_p from becoming old and
             * needing to fire write barriers. */
            RCLASS_SET_M_TBL(clone_p, RCLASS_M_TBL(p));
            RCLASS_SET_SUPER(prev_clone_p, clone_p);
            prev_clone_p = clone_p;
            RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p);
            RCLASS_SET_ALLOCATOR(clone_p, RCLASS_ALLOCATOR(p));
            if (RB_TYPE_P(clone, T_CLASS)) {
                RCLASS_SET_INCLUDER(clone_p, clone);
            }
            add_subclass = TRUE;
            if (p != RCLASS_ORIGIN(p)) {
                origin[0] = clone_p;
                origin[1] = RCLASS_ORIGIN(p);
                rb_ary_cat(origin_stack, origin, 2);
            }
            else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
                     RARRAY_AREF(origin_stack, origin_len - 1) == p) {
                RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
                RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p);
                rb_ary_resize(origin_stack, origin_len);
                add_subclass = FALSE;
            }
            if (add_subclass) {
                rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p);
            }
            p = RCLASS_SUPER(p);
        }

        if (p == orig_origin) {
            if (clone_p) {
                RCLASS_SET_SUPER(clone_p, clone_origin);
                RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin));
            }
            copy_tables(clone_origin, orig_origin);
            if (RCLASS_M_TBL(orig_origin)) {
                struct clone_method_arg arg;
                arg.old_klass = orig;
                arg.new_klass = clone;
                RCLASS_M_TBL_INIT(clone_origin);
                rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
            }
        }
        else {
            rb_bug("no origin for class that has origin");
        }

        rb_class_update_superclasses(clone);
    }

    return clone;
}

#to_sString #inspectString

Alias for #to_s.

#instance_method(symbol) ⇒ unbound_method

Returns an ::UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!
[ GitHub ]

  
# File 'proc.c', line 2212

static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
}

#instance_methods(include_super = true) ⇒ Array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Note that method visibility changes in the current class, as well as aliases, are considered as methods of the current class by this method:

class C < B
  alias method4 method2
  protected :method2
end
C.instance_methods(false).sort               #=> [:method2, :method3, :method4]
[ GitHub ]

  
# File 'class.c', line 1898

VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}

#method_added(method_name) (private)

Invoked as a callback whenever an instance method is added to the receiver.

module Chatty
  def self.method_added(method_name)
    puts "Adding #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
end

produces:

Adding :some_instance_method
[ GitHub ]

#method_defined?(symbol, inherit = true) ⇒ Boolean #method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. ::String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method2", true       #=> true
C.method_defined? "method2", false      #=> false
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false
[ GitHub ]

  
# File 'vm_method.c', line 2060

static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
    rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
    return RBOOL(visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED);
}

#method_removed(method_name) (private)

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method
[ GitHub ]

#method_undefined(method_name) (private)

Invoked as a callback whenever an instance method is undefined from the receiver.

module Chatty
  def self.method_undefined(method_name)
    puts "Undefining #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    undef_method :some_class_method
  end
  undef_method :some_instance_method
end

produces:

Undefining :some_instance_method
[ GitHub ]

#class_eval(string [, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string [, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object

Alias for #class_eval.

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Alias for #class_exec.

#module_functionnil (private) #module_function(method_name) ⇒ method_name #module_function(method_name, method_name, ...) ⇒ Array

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. ::String arguments are converted to symbols. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"
[ GitHub ]

  
# File 'vm_method.c', line 2788

static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
        rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
        rb_scope_module_func_set();
        return Qnil;
    }

    set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);

    for (i = 0; i < argc; i++) {
        VALUE m = module;

        id = rb_to_id(argv[i]);
        for (;;) {
            me = search_method(m, id, 0);
            if (me == 0) {
                me = search_method(rb_cObject, id, 0);
            }
            if (UNDEFINED_METHOD_ENTRY_P(me)) {
                rb_print_undef(module, id, METHOD_VISI_UNDEF);
            }
            if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
                break; /* normal case: need not to follow 'super' link */
            }
            m = RCLASS_SUPER(m);
            if (!m)
                break;
        }
        rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
    }
    if (argc == 1) {
        return argv[0];
    }
    return rb_ary_new_from_values(argc, argv);
}

#nameString?

Returns the name of the module mod. Returns nil for anonymous modules.

[ GitHub ]

  
# File 'variable.c', line 129

VALUE
rb_mod_name(VALUE mod)
{
    // YJIT needs this function to not allocate.
    bool permanent;
    return classname(mod, &permanent);
}

#prepend(module, ...) ⇒ self

Invokes #prepend_features on each parameter in reverse order.

[ GitHub ]

  
# File 'eval.c', line 1259

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    if (BUILTIN_TYPE(module) == T_MODULE && FL_TEST(module, RMODULE_IS_REFINEMENT)) {
        rb_raise(rb_eTypeError, "Refinement#prepend has been removed");
    }

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++) {
        Check_Type(argv[i], T_MODULE);
        if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) {
            rb_raise(rb_eTypeError, "Cannot prepend refinement");
        }
    }
    while (argc--) {
        rb_funcall(argv[argc], id_prepend_features, 1, module);
        rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}

#prepend_features(mod) ⇒ mod (private)

When this module is prepended in another, ::Ruby calls #prepend_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also #prepend.

[ GitHub ]

  
# File 'eval.c', line 1241

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
        Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}

#prepended(othermod) (private)

The equivalent of #included, but for prepended modules.

module A
  def self.prepended(mod)
    puts "#{self} prepended to #{mod}"
  end
end
module Enumerable
  prepend A
end
 # => prints "A prepended to Enumerable"
[ GitHub ]

#privatenil (private) #private(method_name) ⇒ method_name #private(method_name, method_name, ...) ⇒ Array #private(array) ⇒ Array

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. ::String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Note that to show a private method on RDoc, use :doc:.

[ GitHub ]

  
# File 'vm_method.c', line 2527

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}

#private_class_method(symbol, ...) ⇒ mod #private_class_method(string, ...) ⇒ mod #private_class_method(array) ⇒ mod

Makes existing class methods private. Often used to hide the default constructor .new.

::String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end
[ GitHub ]

  
# File 'vm_method.c', line 2685

static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}

#private_constant(symbol, ...) ⇒ mod

Makes a list of existing constants private.

[ GitHub ]

  
# File 'variable.c', line 3811

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}

#private_instance_methods(include_super = true) ⇒ Array

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]
[ GitHub ]

  
# File 'class.c', line 1936

VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}

#private_method_defined?(symbol, inherit = true) ⇒ Boolean #private_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named private method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. ::String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                   #=> true
C.private_method_defined? "method1"          #=> false
C.private_method_defined? "method2"          #=> true
C.private_method_defined? "method2", true    #=> true
C.private_method_defined? "method2", false   #=> false
C.method_defined? "method2"                  #=> false
[ GitHub ]

  
# File 'vm_method.c', line 2139

static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}

#protectednil (private) #protected(method_name) ⇒ method_name #protected(method_name, method_name, ...) ⇒ Array #protected(array) ⇒ Array

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. ::String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

If a method has protected visibility, it is callable only where self of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java’s protected method. Usually #private should be used.

Note that a protected method is slow because it can’t use inline cache.

To show a private method on RDoc, use :doc: instead of this.

[ GitHub ]

  
# File 'vm_method.c', line 2493

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}

#protected_instance_methods(include_super = true) ⇒ Array

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

[ GitHub ]

  
# File 'class.c', line 1913

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}

#protected_method_defined?(symbol, inherit = true) ⇒ Boolean #protected_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named protected method is defined mod. If inherit is set, the lookup will also search mod’s ancestors. ::String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                    #=> true
C.protected_method_defined? "method1"         #=> false
C.protected_method_defined? "method2"         #=> true
C.protected_method_defined? "method2", true   #=> true
C.protected_method_defined? "method2", false  #=> false
C.method_defined? "method2"                   #=> true
[ GitHub ]

  
# File 'vm_method.c', line 2175

static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}

#publicnil (private) #public(method_name) ⇒ method_name #public(method_name, method_name, ...) ⇒ Array #public(array) ⇒ Array

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. ::String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

[ GitHub ]

  
# File 'vm_method.c', line 2461

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}

#public_class_method(symbol, ...) ⇒ mod #public_class_method(string, ...) ⇒ mod #public_class_method(array) ⇒ mod

Makes a list of existing class methods public.

::String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted.

[ GitHub ]

  
# File 'vm_method.c', line 2657

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}

#public_constant(symbol, ...) ⇒ mod

Makes a list of existing constants public.

[ GitHub ]

  
# File 'variable.c', line 3825

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}

#public_instance_method(symbol) ⇒ unbound_method

Similar to instance_method, searches public method only.

[ GitHub ]

  
# File 'proc.c', line 2229

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
}

#public_instance_methods(include_super = true) ⇒ Array

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

[ GitHub ]

  
# File 'class.c', line 1951

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}

#public_method_defined?(symbol, inherit = true) ⇒ Boolean #public_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named public method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. ::String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                 #=> true
C.public_method_defined? "method1"         #=> true
C.public_method_defined? "method1", true   #=> true
C.public_method_defined? "method1", false  #=> true
C.public_method_defined? "method2"         #=> false
C.method_defined? "method2"                #=> true
[ GitHub ]

  
# File 'vm_method.c', line 2103

static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}

#refine(mod) ⇒ Module (private)

Refine mod in the receiver.

Returns a module, where refined methods are defined.

[ GitHub ]

  
# File 'eval.c', line 1464

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);

    if (block_handler == VM_BLOCK_HANDLER_NONE) {
        rb_raise(rb_eArgError, "no block given");
    }
    if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
        rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
    }

    ensure_class_or_module(klass);
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
        refinements = hidden_identity_hash_new();
        rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
        activated_refinements = hidden_identity_hash_new();
        rb_ivar_set(module, id_activated_refinements,
                    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
        VALUE superclass = refinement_superclass(klass);
        refinement = rb_refinement_new();
        RCLASS_SET_SUPER(refinement, superclass);
        RUBY_ASSERT(BUILTIN_TYPE(refinement) == T_MODULE);
        FL_SET(refinement, RMODULE_IS_REFINEMENT);
        CONST_ID(id_refined_class, "__refined_class__");
        rb_ivar_set(refinement, id_refined_class, klass);
        CONST_ID(id_defined_at, "__defined_at__");
        rb_ivar_set(refinement, id_defined_at, module);
        rb_hash_aset(refinements, klass, refinement);
        add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}

#refinementsArray

Returns an array of ::Refinement defined within the receiver.

module A
  refine Integer do
  end

  refine String do
  end
end

p A.refinements

produces:

[#<refinement:Integer@A>, #<refinement:String@A>]
[ GitHub ]

  
# File 'eval.c', line 1572

static VALUE
mod_refinements(VALUE self)
{
    ID id_refinements;
    VALUE refinements;

    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(self, id_refinements);
    if (NIL_P(refinements)) {
        return rb_ary_new();
    }
    return rb_hash_values(refinements);
}

#remove_class_variable(sym) ⇒ Object

Removes the named class variable from the receiver, returning that variable’s value.

class Example
  @@var = 99
  puts remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil
[ GitHub ]

  
# File 'variable.c', line 4189

VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val;

    if (!id) {
        goto not_defined;
    }
    rb_check_frozen(mod);
    val = rb_ivar_delete(mod, id, Qundef);
    if (!UNDEF_P(val)) {
        return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
        rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
  not_defined:
    rb_name_err_raise("class variable %1$s not defined for %2$s",
                      mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#remove_const(sym) ⇒ Object (private)

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

[ GitHub ]

  
# File 'variable.c', line 3267

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = id_for_var(mod, name, a, constant);

    if (!id) {
        undefined_constant(mod, name);
    }
    return rb_const_remove(mod, id);
}

#remove_method(symbol) ⇒ self #remove_method(string) ⇒ self

Removes the method identified by symbol from the current class. For an example, see #undef_method. ::String arguments are converted to symbols.

[ GitHub ]

  
# File 'vm_method.c', line 1733

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID id = rb_check_id(&v);
        if (!id) {
            rb_name_err_raise("method '%1$s' not defined in %2$s",
                              mod, v);
        }
        remove_method(mod, id);
    }
    return mod;
}

#ruby2_keywords(method_name, ...) ⇒ nil (private)

For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.

This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with ::Ruby versions before 3.0. See www.ruby-lang.org/en/news/2019/12/12/separation-of-positional-and-keyword-arguments-in-ruby-3-0/ for details on why ruby2_keywords exists and when and how to use it.

This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in ::Ruby versions before 2.7, check that the module responds to this method before calling it:

module Mod
  def foo(meth, *args, &block)
    send(:"do_#{meth}", *args, &block)
  end
  ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end

However, be aware that if the ruby2_keywords method is removed, the behavior of the foo method using the above approach will change so that the method does not pass through keywords.

[ GitHub ]

  
# File 'vm_method.c', line 2569

static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
    int i;
    VALUE origin_class = RCLASS_ORIGIN(module);

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_check_frozen(module);

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID name = rb_check_id(&v);
        rb_method_entry_t *me;
        VALUE defined_class;

        if (!name) {
            rb_print_undef_str(module, v);
        }

        me = search_method(origin_class, name, &defined_class);
        if (!me && RB_TYPE_P(module, T_MODULE)) {
            me = search_method(rb_cObject, name, &defined_class);
        }

        if (UNDEFINED_METHOD_ENTRY_P(me) ||
            UNDEFINED_REFINED_METHOD_P(me->def)) {
            rb_print_undef(module, name, METHOD_VISI_UNDEF);
        }

        if (module == defined_class || origin_class == defined_class) {
            switch (me->def->type) {
              case VM_METHOD_TYPE_ISEQ:
                if (ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_rest &&
                        !ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kw &&
                        !ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kwrest) {
                    ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.ruby2_keywords = 1;
                    rb_clear_method_cache(module, name);
                }
                else {
                    rb_warn("Skipping set of ruby2_keywords flag for %"PRIsVALUE" (method accepts keywords or method does not accept argument splat)", QUOTE_ID(name));
                }
                break;
              case VM_METHOD_TYPE_BMETHOD: {
                VALUE procval = me->def->body.bmethod.proc;
                if (vm_block_handler_type(procval) == block_handler_type_proc) {
                    procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
                }

                if (vm_block_handler_type(procval) == block_handler_type_iseq) {
                    const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
                    const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
                    if (ISEQ_BODY(iseq)->param.flags.has_rest &&
                            !ISEQ_BODY(iseq)->param.flags.has_kw &&
                            !ISEQ_BODY(iseq)->param.flags.has_kwrest) {
                        ISEQ_BODY(iseq)->param.flags.ruby2_keywords = 1;
                        rb_clear_method_cache(module, name);
                    }
                    else {
                        rb_warn("Skipping set of ruby2_keywords flag for %"PRIsVALUE" (method accepts keywords or method does not accept argument splat)", QUOTE_ID(name));
                    }
                    break;
                }
              }
              /* fallthrough */
              default:
                rb_warn("Skipping set of ruby2_keywords flag for %"PRIsVALUE" (method not defined in Ruby)", QUOTE_ID(name));
                break;
            }
        }
        else {
            rb_warn("Skipping set of ruby2_keywords flag for %"PRIsVALUE" (can only set in method defining module)", QUOTE_ID(name));
        }
    }
    return Qnil;
}

#set_temporary_name(string) ⇒ self #set_temporary_name(nil) ⇒ self

Sets the temporary name of the module. This name is reflected in introspection of the module and the values that are related to it, such as instances, constants, and methods.

The name should be nil or a non-empty string that is not a valid constant path (to avoid confusing between permanent and temporary names).

The method can be useful to distinguish dynamically generated classes and modules without assigning them to constants.

If the module is given a permanent name by assigning it to a constant, the temporary name is discarded. A temporary name can’t be assigned to modules that have a permanent name.

If the given name is nil, the module becomes anonymous again.

Example:

m = Module.new # => #<Module:0x0000000102c68f38>
m.name #=> nil

m.set_temporary_name("fake_name") # => fake_name
m.name #=> "fake_name"

m.set_temporary_name(nil) # => #<Module:0x0000000102c68f38>
m.name #=> nil

c = Class.new
c.set_temporary_name("MyClass(with description)")

c.new # => #<MyClass(with description):0x0....>

c::M = m
c::M.name #=> "MyClass(with description)::M"

# Assigning to a constant replaces the name with a permanent one
C = c

C.name #=> "C"
C::M.name #=> "C::M"
c.new # => #<C:0x0....>
[ GitHub ]

  
# File 'variable.c', line 217

VALUE
rb_mod_set_temporary_name(VALUE mod, VALUE name)
{
    // We don't allow setting the name if the classpath is already permanent:
    if (RCLASS_EXT(mod)->permanent_classpath) {
        rb_raise(rb_eRuntimeError, "can't change permanent name");
    }

    if (NIL_P(name)) {
        // Set the temporary classpath to NULL (anonymous):
        RCLASS_SET_CLASSPATH(mod, 0, FALSE);
    }
    else {
        // Ensure the name is a string:
        StringValue(name);

        if (RSTRING_LEN(name) == 0) {
            rb_raise(rb_eArgError, "empty class/module name");
        }

        if (is_constant_path(name)) {
            rb_raise(rb_eArgError, "the temporary name must not be a constant path to avoid confusion");
        }

        // Set the temporary classpath to the given name:
        RCLASS_SET_CLASSPATH(mod, name, FALSE);
    }

    return mod;
}

#to_sString Also known as: #inspect

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.

[ GitHub ]

  
# File 'object.c', line 1748

VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (RCLASS_SINGLETON_P(klass)) {
        VALUE s = rb_usascii_str_new2("#<Class:");
        VALUE v = RCLASS_ATTACHED_OBJECT(klass);

        if (CLASS_OR_MODULE_P(v)) {
            rb_str_append(s, rb_inspect(v));
        }
        else {
            rb_str_append(s, rb_any_to_s(v));
        }
        rb_str_cat2(s, ">");

        return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
        VALUE s = rb_usascii_str_new2("#<refinement:");

        rb_str_concat(s, rb_inspect(refined_class));
        rb_str_cat2(s, "@");
        CONST_ID(id_defined_at, "__defined_at__");
        defined_at = rb_attr_get(klass, id_defined_at);
        rb_str_concat(s, rb_inspect(defined_at));
        rb_str_cat2(s, ">");
        return s;
    }
    return rb_class_name(klass);
}

#undef_method(symbol) ⇒ self #undef_method(string) ⇒ self

Prevents the current class from responding to calls to the named method. Contrast this with #remove_method, which deletes the method from the particular class; ::Ruby will still search superclasses and mixed-in modules for a possible receiver. ::String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method 'hello' for #<Child:0x401b3bb4> (NoMethodError)
[ GitHub ]

  
# File 'vm_method.c', line 1978

static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID id = rb_check_id(&v);
        if (!id) {
            rb_method_name_error(mod, v);
        }
        rb_undef(mod, id);
    }
    return mod;
}

#undefined_instance_methodsArray

Returns a list of the undefined instance methods defined in mod. The undefined methods of any ancestors are not included.

[ GitHub ]

  
# File 'class.c', line 1965

VALUE
rb_class_undefined_instance_methods(VALUE mod)
{
    VALUE include_super = Qfalse;
    return class_instance_method_list(1, &include_super, mod, 0, ins_methods_undef_i);
}

#using(module) ⇒ self (private)

Import class refinements from module into the current class or module definition.

[ GitHub ]

  
# File 'eval.c', line 1532

static VALUE
mod_using(VALUE self, VALUE module)
{
    rb_control_frame_t *prev_cfp = previous_frame(GET_EC());

    if (prev_frame_func()) {
        rb_raise(rb_eRuntimeError,
                 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
        rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    if (rb_block_given_p()) {
        ignored_block(module, "Module#");
    }
    rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
    return self;
}

#with_yjit(&block) (private)

This method is for internal use only.

Internal helper for built-in initializations to define methods only when YJIT is enabled. This method is removed in yjit_hook.rb.

[ GitHub ]

  
# File 'kernel.rb', line 298

private def with_yjit(&block) # :nodoc:
  if defined?(RubyVM::YJIT)
    RubyVM::YJIT.send(:add_yjit_hook, block)
  end
end