Class: Complex
| Relationships & Source Files | |
| Namespace Children | |
|
Classes:
| |
| Super Chains via Extension / Inclusion / Inheritance | |
|
Class Chain:
self,
::Numeric
|
|
|
Instance Chain:
self,
::Numeric,
::Comparable
|
|
| Inherits: | Numeric |
| Defined in: | complex.c |
Overview
A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.
Rectangular Coordinates
The rectangular coordinates of a complex number are called the real and imaginary parts; see number definition.
You can create a Complex object from rectangular coordinates with:
-
::MethodKernel.Complex, either with numeric arguments or with certain string arguments. -
::MethodString#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, ::Float, ::Integer, or Rational; they may be retrieved:
-
Separately, with methods #real and #imaginary.
-
Together, with method #rect.
The corresponding (computed) polar values may be retrieved:
Polar Coordinates
The polar coordinates of a complex number are called the absolute and argument parts; see polar plane.
In this class, the argument part in expressed radians (not ) degrees).
You can create a Complex object from polar coordinates with:
-
::MethodKernel.Complex, with certain string arguments. -
::MethodString#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, ::Float, ::Integer, or Rational; they may be retrieved:
The corresponding (computed) rectangular values may be retrieved:
What’s Here
First, what’s elsewhere:
-
::ClassComplex inherits (directly or indirectly) from classes Numeric and Object. -
Includes (indirectly) module Comparable.
Here, class Complex has methods for:
Creating Complex Objects
-
.polar: Returns a new Complex object based on given polar coordinates.
-
.rect (and its alias .rectangular): Returns a new Complex object based on given rectangular coordinates.
Querying
-
#abs (and its alias #magnitude): Returns the absolute value for
self. -
#arg (and its aliases #angle and #phase): Returns the argument (angle) for
selfin radians. -
#denominator: Returns the denominator of
self. -
#finite?: Returns whether both
self.realandself.imageare finite. -
#hash: Returns the integer hash value for
self. -
#imag (and its alias #imaginary): Returns the imaginary value for
self. -
#infinite?: Returns whether
self.realorself.imageis infinite. -
#numerator: Returns the numerator of
self. -
#polar: Returns the array
[self.abs, self.arg]. -
#inspect: Returns a string representation of
self. -
#real: Returns the real value for
self. -
#real?: Returns
false; for compatibility with Numeric#real?. -
#rect (and its alias #rectangular): Returns the array
[self.real, self.imag].
Comparing
-
#<=>: Returns whether
selfis less than, equal to, or greater than the given argument. -
#==: Returns whether
selfis equal to the given argument.
Converting
-
#rationalize: Returns a
::Rationalobject whose value is exactly or approximately equivalent to that ofself.real. -
#to_c: Returns
self. -
#to_d: Returns the value as a BigDecimal object. -
#to_f: Returns the value of
self.realas a::Float, if possible. -
#to_i: Returns the value of
self.realas an::Integer, if possible. -
#to_r: Returns the value of
self.realas a::Rational, if possible. -
#to_s: Returns a string representation of
self.
Performing Complex Arithmetic
-
#*: Returns the product of
selfand the given numeric. -
#**: Returns
selfraised to power of the given numeric. -
#+: Returns the sum of
selfand the given numeric. -
#-: Returns the difference of
selfand the given numeric. -
#-@: Returns the negation of
self. -
#/: Returns the quotient of
selfand the given numeric. -
#abs2: Returns square of the absolute value (magnitude) for
self. -
#conj (and its alias #conjugate): Returns the conjugate of
self. -
#fdiv: Returns
Complex.rect(self.real/numeric, self.imag/numeric).
Working with JSON
-
.json_create: Returns a new Complex object, deserialized from the given serialized hash. -
#as_json: Returns a serialized hash constructed fromself. -
#to_json: Returns a JSON string representingself.
These methods are provided by the JSON gem. To make these methods available:
require 'json/add/complex'
Constant Summary
-
I =
# File 'complex.c', line 2706
I# => (0+1i)Equivalent to <tt>Complex.rect(0, 1)</tt>
Class Method Summary
-
.polar(abs, arg = 0) ⇒ Complex
Returns a new Complex object formed from the arguments, each of which must be an instance of
::Numeric, or an instance of one of its subclasses: Complex,::Float,::Integer,::Rational. -
.rect(real, imag = 0) ⇒ Complex
(also: .rectangular)
Returns a new Complex object formed from the arguments, each of which must be an instance of
::Numeric, or an instance of one of its subclasses: Complex,::Float,::Integer, Rational; see Rectangular Coordinates: -
.rectangular(real, imag = 0) ⇒ Complex
Alias for .rect.
Instance Attribute Summary
-
#finite? ⇒ Boolean
readonly
Returns
trueif bothself.real.finite?andself.imag.finite?are true,falseotherwise: -
#infinite? ⇒ Boolean
readonly
Returns
1if eitherself.real.infinite?orself.imag.infinite?is true,nilotherwise: -
#real ⇒ Numeric
readonly
Returns the real value for
self: -
#real? ⇒ Boolean
readonly
Returns
false; for compatibility with Numeric#real?.
::Numeric - Inherited
| #finite? | Returns |
| #infinite? | Returns |
| #integer? | Returns |
| #negative? | Returns |
| #nonzero? | Returns |
| #positive? | Returns |
| #real? | Returns |
| #zero? | Returns |
Instance Method Summary
-
#*(numeric) ⇒ Complex
Returns the product of
selfandnumeric: -
#**(numeric) ⇒ Complex
Returns
selfraised to powernumeric: -
#+(numeric) ⇒ Complex
Returns the sum of
selfandnumeric: -
#-(numeric) ⇒ Complex
Returns the difference of
selfandnumeric: -
#- ⇒ Complex
Returns the negation of
self, which is the negation of each of its parts: -
#/(numeric) ⇒ Complex
Returns the quotient of
selfandnumeric: -
#<=>(object) ⇒ 1, ...
Returns:
-
#==(object) ⇒ Boolean
Returns
trueifself.real == object.realandself.imag == object.imag: -
#abs ⇒ Float
(also: #magnitude)
Returns the absolute value (magnitude) for
self; see polar coordinates: -
#abs2 ⇒ Float
Returns square of the absolute value (magnitude) for
self; see polar coordinates: -
#angle ⇒ Float
Alias for #arg.
-
#arg ⇒ Float
(also: #angle, #phase)
Returns the argument (angle) for
selfin radians; see polar coordinates: -
#conj ⇒ Complex
(also: #conjugate)
Returns the conjugate of
self,Complex.rect(self.imag, self.real): -
#conjugate ⇒ Complex
Alias for #conj.
-
#denominator ⇒ Integer
Returns the denominator of
self, which is the least common multiple ofself.real.denominatorandself.imag.denominator: -
#fdiv(numeric) ⇒ Complex
Returns
Complex.rect(self.real/numeric, self.imag/numeric): -
#hash ⇒ Integer
Returns the integer hash value for
self. -
#imag ⇒ Numeric
(also: #imaginary)
Returns the imaginary value for
self: -
#imaginary ⇒ Numeric
Alias for #imag.
-
#inspect ⇒ String
Returns a string representation of
self: -
#magnitude ⇒ Float
Alias for #abs.
-
#numerator ⇒ Complex
Returns the Complex object created from the numerators of the real and imaginary parts of
self, after converting each part to the lowest common denominator of the two: -
#phase ⇒ Float
Alias for #arg.
-
#polar ⇒ Array
Returns the array
[self.abs, self.arg]: - #quo
-
#rationalize(epsilon = nil) ⇒ Rational
Returns a
::Rationalobject whose value is exactly or approximately equivalent to that ofself.real. -
#rect ⇒ Array
(also: #rectangular)
Returns the array
[self.real, self.imag]: -
#rectangular ⇒ Array
Alias for #rect.
-
#to_c ⇒ self
Returns
self. -
#to_f ⇒ Float
Returns the value of
self.realas a::Float, if possible: -
#to_i ⇒ Integer
Returns the value of
self.realas an::Integer, if possible: -
#to_r ⇒ Rational
Returns the value of
self.realas a::Rational, if possible: -
#to_s ⇒ String
Returns a string representation of
self: - #coerce(other) Internal use only
- #eql?(other) ⇒ Boolean Internal use only
- #marshal_dump private Internal use only
::Numeric - Inherited
| #% | Returns |
| #+@ | Returns |
| #-@ | Unary Minus—Returns the receiver, negated. |
| #<=> | Returns zero if |
| #abs | Returns the absolute value of |
| #abs2 | Returns the square of |
| #angle | Alias for Numeric#arg. |
| #arg | Returns zero if |
| #ceil | Returns the smallest float or integer that is greater than or equal to |
| #clone | Returns |
| #coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
| #conj | Alias for Numeric#conjugate. |
| #conjugate | Returns |
| #denominator | Returns the denominator (always positive). |
| #div | Returns the quotient |
| #divmod | Returns a 2-element array |
| #dup | Returns |
| #eql? | Returns |
| #fdiv | Returns the quotient |
| #floor | Returns the largest float or integer that is less than or equal to |
| #i | Returns |
| #imag | Alias for Numeric#imaginary. |
| #imaginary | Returns zero. |
| #magnitude | Alias for Numeric#abs. |
| #modulo | Alias for Numeric#%. |
| #numerator | Returns the numerator. |
| #phase | Alias for Numeric#arg. |
| #polar | Returns array |
| #quo | Returns the most exact division (rational for integers, float for floats). |
| #real | Returns |
| #rect | Returns array |
| #rectangular | Alias for Numeric#rect. |
| #remainder | Returns the remainder after dividing |
| #round | Returns |
| #step | Generates a sequence of numbers; with a block given, traverses the sequence. |
| #to_c | Returns |
| #to_int | Returns |
| #truncate | Returns |
| #singleton_method_added | Trap attempts to add methods to |
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
| #between? | |
| #clamp |
Class Method Details
.polar(abs, arg = 0) ⇒ Complex
Returns a new Complex object formed from the arguments, each of which must be an instance of ::Numeric, or an instance of one of its subclasses: Complex, ::Float, ::Integer, ::Rational. Argument #arg is given in radians; see Polar Coordinates:
Complex.polar(3) # => (3+0i)
Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
# File 'complex.c', line 738
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
VALUE abs, arg;
argc = rb_scan_args(argc, argv, "11", &abs, &arg);
abs = nucomp_real_check(abs);
if (argc == 2) {
arg = nucomp_real_check(arg);
}
else {
arg = ZERO;
}
return f_complex_polar_real(klass, abs, arg);
}
.rect(real, imag = 0) ⇒ Complex Also known as: .rectangular
Returns a new Complex object formed from the arguments, each of which must be an instance of ::Numeric, or an instance of one of its subclasses: Complex, ::Float, ::Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i)
Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
# File 'complex.c', line 492
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
real = nucomp_real_check(real);
imag = ZERO;
break;
default:
real = nucomp_real_check(real);
imag = nucomp_real_check(imag);
break;
}
return nucomp_s_new_internal(klass, real, imag);
}
.rect(real, imag = 0) ⇒ Complex
.rectangular(real, imag = 0) ⇒ Complex
Complex
.rectangular(real, imag = 0) ⇒ Complex
Alias for .rect.
Instance Attribute Details
#finite? ⇒ Boolean (readonly)
Returns true if both self.real.finite? and self.imag.finite? are true, false otherwise:
Complex.rect(1, 1).finite? # => true
Complex.rect(Float::INFINITY, 0).finite? # => false
Related: Numeric#finite?, Float#finite?.
# File 'complex.c', line 1674
static VALUE
rb_complex_finite_p(VALUE self)
{
get_dat1(self);
return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
}
#infinite? ⇒ Boolean (readonly)
Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:
Complex.rect(Float::INFINITY, 0).infinite? # => 1
Complex.rect(1, 1).infinite? # => nil
Related: Numeric#infinite?, Float#infinite?.
# File 'complex.c', line 1694
static VALUE
rb_complex_infinite_p(VALUE self)
{
get_dat1(self);
if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
return Qnil;
}
return ONE;
}
#real ⇒ Numeric (readonly)
# File 'complex.c', line 770
VALUE
rb_complex_real(VALUE self)
{
get_dat1(self);
return dat->real;
}
#real? ⇒ Boolean (readonly)
Returns false; for compatibility with Numeric#real?.
# File 'complex.c', line 1469
static VALUE
nucomp_real_p_m(VALUE self)
{
return Qfalse;
}
Instance Method Details
#*(numeric) ⇒ Complex
# File 'complex.c', line 927
VALUE
rb_complex_mul(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_mul(dat->real, other),
f_mul(dat->imag, other));
}
return rb_num_coerce_bin(self, other, '*');
}
#**(numeric) ⇒ Complex
# File 'complex.c', line 1123
VALUE
rb_complex_pow(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_complex_new_bang1(CLASS_OF(self), ONE);
if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
other = RRATIONAL(other)->num; /* c14n */
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat1(other);
if (k_exact_zero_p(dat->imag))
other = dat->real; /* c14n */
}
if (other == ONE) {
get_dat1(self);
return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
}
VALUE result = complex_pow_for_special_angle(self, other);
if (!UNDEF_P(result)) return result;
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE r, theta, nr, ntheta;
get_dat1(other);
r = f_abs(self);
theta = f_arg(self);
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
f_mul(dat->imag, theta)));
ntheta = f_add(f_mul(theta, dat->real),
f_mul(dat->imag, m_log_bang(r)));
return f_complex_polar(CLASS_OF(self), nr, ntheta);
}
if (FIXNUM_P(other)) {
long n = FIX2LONG(other);
if (n == 0) {
return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
}
if (n < 0) {
self = f_reciprocal(self);
other = rb_int_uminus(other);
n = -n;
}
{
get_dat1(self);
VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
if (f_zero_p(xi)) {
zr = rb_num_pow(zr, other);
}
else if (f_zero_p(xr)) {
zi = rb_num_pow(zi, other);
if (n & 2) zi = f_negate(zi);
if (!(n & 1)) {
VALUE tmp = zr;
zr = zi;
zi = tmp;
}
}
else {
while (--n) {
long q, r;
for (; q = n / 2, r = n % 2, r == 0; n = q) {
VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
xi = f_mul(f_mul(TWO, xr), xi);
xr = tmp;
}
comp_mul(zr, zi, xr, xi, &zr, &zi);
}
}
return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
}
}
if (k_numeric_p(other) && f_real_p(other)) {
VALUE r, theta;
if (RB_BIGNUM_TYPE_P(other))
rb_warn("in a**b, b may be too big");
r = f_abs(self);
theta = f_arg(self);
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
f_mul(theta, other));
}
return rb_num_coerce_bin(self, other, id_expt);
}
#+(numeric) ⇒ Complex
# File 'complex.c', line 831
VALUE
rb_complex_plus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_add(adat->real, bdat->real);
imag = f_add(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_add(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '+');
}
#-(numeric) ⇒ Complex
# File 'complex.c', line 866
VALUE
rb_complex_minus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_sub(adat->real, bdat->real);
imag = f_sub(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_sub(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '-');
}
#- ⇒ Complex
# File 'complex.c', line 810
VALUE
rb_complex_uminus(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_negate(dat->real), f_negate(dat->imag));
}
#/(numeric) ⇒ Complex
Returns the quotient of self and numeric:
Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i)
Complex.rect(900) / Complex.rect(1) # => (900+0i)
Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
Complex.rect(9, 8) / 4 # => ((9/4)+2i)
Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
# File 'complex.c', line 1003
VALUE
rb_complex_div(VALUE self, VALUE other)
{
return f_divide(self, other, f_quo, id_quo);
}
#<=>(object) ⇒ 1, ...
Returns:
-
self.real <=> object.realif both of the following are true:-
self.imag == 0. -
object.imag == 0. # Always true if object is numeric but not complex.
-
-
nilotherwise.
Examples:
Complex.rect(2) <=> 3 # => -1
Complex.rect(2) <=> 2 # => 0
Complex.rect(2) <=> 1 # => 1
Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero.
Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
# File 'complex.c', line 1274
static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
if (!k_numeric_p(other)) {
return rb_num_coerce_cmp(self, other, idCmp);
}
if (!nucomp_real_p(self)) {
return Qnil;
}
if (RB_TYPE_P(other, T_COMPLEX)) {
if (nucomp_real_p(other)) {
get_dat2(self, other);
return rb_funcall(adat->real, idCmp, 1, bdat->real);
}
}
else {
get_dat1(self);
if (f_real_p(other)) {
return rb_funcall(dat->real, idCmp, 1, other);
}
else {
return rb_num_coerce_cmp(dat->real, other, idCmp);
}
}
return Qnil;
}
#==(object) ⇒ Boolean
# File 'complex.c', line 1227
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat2(self, other);
return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
f_eqeq_p(adat->imag, bdat->imag));
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
}
return RBOOL(f_eqeq_p(other, self));
}
#abs ⇒ Float Also known as: #magnitude
Returns the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(-1, 0).abs # => 1.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
# File 'complex.c', line 1331
VALUE
rb_complex_abs(VALUE self)
{
get_dat1(self);
if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
if (f_zero_p(dat->imag)) {
VALUE a = f_abs(dat->real);
if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
return rb_math_hypot(dat->real, dat->imag);
}
#abs2 ⇒ Float
Returns square of the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(2, 2).abs2 # => 4.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
# File 'complex.c', line 1367
static VALUE
nucomp_abs2(VALUE self)
{
get_dat1(self);
return f_add(f_mul(dat->real, dat->real),
f_mul(dat->imag, dat->imag));
}
Alias for #arg.
#arg ⇒ Float Also known as: #angle, #phase
Returns the argument (angle) for self in radians; see polar coordinates:
Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
# File 'complex.c', line 1391
VALUE
rb_complex_arg(VALUE self)
{
get_dat1(self);
return rb_math_atan2(dat->imag, dat->real);
}
#coerce(other)
# File 'complex.c', line 1302
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX))
return rb_assoc_new(other, self);
if (k_numeric_p(other) && f_real_p(other))
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
rb_obj_class(other), rb_obj_class(self));
return Qnil;
}
#conj ⇒ Complex Also known as: #conjugate
Returns the conjugate of self, Complex.rect(self.imag, self.real):
Complex.rect(1, 2).conj # => (1-2i)
# File 'complex.c', line 1456
VALUE
rb_complex_conjugate(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
#conj ⇒ Complex
#conjugate ⇒ Complex
Complex
#conjugate ⇒ Complex
Alias for #conj.
#denominator ⇒ Integer
Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:
Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
Note that n.denominator of a non-rational numeric is 1.
Related: #numerator.
# File 'complex.c', line 1489
static VALUE
nucomp_denominator(VALUE self)
{
get_dat1(self);
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
#eql?(other) ⇒ Boolean
# File 'complex.c', line 1566
static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat2(self, other);
return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
f_eqeq_p(self, other));
}
return Qfalse;
}
#fdiv(numeric) ⇒ Complex
Returns Complex.rect(self.real/numeric, self.imag/numeric):
Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
# File 'complex.c', line 1020
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
return f_divide(self, other, f_fdiv, id_fdiv);
}
#hash ⇒ Integer
# File 'complex.c', line 1559
static VALUE
nucomp_hash(VALUE self)
{
return ST2FIX(rb_complex_hash(self));
}
#imag ⇒ Numeric Also known as: #imaginary
# File 'complex.c', line 793
VALUE
rb_complex_imag(VALUE self)
{
get_dat1(self);
return dat->imag;
}
Alias for #imag.
#inspect ⇒ String
Returns a string representation of self:
Complex.rect(2).inspect # => "(2+0i)"
Complex.rect(-8, 6).inspect # => "(-8+6i)"
Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)"
Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)"
Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
# File 'complex.c', line 1648
static VALUE
nucomp_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
f_format(self, s, rb_inspect);
rb_str_cat2(s, ")");
return s;
}
Alias for #abs.
#marshal_dump (private)
# File 'complex.c', line 1726
static VALUE
nucomp_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->real, dat->imag);
rb_copy_generic_ivar(a, self);
return a;
}
#numerator ⇒ Complex
Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:
c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator # => (8+9i)
In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex.rect(8, 9).
Related: #denominator.
# File 'complex.c', line 1516
static VALUE
nucomp_numerator(VALUE self)
{
VALUE cd;
get_dat1(self);
cd = nucomp_denominator(self);
return f_complex_new2(CLASS_OF(self),
f_mul(f_numerator(dat->real),
f_div(cd, f_denominator(dat->real))),
f_mul(f_numerator(dat->imag),
f_div(cd, f_denominator(dat->imag))));
}
Alias for #arg.
#polar ⇒ Array
Returns the array [self.abs, self.arg]:
Complex.polar(1, 2).polar # => [1.0, 2.0]
See Polar Coordinates.
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
# File 'complex.c', line 1441
static VALUE
nucomp_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
#quo
[ GitHub ]#rationalize(epsilon = nil) ⇒ Rational
Returns a ::Rational object whose value is exactly or approximately equivalent to that of self.real.
With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:
Complex.rect(1, 0).rationalize # => (1/1)
Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
Complex.rect(3.14159, 0).rationalize # => (314159/100000)
With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:
Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5)
Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7)
Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64)
Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106)
Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113)
Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366)
Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
Related: #to_r.
# File 'complex.c', line 1902
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
get_dat1(self);
rb_check_arity(argc, 0, 1);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
#rect ⇒ Array Also known as: #rectangular
Returns the array [self.real, self.imag]:
Complex.rect(1, 2).rect # => [1, 2]
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
#rectangular is an alias for rect.
# File 'complex.c', line 1417
static VALUE
nucomp_rect(VALUE self)
{
get_dat1(self);
return rb_assoc_new(dat->real, dat->imag);
}
Alias for #rect.
#to_c ⇒ self
Returns self.
# File 'complex.c', line 1922
static VALUE
nucomp_to_c(VALUE self)
{
return self;
}
#to_f ⇒ Float
# File 'complex.c', line 1824
static VALUE
nucomp_to_f(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
self);
}
return f_to_f(dat->real);
}
#to_i ⇒ Integer
# File 'complex.c', line 1800
static VALUE
nucomp_to_i(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
self);
}
return f_to_i(dat->real);
}
#to_r ⇒ Rational
Returns the value of self.real as a ::Rational, if possible:
Complex.rect(1, 0).to_r # => (1/1)
Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
Complex.rect(1, 0.0).to_r # => (1/1)
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)) and self.imag.to_r is not exactly zero.
Related: #rationalize.
# File 'complex.c', line 1852
static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);
if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
/* Do nothing here */
}
else if (!k_exact_zero_p(dat->imag)) {
VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
if (NIL_P(imag) || !k_exact_zero_p(imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
}
return f_to_r(dat->real);
}
#to_s ⇒ String
# File 'complex.c', line 1629
static VALUE
nucomp_to_s(VALUE self)
{
return f_format(self, rb_usascii_str_new2(""), rb_String);
}