Class: Enumerator
| Relationships & Source Files | |
| Namespace Children | |
|
Classes:
| |
| Extension / Inclusion / Inheritance Descendants | |
|
Subclasses:
|
|
| Super Chains via Extension / Inclusion / Inheritance | |
|
Instance Chain:
self,
::Enumerable
|
|
| Inherits: | Object |
| Defined in: | enumerator.c, enumerator.c |
Overview
Class Enumerator supports:
An Enumerator may be created by the following methods:
In addition, certain ::Ruby methods return Enumerator objects: a ::Ruby iterator method that accepts a block may return an Enumerator if no block is given. There are many such methods, for example, in classes ::Array and ::Hash. (In the documentation for those classes, search for new_enumerator.)
Internal Iteration
In _internal iteration_, an iterator method drives the iteration and the caller’s block handles the processing; this example uses method #each_with_index:
words = %w[foo bar baz] # => ["foo", "bar", "baz"]
enumerator = words.each # => #<Enumerator: ...>
enumerator.each_with_index {|word, i| puts "#{i}: #{word}" }
0: foo
1:
2: baz
Iterator methods in class Enumerator include:
-
#each: passes each item to the block.
-
#each_with_index: passes each item and its index to the block.
-
#each_with_object (aliased as #with_object): passes each item and a given object to the block.
-
#with_index: like #each_with_index, but starting at a given offset (instead of zero).
Class Enumerator includes module ::Enumerable, which provides many more iterator methods.
External Iteration
In _external iteration_, the user’s program both drives the iteration and handles the processing in stream-like fashion; this example uses method #next:
words = %w[foo bar baz]
enumerator = words.each
enumerator.next # => "foo"
enumerator.next # => "bar"
enumerator.next # => "baz"
enumerator.next # Raises StopIteration: iteration reached an end
External iteration methods in class Enumerator include:
-
#feed: sets the value that is next to be returned.
-
#next: returns the next value and increments the position.
-
#next_values: returns the next value in a 1-element array and increments the position.
-
#peek: returns the next value but does not increment the position.
-
#peek_values: returns the next value in a 1-element array but does not increment the position.
-
#rewind: sets the position to zero.
Each of these methods raises ::FrozenError if called from a frozen Enumerator.
External Iteration and Fiber
External iteration that uses ::Fiber differs significantly from internal iteration:
-
Using Fiber adds some overhead compared to internal enumeration.
-
The stacktrace will only include the stack from the Enumerator, not above.
-
Fiber-local variables are not inherited inside the Enumerator Fiber, which instead starts with no Fiber-local variables.
-
Fiber storage variables are inherited and are designed to handle Enumerator Fibers. Assigning to a Fiber storage variable only affects the current Fiber, so if you want to change state in the caller Fiber of the Enumerator Fiber, you need to use an extra indirection (e.g., use some object in the Fiber storage variable and mutate some ivar of it).
Concretely:
Thread.current[:fiber_local] = 1
Fiber[:storage_var] = 1
e = Enumerator.new do |y|
p Thread.current[:fiber_local] # for external iteration: nil, for internal iteration: 1
p Fiber[:storage_var] # => 1, inherited
Fiber[:storage_var] += 1
y << 42
end
p e.next # => 42
p Fiber[:storage_var] # => 1 (it ran in a different Fiber)
e.each { p _1 }
p Fiber[:storage_var] # => 2 (it ran in the same Fiber/"stack" as the current Fiber)
Converting External Iteration to Internal Iteration
You can use an external iterator to implement an internal iterator as follows:
def ext_each(e)
while true
begin
vs = e.next_values
rescue StopIteration
return $!.result
end
y = yield(*vs)
e.feed y
end
end
o = Object.new
def o.each
puts yield
puts yield(1)
puts yield(1, 2)
3
end
# use o.each as an internal iterator directly.
puts o.each {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
# convert o.each to an external iterator for
# implementing an internal iterator.
puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
Class Method Summary
-
.new(size = nil) {|yielder| ... }
constructor
Returns a new Enumerator object that can be used for iteration.
-
.produce(initial = nil, size: nil) {|prev| ... } ⇒ Enumerator
Creates an infinite enumerator from any block, just called over and over.
-
.product(*enums) ⇒ Enumerator
Generates a new enumerator object that generates a Cartesian product of given enumerable objects.
Instance Method Summary
-
#+(enum) ⇒ Enumerator
Returns an enumerator object generated from this enumerator and a given enumerable.
-
#each {|elm| ... } ⇒ Object
Iterates over the block according to how this
Enumeratorwas constructed. -
#each_with_index {|(*args), idx| ... }
Same as #with_index(0), i.e. there is no starting offset.
-
#each_with_object(obj) {|(*args), obj| ... }
Alias for #with_object.
-
#feed(obj) ⇒ nil
Sets the value to be returned by the next yield inside
e. -
#inspect ⇒ String
Creates a printable version of e.
-
#next ⇒ Object
Returns the next object in the enumerator, and move the internal position forward.
-
#next_values ⇒ Array
Returns the next object as an array in the enumerator, and move the internal position forward.
-
#peek ⇒ Object
Returns the next object in the enumerator, but doesn’t move the internal position forward.
-
#peek_values ⇒ Array
Returns the next object as an array, similar to #next_values, but doesn’t move the internal position forward.
-
#rewind ⇒ e
Rewinds the enumeration sequence to the beginning.
-
#size ⇒ Integer, ...
Returns the size of the enumerator, or
nilif it can’t be calculated lazily. -
#with_index(offset = 0) {|(*args), idx| ... }
Iterates the given block for each element with an index, which starts from
offset. -
#with_object(obj) {|(*args), obj| ... }
(also: #each_with_object)
Iterates the given block for each element with an arbitrary object,
obj, and returnsobj - #initialize_copy(orig) Internal use only
::Enumerable - Included
| #all? | Returns whether every element meets a given criterion. |
| #any? | Returns whether any element meets a given criterion. |
| #chain | Returns an enumerator object generated from this enumerator and given enumerables. |
| #chunk | Each element in the returned enumerator is a 2-element array consisting of: |
| #chunk_while | Creates an enumerator for each chunked elements. |
| #collect | Alias for Enumerable#map. |
| #collect_concat | Alias for Enumerable#flat_map. |
| #compact | Returns an array of all non- |
| #count | Returns the count of elements, based on an argument or block criterion, if given. |
| #cycle | When called with positive integer argument |
| #detect | Alias for Enumerable#find. |
| #drop | For positive integer |
| #drop_while | Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements after that point: |
| #each_cons | Calls the block with each successive overlapped |
| #each_entry | Calls the given block with each element, converting multiple values from yield to an array; returns |
| #each_slice | Calls the block with each successive disjoint |
| #each_with_index | Invoke |
| #each_with_object | Calls the block once for each element, passing both the element and the given object: |
| #entries | Alias for Enumerable#to_a. |
| #filter | Returns an array containing elements selected by the block. |
| #filter_map | Returns an array containing truthy elements returned by the block. |
| #find | Returns the first element for which the block returns a truthy value. |
| #find_all | Alias for Enumerable#filter. |
| #find_index | Returns the index of the first element that meets a specified criterion, or |
| #first | Returns the first element or elements. |
| #flat_map | Returns an array of flattened objects returned by the block. |
| #grep | Returns an array of objects based elements of |
| #grep_v | Returns an array of objects based on elements of |
| #group_by | With a block given returns a hash: |
| #include? | Alias for Enumerable#member?. |
| #inject | Returns the result of applying a reducer to an initial value and the first element of the |
| #lazy | Returns an |
| #map | Returns an array of objects returned by the block. |
| #max | Returns the element with the maximum element according to a given criterion. |
| #max_by | Returns the elements for which the block returns the maximum values. |
| #member? | Returns whether for any element |
| #min | Returns the element with the minimum element according to a given criterion. |
| #min_by | Returns the elements for which the block returns the minimum values. |
| #minmax | Returns a 2-element array containing the minimum and maximum elements according to a given criterion. |
| #minmax_by | Returns a 2-element array containing the elements for which the block returns minimum and maximum values: |
| #none? | Returns whether no element meets a given criterion. |
| #one? | Returns whether exactly one element meets a given criterion. |
| #partition | With a block given, returns an array of two arrays: |
| #reduce | Alias for Enumerable#inject. |
| #reject | Returns an array of objects rejected by the block. |
| #reverse_each | With a block given, calls the block with each element, but in reverse order; returns |
| #select | Alias for Enumerable#filter. |
| #slice_after | Creates an enumerator for each chunked elements. |
| #slice_before | With argument |
| #slice_when | Creates an enumerator for each chunked elements. |
| #sort | Returns an array containing the sorted elements of |
| #sort_by | With a block given, returns an array of elements of |
| #sum | With no block given, returns the sum of |
| #take | For non-negative integer |
| #take_while | Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements up to that point: |
| #tally | When argument |
| #to_a | Returns an array containing the items in |
| #to_h | When |
| #to_set | Makes a set from the enumerable object with given arguments. |
| #uniq | With no block, returns a new array containing only unique elements; the array has no two elements |
| #zip | With no block given, returns a new array |
Constructor Details
.new(size = nil) {|yielder| ... }
Returns a new Enumerator object that can be used for iteration.
The given block defines the iteration; it is called with a “yielder” object that can yield an object via a call to method yielder.yield:
fib = Enumerator.new do |yielder|
n = next_n = 1
while true do
yielder.yield(n)
n, next_n = next_n, n + next_n
end
end
fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
Parameter #size specifies how the size is to be calculated (see #size); it can either be a value or a callable object:
Enumerator.new{}.size # => nil
Enumerator.new(42){}.size # => 42
Enumerator.new(-> {42}){}.size # => 42
# File 'enumerator.c', line 488
static VALUE
enumerator_initialize(int argc, VALUE *argv, VALUE obj)
{
VALUE iter = rb_block_proc();
VALUE recv = generator_init(generator_allocate(rb_cGenerator), iter);
VALUE arg0 = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
VALUE size = convert_to_feasible_size_value(arg0);
return enumerator_init(obj, recv, sym_each, 0, 0, 0, size, false);
}
Class Method Details
.produce(initial = nil, size: nil) {|prev| ... } ⇒ Enumerator
Creates an infinite enumerator from any block, just called over and over. The result of the previous iteration is passed to the next one. If initial is provided, it is passed to the first iteration, and becomes the first element of the enumerator; if it is not provided, the first iteration receives nil, and its result becomes the first element of the iterator.
Raising StopIteration from the block stops an iteration.
Enumerator.produce(1, &:succ) # => enumerator of 1, 2, 3, 4, ....
Enumerator.produce { rand(10) } # => infinite random number sequence
ancestors = Enumerator.produce(node) { |prev| node = prev.parent or raise StopIteration }
enclosing_section = ancestors.find { |n| n.type == :section }
Using .produce together with ::Enumerable methods like Enumerable#detect, Enumerable#slice_after, Enumerable#take_while can provide Enumerator-based alternatives for while and until cycles:
# Find next Tuesday
require "date"
Enumerator.produce(Date.today, &:succ).detect(&:tuesday?)
# Simple lexer:
require "strscan"
scanner = StringScanner.new("7+38/6")
PATTERN = %r{\d|[-/*]}
Enumerator.produce { scanner.scan(PATTERN) }.slice_after { scanner.eos? }.first
# => ["7", "+", "38", "/", "6"]
The optional #size keyword argument specifies the size of the enumerator, which can be retrieved by #size. It can be an integer, Float::INFINITY, a callable object (such as a lambda), or nil to indicate unknown size. When not specified, the size defaults to Float::INFINITY.
# Infinite enumerator
enum = Enumerator.produce(1, size: Float::INFINITY, &:succ)
enum.size # => Float::INFINITY
# Finite enumerator with known/computable size
abs_dir = File.("./baz") # => "/foo/bar/baz"
traverser = Enumerator.produce(abs_dir, size: -> { abs_dir.count("/") + 1 }) {
raise StopIteration if it == "/"
File.dirname(it)
}
traverser.size # => 4
# Finite enumerator with unknown size
calendar = Enumerator.produce(Date.today, size: nil) {
it.monday? ? raise(StopIteration) : it + 1
}
calendar.size # => nil
# File 'enumerator.c', line 3097
static VALUE
enumerator_s_produce(int argc, VALUE *argv, VALUE klass)
{
VALUE init, producer, opts, size;
ID keyword_ids[1];
if (!rb_block_given_p()) rb_raise(rb_eArgError, "no block given");
keyword_ids[0] = rb_intern("size");
rb_scan_args_kw(RB_SCAN_ARGS_LAST_HASH_KEYWORDS, argc, argv, "01:", &init, &opts);
rb_get_kwargs(opts, keyword_ids, 0, 1, &size);
size = UNDEF_P(size) ? DBL2NUM(HUGE_VAL) : convert_to_feasible_size_value(size);
if (argc == 0 || (argc == 1 && !NIL_P(opts))) {
init = Qundef;
}
producer = producer_init(producer_allocate(rb_cEnumProducer), init, rb_block_proc(), size);
return rb_enumeratorize_with_size_kw(producer, sym_each, 0, 0, producer_size, RB_NO_KEYWORDS);
}
.product(*enums) ⇒ Enumerator
.product(*enums) {|elts| ... } ⇒ Enumerator
Enumerator
.product(*enums) {|elts| ... } ⇒ Enumerator
Generates a new enumerator object that generates a Cartesian product of given enumerable objects. This is equivalent to Product.new.
e = Enumerator.product(1..3, [4, 5])
e.to_a #=> [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]
e.size #=> 6
When a block is given, calls the block with each N-element array generated and returns nil.
# File 'enumerator.c', line 3751
static VALUE
enumerator_s_product(int argc, VALUE *argv, VALUE klass)
{
VALUE enums = Qnil, options = Qnil, block = Qnil;
rb_scan_args(argc, argv, "*:&", &enums, &options, &block);
if (!NIL_P(options) && !RHASH_EMPTY_P(options)) {
rb_exc_raise(rb_keyword_error_new("unknown", rb_hash_keys(options)));
}
VALUE obj = enum_product_initialize(argc, argv, enum_product_allocate(rb_cEnumProduct));
if (!NIL_P(block)) {
enum_product_run(obj, block);
return Qnil;
}
return obj;
}
Instance Method Details
#+(enum) ⇒ Enumerator
Returns an enumerator object generated from this enumerator and a given enumerable.
e = (1..3).each + [4, 5]
e.to_a #=> [1, 2, 3, 4, 5]
# File 'enumerator.c', line 3406
static VALUE
enumerator_plus(VALUE obj, VALUE eobj)
{
return new_enum_chain(rb_ary_new_from_args(2, obj, eobj));
}
Iterates over the block according to how this Enumerator was constructed. If no block and no arguments are given, returns self.
Examples
"Hello, world!".scan(/\w+/) #=> ["Hello", "world"]
"Hello, world!".to_enum(:scan, /\w+/).to_a #=> ["Hello", "world"]
"Hello, world!".to_enum(:scan).each(/\w+/).to_a #=> ["Hello", "world"]
obj = Object.new
def obj.each_arg(a, b=:b, *rest)
yield a
yield b
yield rest
:method_returned
end
enum = obj.to_enum :each_arg, :a, :x
enum.each.to_a #=> [:a, :x, []]
enum.each.equal?(enum) #=> true
enum.each { |elm| elm } #=> :method_returned
enum.each(:y, :z).to_a #=> [:a, :x, [:y, :z]]
enum.each(:y, :z).equal?(enum) #=> false
enum.each(:y, :z) { |elm| elm } #=> :method_returned
# File 'enumerator.c', line 621
static VALUE
enumerator_each(int argc, VALUE *argv, VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
if (argc > 0) {
VALUE args = (e = enumerator_ptr(obj = rb_obj_dup(obj)))->args;
if (args) {
#if SIZEOF_INT < SIZEOF_LONG
/* check int range overflow */
rb_long2int(RARRAY_LEN(args) + argc);
#endif
args = rb_ary_dup(args);
rb_ary_cat(args, argv, argc);
}
else {
args = rb_ary_new4(argc, argv);
}
RB_OBJ_WRITE(obj, &e->args, args);
e->size = Qnil;
e->size_fn = 0;
}
if (!rb_block_given_p()) return obj;
if (!lazy_precheck(e->procs)) return Qnil;
return enumerator_block_call(obj, 0, obj);
}
#each_with_index {|(*args), idx| ... }
#each_with_index
Same as #with_index(0), i.e. there is no starting offset.
If no block is given, a new Enumerator is returned that includes the index.
# File 'enumerator.c', line 705
static VALUE
enumerator_each_with_index(VALUE obj)
{
return enumerator_with_index(0, NULL, obj);
}
#each_with_object(obj) {|(*args), obj| ... }
#each_with_object(obj)
#with_object(obj) {|(*args), obj| ... }
#with_object(obj)
Alias for #with_object.
#feed(obj) ⇒ nil
Sets the value to be returned by the next yield inside e.
If the value is not set, the yield returns nil.
This value is cleared after being yielded.
# Array#map passes the array's elements to "yield" and collects the
# results of "yield" as an array.
# Following example shows that "next" returns the passed elements and
# values passed to "feed" are collected as an array which can be
# obtained by StopIteration#result.
e = [1,2,3].map
p e.next #=> 1
e.feed "a"
p e.next #=> 2
e.feed "b"
p e.next #=> 3
e.feed "c"
begin
e.next
rescue StopIteration
p $!.result #=> ["a", "b", "c"]
end
o = Object.new
def o.each
x = yield # (2) blocks
p x # (5) => "foo"
x = yield # (6) blocks
p x # (8) => nil
x = yield # (9) blocks
p x # not reached w/o another e.next
end
e = o.to_enum
e.next # (1)
e.feed "foo" # (3)
e.next # (4)
e.next # (7)
# (10)
# File 'enumerator.c', line 1063
static VALUE
enumerator_feed(VALUE obj, VALUE v)
{
struct enumerator *e = enumerator_ptr(obj);
rb_check_frozen(obj);
if (!UNDEF_P(e->feedvalue)) {
rb_raise(rb_eTypeError, "feed value already set");
}
RB_OBJ_WRITE(obj, &e->feedvalue, v);
return Qnil;
}
#initialize_copy(orig)
# File 'enumerator.c', line 500
static VALUE
enumerator_init_copy(VALUE obj, VALUE orig)
{
struct enumerator *ptr0, *ptr1;
if (!OBJ_INIT_COPY(obj, orig)) return obj;
ptr0 = enumerator_ptr(orig);
if (ptr0->fib) {
/* Fibers cannot be copied */
rb_raise(rb_eTypeError, "can't copy execution context");
}
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1);
if (!ptr1) {
rb_raise(rb_eArgError, "unallocated enumerator");
}
RB_OBJ_WRITE(obj, &ptr1->obj, ptr0->obj);
ptr1->meth = ptr0->meth;
RB_OBJ_WRITE(obj, &ptr1->args, ptr0->args);
ptr1->fib = 0;
ptr1->lookahead = Qundef;
ptr1->feedvalue = Qundef;
RB_OBJ_WRITE(obj, &ptr1->size, ptr0->size);
ptr1->size_fn = ptr0->size_fn;
return obj;
}
#inspect ⇒ String
Creates a printable version of e.
# File 'enumerator.c', line 1236
static VALUE
enumerator_inspect(VALUE obj)
{
return rb_exec_recursive(inspect_enumerator, obj, 0);
}
#next ⇒ Object
Returns the next object in the enumerator, and move the internal position forward. When the position reached at the end, ::StopIteration is raised.
Example
a = [1,2,3]
e = a.to_enum
p e.next #=> 1
p e.next #=> 2
p e.next #=> 3
p e.next #raises StopIteration
See class-level notes about external iterators.
# File 'enumerator.c', line 929
static VALUE
enumerator_next(VALUE obj)
{
VALUE vs = enumerator_next_values(obj);
return ary2sv(vs, 0);
}
#next_values ⇒ Array
Returns the next object as an array in the enumerator, and move the internal position forward. When the position reached at the end, ::StopIteration is raised.
See class-level notes about external iterators.
This method can be used to distinguish yield and yield nil.
Example
o = Object.new
def o.each
yield
yield 1
yield 1, 2
yield nil
yield [1, 2]
end
e = o.to_enum
p e.next_values
p e.next_values
p e.next_values
p e.next_values
p e.next_values
e = o.to_enum
p e.next
p e.next
p e.next
p e.next
p e.next
## yield args next_values next
# yield [] nil
# yield 1 [1] 1
# yield 1, 2 [1, 2] [1, 2]
# yield nil [nil] nil
# yield [1, 2] [[1, 2]] [1, 2]
# File 'enumerator.c', line 872
static VALUE
enumerator_next_values(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
VALUE vs;
rb_check_frozen(obj);
if (!UNDEF_P(e->lookahead)) {
vs = e->lookahead;
e->lookahead = Qundef;
return vs;
}
return get_next_values(obj, e);
}
#peek ⇒ Object
Returns the next object in the enumerator, but doesn’t move the internal position forward. If the position is already at the end, ::StopIteration is raised.
See class-level notes about external iterators.
Example
a = [1,2,3]
e = a.to_enum
p e.next #=> 1
p e.peek #=> 2
p e.peek #=> 2
p e.peek #=> 2
p e.next #=> 2
p e.next #=> 3
p e.peek #raises StopIteration
# File 'enumerator.c', line 1010
static VALUE
enumerator_peek(VALUE obj)
{
VALUE vs = enumerator_peek_values(obj);
return ary2sv(vs, 1);
}
#peek_values ⇒ Array
Returns the next object as an array, similar to #next_values, but doesn’t move the internal position forward. If the position is already at the end, ::StopIteration is raised.
See class-level notes about external iterators.
Example
o = Object.new
def o.each
yield
yield 1
yield 1, 2
end
e = o.to_enum
p e.peek_values #=> []
e.next
p e.peek_values #=> [1]
p e.peek_values #=> [1]
e.next
p e.peek_values #=> [1, 2]
e.next
p e.peek_values # raises StopIteration
# File 'enumerator.c', line 980
static VALUE
enumerator_peek_values_m(VALUE obj)
{
return rb_ary_dup(enumerator_peek_values(obj));
}
#rewind ⇒ e
Rewinds the enumeration sequence to the beginning.
If the enclosed object responds to a “rewind” method, it is called.
# File 'enumerator.c', line 1087
static VALUE
enumerator_rewind(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
rb_check_frozen(obj);
rb_check_funcall(e->obj, id_rewind, 0, 0);
e->fib = 0;
e->dst = Qnil;
e->lookahead = Qundef;
e->feedvalue = Qundef;
e->stop_exc = Qfalse;
return obj;
}
#size ⇒ Integer, ...
Returns the size of the enumerator, or nil if it can’t be calculated lazily.
(1..100).to_a.permutation(4).size # => 94109400
loop.size # => Float::INFINITY
(1..100).drop_while.size # => nil
Note that enumerator size might be inaccurate, and should be rather treated as a hint. For example, there is no check that the size provided to .new is accurate:
e = Enumerator.new(5) { |y| 2.times { y << it} }
e.size # => 5
e.to_a.size # => 2
Another example is an enumerator created by .produce without a size argument. Such enumerators return Infinity for size, but this is inaccurate if the passed block raises ::StopIteration:
e = Enumerator.produce(1) { it + 1 }
e.size # => Infinity
e = Enumerator.produce(1) { it > 3 ? raise(StopIteration) : it + 1 }
e.size # => Infinity
e.to_a.size # => 4
# File 'enumerator.c', line 1271
static VALUE
enumerator_size(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
int argc = 0;
const VALUE *argv = NULL;
VALUE size;
if (e->procs) {
struct generator *g = generator_ptr(e->obj);
VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0);
long i = 0;
for (i = 0; i < RARRAY_LEN(e->procs); i++) {
VALUE proc = RARRAY_AREF(e->procs, i);
struct proc_entry *entry = proc_entry_ptr(proc);
lazyenum_size_func *size_fn = entry->fn->size;
if (!size_fn) {
return Qnil;
}
receiver = (*size_fn)(proc, receiver);
}
return receiver;
}
if (e->size_fn) {
return (*e->size_fn)(e->obj, e->args, obj);
}
if (e->args) {
argc = (int)RARRAY_LEN(e->args);
argv = RARRAY_CONST_PTR(e->args);
}
size = rb_check_funcall_kw(e->size, id_call, argc, argv, e->kw_splat);
if (!UNDEF_P(size)) return size;
return e->size;
}
#with_index(offset = 0) {|(*args), idx| ... }
#with_index(offset = 0)
Iterates the given block for each element with an index, which starts from offset. If no block is given, returns a new Enumerator that includes the index, starting from offset
offset-
the starting index to use
# File 'enumerator.c', line 684
static VALUE
enumerator_with_index(int argc, VALUE *argv, VALUE obj)
{
VALUE memo;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size);
memo = (!argc || NIL_P(memo = argv[0])) ? INT2FIX(0) : rb_to_int(memo);
return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)rb_imemo_memo_new(memo, 0, 0));
}
#each_with_object(obj) {|(*args), obj| ... }
#each_with_object(obj)
#with_object(obj) {|(*args), obj| ... }
#with_object(obj)
Also known as: #each_with_object
Iterates the given block for each element with an arbitrary object, obj, and returns obj
If no block is given, returns a new Enumerator.
Example
to_three = Enumerator.new do |y|
3.times do |x|
y << x
end
end
to_three_with_string = to_three.with_object("foo")
to_three_with_string.each do |x,string|
puts "#{string}: #{x}"
end
# => foo: 0
# => foo: 1
# => foo: 2
# File 'enumerator.c', line 749
static VALUE
enumerator_with_object(VALUE obj, VALUE memo)
{
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size);
enumerator_block_call(obj, enumerator_with_object_i, memo);
return memo;
}