Class: Regexp
Relationships & Source Files | |
Namespace Children | |
Exceptions:
| |
Inherits: | Object |
Defined in: | re.c, encoding.c, re.c |
Overview
A regular expression (also called a regexp) is a match pattern (also simply called a pattern).
A common notation for a regexp uses enclosing slash characters:
/foo/
A regexp may be applied to a target string; The part of the string (if any) that matches the pattern is called a match, and may be said to match:
re = /red/
re.match?('redirect') # => true # Match at beginning of target.
re.match?('bored') # => true # Match at end of target.
re.match?('credit') # => true # Match within target.
re.match?('foo') # => false # No match.
Regexp Uses
A regexp may be used:
-
To extract substrings based on a given pattern:
re = /foo/ # => /foo/ re.match('food') # => #<MatchData "foo"> re.match('good') # => nil
See sections
Method match
andOperator =~
. -
To determine whether a string matches a given pattern:
re.match?('food') # => true re.match?('good') # => false
See section
Method match?
. -
As an argument for calls to certain methods in other classes and modules; most such methods accept an argument that may be either a string or the (much more powerful) regexp.
See Regexp Methods.
Regexp Objects
A regexp object has:
-
A source; see
Sources
. -
Several modes; see
Modes
. -
A timeout; see
Timeouts
. -
An encoding; see
Encodings
.
Creating a Regexp
A regular expression may be created with:
-
A regexp literal using slash characters (see
Literals
):# This is a very common usage. /foo/ # => /foo/
-
A
%r
regexp literal (see%r: Literals
):# Same delimiter character at beginning and end; # useful for avoiding escaping characters %r/name\/value pair/ # => /name\/value pair/ %r:name/value pair: # => /name\/value pair/ %r|name/value pair| # => /name\/value pair/ # Certain "paired" characters can be delimiters. %r[foo] # => /foo/ %r{foo} # => /foo/ %r(foo) # => /foo/ %r<foo> # => /foo/
-
Method .new.
Method #match
Each of the methods #match, String#match, and Symbol#match returns a ::MatchData
object if a match was found, nil
otherwise; each also sets global variables
:
'food'.match(/foo/) # => #<MatchData "foo">
'food'.match(/bar/) # => nil
Operator #=~
Each of the operators #=~, String#=~, and Symbol#=~ returns an integer offset if a match was found, nil
otherwise; each also sets global variables
:
/bar/ =~ 'foo bar' # => 4
'foo bar' =~ /bar/ # => 4
/baz/ =~ 'foo bar' # => nil
Method #match?
Each of the methods #match?, String#match?, and Symbol#match? returns true
if a match was found, false
otherwise; none sets global variables
:
'food'.match?(/foo/) # => true
'food'.match?(/bar/) # => false
Global Variables
Certain regexp-oriented methods assign values to global variables:
The affected global variables are:
-
$~
: Returns a::MatchData
object, ornil
. -
$&
: Returns the matched part of the string, ornil
. -
$`
: Returns the part of the string to the left of the match, ornil
. -
$'
: Returns the part of the string to the right of the match, ornil
. -
$+
: Returns the last group matched, ornil
. -
$1
,$2
, etc.: Returns the first, second, etc., matched group, ornil
. Note that$0
is quite different; it returns the name of the currently executing program.
Examples:
# Matched string, but no matched groups.
'foo bar bar baz'.match('bar')
$~ # => #<MatchData "bar">
$& # => "bar"
$` # => "foo "
$' # => " bar baz"
$+ # => nil
$1 # => nil
# Matched groups.
/s(\w{2}).*(c)/.match('haystack')
$~ # => #<MatchData "stac" 1:"ta" 2:"c">
$& # => "stac"
$` # => "hay"
$' # => "k"
$+ # => "c"
$1 # => "ta"
$2 # => "c"
$3 # => nil
# No match.
'foo'.match('bar')
$~ # => nil
$& # => nil
$` # => nil
$' # => nil
$+ # => nil
$1 # => nil
Note that #match?, String#match?, and Symbol#match? do not set global variables.
Sources
As seen above, the simplest regexp uses a literal expression as its source:
re = /foo/ # => /foo/
re.match('food') # => #<MatchData "foo">
re.match('good') # => nil
A rich collection of available subexpressions gives the regexp great power and flexibility:
-
Special characters
-
Source literals
-
Character classes
-
Shorthand character classes
-
Anchors
-
Alternation
-
Quantifiers
-
Groups and captures
-
Unicode
-
POSIX Bracket Expressions
-
Comments
Special Characters
Regexp special characters, called metacharacters, have special meanings in certain contexts; depending on the context, these are sometimes metacharacters:
. ? - + * ^ \ | $ ( ) [ ] { }
To match a metacharacter literally, backslash-escape it:
# Matches one or more 'o' characters.
/o+/.match('foo') # => #<MatchData "oo">
# Would match 'o+'.
/o\+/.match('foo') # => nil
To match a backslash literally, backslash-escape it:
/\./.match('\.') # => #<MatchData ".">
/\\./.match('\.') # => #<MatchData "\\.">
::Method
.escape returns an escaped string:
Regexp.escape('.?-+*^\|$()[]{}')
# => "\\.\\?\\-\\+\\*\\^\\\\\\|\\$\\(\\)\\[\\]\\{\\}"
Source Literals
The source literal largely behaves like a double-quoted string; see Double-Quoted {String
Literals}.
In particular, a source literal may contain interpolated expressions:
s = 'foo' # => "foo"
/#{s}/ # => /foo/
/#{s.capitalize}/ # => /Foo/
/#{2 + 2}/ # => /4/
There are differences between an ordinary string literal and a source literal; see Shorthand Character Classes
.
-
\s
in an ordinary string literal is equivalent to a space character; in a source literal, it’s shorthand for matching a whitespace character. -
In an ordinary string literal, these are (needlessly) escaped characters; in a source literal, they are shorthands for various matching characters:
\w \W \d \D \h \H \S \R
Character Classes
A character class is delimited by square brackets; it specifies that certain characters match at a given point in the target string:
# This character class will match any vowel.
re = /B[aeiou]rd/
re.match('Bird') # => #<MatchData "Bird">
re.match('Bard') # => #<MatchData "Bard">
re.match('Byrd') # => nil
A character class may contain hyphen characters to specify ranges of characters:
# These regexps have the same effect.
/[abcdef]/.match('foo') # => #<MatchData "f">
/[a-f]/.match('foo') # => #<MatchData "f">
/[a-cd-f]/.match('foo') # => #<MatchData "f">
When the first character of a character class is a caret (^
), the sense of the class is inverted: it matches any character except those specified.
/[^a-eg-z]/.match('f') # => #<MatchData "f">
A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]]
describes the same set as [a-z0-9]
.
However, character classes also support the &&
operator, which performs set intersection on its arguments. The two can be combined as follows:
/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))
This is equivalent to:
/[abh-w]/
Shorthand Character Classes
Each of the following metacharacters serves as a shorthand for a character class:
-
/./
: Matches any character except a newline:/./.match('foo') # => #<MatchData "f"> /./.match("\n") # => nil
-
/./m
: Matches any character, including a newline; seeMultiline Mode
:/./m.match("\n") # => #<MatchData "\n">
-
/\w/
: Matches a word character: equivalent to[a-zA-Z0-9_]
:/\w/.match(' foo') # => #<MatchData "f"> /\w/.match(' _') # => #<MatchData "_"> /\w/.match(' ') # => nil
-
/\W/
: Matches a non-word character: equivalent to[^a-zA-Z0-9_]
:/\W/.match(' ') # => #<MatchData " "> /\W/.match('_') # => nil
-
/\d/
: Matches a digit character: equivalent to[0-9]
:/\d/.match('THX1138') # => #<MatchData "1"> /\d/.match('foo') # => nil
-
/\D/
: Matches a non-digit character: equivalent to[^0-9]
:/\D/.match('123Jump!') # => #<MatchData "J"> /\D/.match('123') # => nil
-
/\h/
: Matches a hexdigit character: equivalent to[0-9a-fA-F]
:/\h/.match('xyz fedcba9876543210') # => #<MatchData "f"> /\h/.match('xyz') # => nil
-
/\H/
: Matches a non-hexdigit character: equivalent to[^0-9a-fA-F]
:/\H/.match('fedcba9876543210xyz') # => #<MatchData "x"> /\H/.match('fedcba9876543210') # => nil
-
/\s/
: Matches a whitespace character: equivalent to/[ \t\r\n\f\v]/
:/\s/.match('foo bar') # => #<MatchData " "> /\s/.match('foo') # => nil
-
/\S/
: Matches a non-whitespace character: equivalent to/[^ \t\r\n\f\v]/
:/\S/.match(" \t\r\n\f\v foo") # => #<MatchData "f"> /\S/.match(" \t\r\n\f\v") # => nil
-
/\R/
: Matches a linebreak, platform-independently:/\R/.match("\r") # => #<MatchData "\r"> # Carriage return (CR) /\R/.match("\n") # => #<MatchData "\n"> # Newline (LF) /\R/.match("\f") # => #<MatchData "\f"> # Formfeed (FF) /\R/.match("\v") # => #<MatchData "\v"> # Vertical tab (VT) /\R/.match("\r\n") # => #<MatchData "\r\n"> # CRLF /\R/.match("\u0085") # => #<MatchData "\u0085"> # Next line (NEL) /\R/.match("\u2028") # => #<MatchData "\u2028"> # Line separator (LSEP) /\R/.match("\u2029") # => #<MatchData "\u2029"> # Paragraph separator (PSEP)
Anchors
An anchor is a metasequence that matches a zero-width position between characters in the target string.
For a subexpression with no anchor, matching may begin anywhere in the target string:
/real/.match('surrealist') # => #<MatchData "real">
For a subexpression with an anchor, matching must begin at the matched anchor.
Boundary Anchors
Each of these anchors matches a boundary:
-
^
: Matches the beginning of a line:/^bar/.match("foo\nbar") # => #<MatchData "bar"> /^ar/.match("foo\nbar") # => nil
-
$
: Matches the end of a line:/bar$/.match("foo\nbar") # => #<MatchData "bar"> /ba$/.match("foo\nbar") # => nil
-
\A
: Matches the beginning of the string:/\Afoo/.match('foo bar') # => #<MatchData "foo"> /\Afoo/.match(' foo bar') # => nil
-
\Z
: Matches the end of the string; if string ends with a single newline, it matches just before the ending newline:/foo\Z/.match('bar foo') # => #<MatchData "foo"> /foo\Z/.match('foo bar') # => nil /foo\Z/.match("bar foo\n") # => #<MatchData "foo"> /foo\Z/.match("bar foo\n\n") # => nil
-
\z
: Matches the end of the string:/foo\z/.match('bar foo') # => #<MatchData "foo"> /foo\z/.match('foo bar') # => nil /foo\z/.match("bar foo\n") # => nil
-
\b
: Matches word boundary when not inside brackets; matches backspace ("0x08"
) when inside brackets:/foo\b/.match('foo bar') # => #<MatchData "foo"> /foo\b/.match('foobar') # => nil
-
\B
: Matches non-word boundary:/foo\B/.match('foobar') # => #<MatchData "foo"> /foo\B/.match('foo bar') # => nil
-
\G
: Matches first matching position:In methods like String#gsub and String#scan, it changes on each iteration. It initially matches the beginning of subject, and in each following iteration it matches where the last match finished.
" a b c".gsub(/ /, '_') # => "____a_b_c" " a b c".gsub(/\G /, '_') # => "____a b c"
In methods like Regexp#match and String#match that take an optional offset, it matches where the search begins.
"hello, world".match(/,/, 3) # => #<MatchData ","> "hello, world".match(/\G,/, 3) # => nil
Lookaround Anchors
Lookahead anchors:
-
(?=pat)
: Positive lookahead assertion: ensures that the following characters match pat, but doesn’t include those characters in the matched substring. -
(?!pat)
: Negative lookahead assertion: ensures that the following characters do not match pat, but doesn’t include those characters in the matched substring.
Lookbehind anchors:
-
(?<=pat)
: Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn’t include those characters in the matched substring. -
(?<!pat)
: Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn’t include those characters in the matched substring.
The pattern below uses positive lookahead and positive lookbehind to match text appearing in … tags without including the tags in the match:
/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favors the <b>bold</b>.")
# => #<MatchData "bold">
Match-Reset Anchor
-
\K
: Match reset: the matched content preceding\K
in the regexp is excluded from the result. For example, the following two regexps are almost equivalent:/ab\Kc/.match('abc') # => #<MatchData "c"> /(?<=ab)c/.match('abc') # => #<MatchData "c">
These match same string and
$&
equals'c'
, while the matched position is different.As are the following two regexps:
/(a)\K(b)\Kc/ /(?<=(?<=(a))(b))c/
Alternation
The vertical bar metacharacter (|
) may be used within parentheses to express alternation: two or more subexpressions any of which may match the target string.
Two alternatives:
re = /(a|b)/
re.match('foo') # => nil
re.match('bar') # => #<MatchData "b" 1:"b">
Four alternatives:
re = /(a|b|c|d)/
re.match('shazam') # => #<MatchData "a" 1:"a">
re.match('cold') # => #<MatchData "c" 1:"c">
Each alternative is a subexpression, and may be composed of other subexpressions:
re = /([a-c]|[x-z])/
re.match('bar') # => #<MatchData "b" 1:"b">
re.match('ooz') # => #<MatchData "z" 1:"z">
Method .union provides a convenient way to construct a regexp with alternatives.
Quantifiers
A simple regexp matches one character:
/\w/.match('Hello') # => #<MatchData "H">
An added quantifier specifies how many matches are required or allowed:
-
*
- Matches zero or more times:/\w*/.match('') # => #<MatchData ""> /\w*/.match('x') # => #<MatchData "x"> /\w*/.match('xyz') # => #<MatchData "yz">
-
+
- Matches one or more times:/\w+/.match('') # => nil /\w+/.match('x') # => #<MatchData "x"> /\w+/.match('xyz') # => #<MatchData "xyz">
-
?
- Matches zero or one times:/\w?/.match('') # => #<MatchData ""> /\w?/.match('x') # => #<MatchData "x"> /\w?/.match('xyz') # => #<MatchData "x">
-
{
n}
- Matches exactly n times:/\w{2}/.match('') # => nil /\w{2}/.match('x') # => nil /\w{2}/.match('xyz') # => #<MatchData "xy">
-
{
min,}
- Matches min or more times:/\w{2,}/.match('') # => nil /\w{2,}/.match('x') # => nil /\w{2,}/.match('xy') # => #<MatchData "xy"> /\w{2,}/.match('xyz') # => #<MatchData "xyz">
-
{,
max}
- Matches max or fewer times:/\w{,2}/.match('') # => #<MatchData ""> /\w{,2}/.match('x') # => #<MatchData "x"> /\w{,2}/.match('xyz') # => #<MatchData "xy">
-
{
min,
max}
- Matches at least min times and at most max times:/\w{1,2}/.match('') # => nil /\w{1,2}/.match('x') # => #<MatchData "x"> /\w{1,2}/.match('xyz') # => #<MatchData "xy">
Greedy, Lazy, or Possessive Matching
Quantifier matching may be greedy, lazy, or possessive:
-
In greedy matching, as many occurrences as possible are matched while still allowing the overall match to succeed. Greedy quantifiers:
*
,+
,?
,{min, max}
and its variants. -
In lazy matching, the minimum number of occurrences are matched. Lazy quantifiers:
*?
,+?
,??
,{min, max}?
and its variants. -
In possessive matching, once a match is found, there is no backtracking; that match is retained, even if it jeopardises the overall match. Possessive quantifiers:
*+
,++
,?+
. Note that{min, max}
and its variants do not support possessive matching.
More:
-
About greedy and lazy matching, see Choosing Minimal or Maximal Repetition.
-
About possessive matching, see Eliminate Needless Backtracking.
Groups and Captures
A simple regexp has (at most) one match:
re = /\d\d\d\d-\d\d-\d\d/
re.match('1943-02-04') # => #<MatchData "1943-02-04">
re.match('1943-02-04').size # => 1
re.match('foo') # => nil
Adding one or more pairs of parentheses, (subexpression)
, defines groups, which may result in multiple matched substrings, called captures:
re = /(\d\d\d\d)-(\d\d)-(\d\d)/
re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
re.match('1943-02-04').size # => 4
The first capture is the entire matched string; the other captures are the matched substrings from the groups.
A group may have a quantifier
:
re = /July 4(th)?/
re.match('July 4') # => #<MatchData "July 4" 1:nil>
re.match('July 4th') # => #<MatchData "July 4th" 1:"th">
re = /(foo)*/
re.match('') # => #<MatchData "" 1:nil>
re.match('foo') # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">
re = /(foo)+/
re.match('') # => nil
re.match('foo') # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">
The returned MatchData object gives access to the matched substrings:
re = /(\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04')
# => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
md[0] # => "1943-02-04"
md[1] # => "1943"
md[2] # => "02"
md[3] # => "04"
Non-Capturing Groups
A group may be made non-capturing; it is still a group (and, for example, can have a quantifier), but its matching substring is not included among the captures.
A non-capturing group begins with ?:
(inside the parentheses):
# Don't capture the year.
re = /(?:\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"02" 2:"04">
Backreferences
A group match may also be referenced within the regexp itself; such a reference is called a backreference
:
/[csh](..) [csh]\1 in/.match('The cat sat in the hat')
# => #<MatchData "cat sat in" 1:"at">
This table shows how each subexpression in the regexp above matches a substring in the target string:
| Subexpression in Regexp | Matching Substring in Target String |
|---------------------------|-------------------------------------|
| First '[csh]' | Character 'c' |
| '(..)' | First substring 'at' |
| First space ' ' | First space character ' ' |
| Second '[csh]' | Character 's' |
| '\1' (backreference 'at') | Second substring 'at' |
| ' in' | Substring ' in' |
A regexp may contain any number of groups:
-
For a large number of groups:
-
The ordinary
\n
notation applies only for n in range (1..9). -
The
MatchData[n]
notation applies for any non-negative n.
-
-
\0
is a special backreference, referring to the entire matched string; it may not be used within the regexp itself, but may be used outside it (for example, in a substitution method call):'The cat sat in the hat'.gsub(/[csh]at/, '\0s') # => "The cats sats in the hats"
Named Captures
As seen above, a capture can be referred to by its number. A capture can also have a name, prefixed as ?<name>
or ?'name'
, and the name (symbolized) may be used as an index in MatchData[]
:
md = /\$(?<dollars>\d)\.(?'cents'\d)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3" cents:"67">
md[:dollars] # => "3"
md[:cents] # => "67"
# The capture numbers are still valid.
md[2] # => "67"
When a regexp contains a named capture, there are no unnamed captures:
/\$(?<dollars>\d)\.(\d)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3">
A named group may be backreferenced as \k<name>
:
/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
# => #<MatchData "ototo" vowel:"o">
When (and only when) a regexp contains named capture groups and appears before the #=~ operator, the captured substrings are assigned to local variables with corresponding names:
/\$(?<dollars>\d)\.(?<cents>\d)/ =~ '$3.67'
dollars # => "3"
cents # => "67"
Method #named_captures returns a hash of the capture names and substrings; method #names returns an array of the capture names.
Atomic Grouping
A group may be made atomic with (?>
subexpression)
.
This causes the subexpression to be matched independently of the rest of the expression, so that the matched substring becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited.
In this way subexpression is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns to prevent needless backtracking .
Example (without atomic grouping):
/".*"/.match('"Quote"') # => #<MatchData "\"Quote\"">
Analysis:
-
The leading subexpression
"
in the pattern matches the first character"
in the target string. -
The next subexpression
.*
matches the next substringQuote“
(including the trailing double-quote). -
Now there is nothing left in the target string to match the trailing subexpression
"
in the pattern; this would cause the overall match to fail. -
The matched substring is backtracked by one position:
Quote
. -
The final subexpression
"
now matches the final substring"
, and the overall match succeeds.
If subexpression .*
is grouped atomically, the backtracking is disabled, and the overall match fails:
/"(?>.*)"/.match('"Quote"') # => nil
Atomic grouping can affect performance; see Atomic Group.
Subexpression Calls
As seen above, a backreference number (\n
) or name (\k<name>
) gives access to a captured substring; the corresponding regexp subexpression may also be accessed, via the number (\gn
) or name (\g<name>
):
/\A(?<paren>\(\g<paren>*\))*\z/.match('(())')
# ^1
# ^2
# ^3
# ^4
# ^5
# ^6
# ^7
# ^8
# ^9
# ^10
The pattern:
-
Matches at the beginning of the string, i.e. before the first character.
-
Enters a named group
paren
. -
Matches the first character in the string,
'('
. -
Calls the
paren
group again, i.e. recurses back to the second step. -
Re-enters the
paren
group. -
Matches the second character in the string,
'('
. -
Attempts to call
paren
a third time, but fails because doing so would prevent an overall successful match. -
Matches the third character in the string,
')'
; marks the end of the second recursive call -
Matches the fourth character in the string,
')'
. -
Matches the end of the string.
See Subexpression calls.
Conditionals
The conditional construct takes the form (?(cond)yes|no)
, where:
-
cond may be a capture number or name.
-
The match to be applied is yes if cond is captured; otherwise the match to be applied is no.
-
If not needed,
|no
may be omitted.
Examples:
re = /\A(foo)?(?(1)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" 1:"foo" 2:"T" 3:nil>
re.match('F') # => #<MatchData "F" 1:nil 2:nil 3:"F">
re.match('fooF') # => nil
re.match('T') # => nil
re = /\A(?<xyzzy>foo)?(?(<xyzzy>)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" xyzzy:"foo">
re.match('F') # => #<MatchData "F" xyzzy:nil>
re.match('fooF') # => nil
re.match('T') # => nil
Absence Operator
The absence operator is a special group that matches anything which does not match the contained subexpressions.
/(?~real)/.match('surrealist') # => #<MatchData "surrea">
/(?~real)ist/.match('surrealist') # => #<MatchData "ealist">
/sur(?~real)ist/.match('surrealist') # => nil
Unicode
Unicode Properties
The /\p{property_name}/
construct (with lowercase p
) matches characters using a Unicode property name, much like a character class; property Alpha
specifies alphabetic characters:
/\p{Alpha}/.match('a') # => #<MatchData "a">
/\p{Alpha}/.match('1') # => nil
A property can be inverted by prefixing the name with a caret character (^
):
/\p{^Alpha}/.match('1') # => #<MatchData "1">
/\p{^Alpha}/.match('a') # => nil
Or by using \P
(uppercase P
):
/\P{Alpha}/.match('1') # => #<MatchData "1">
/\P{Alpha}/.match('a') # => nil
See Unicode Properties for regexps based on the numerous properties.
Some commonly-used properties correspond to POSIX bracket expressions:
-
/\p{Alnum}/
: Alphabetic and numeric character -
/\p{Alpha}/
: Alphabetic character -
/\p{Blank}/
: Space or tab -
/\p{Cntrl}/
: Control character -
/\p{Digit}/
: Digit characters, and similar) -
/\p{Lower}/
: Lowercase alphabetical character -
/\p{Print}/
: Like\p{Graph}
, but includes the space character -
/\p{Punct}/
: Punctuation character -
/\p{Space}/
: Whitespace character ([:blank:]
, newline, carriage return, etc.) -
/\p{Upper}/
: Uppercase alphabetical -
/\p{XDigit}/
: Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)
These are also commonly used:
-
/\p{Emoji}/
: Unicode emoji. -
/\p{Graph}/
: Characters excluding/\p{Cntrl}/
and/\p{Space}/
. Note that invisible characters under the Unicode “Format” category are included. -
/\p{Word}/
: A member in one of these Unicode character categories (see below) or having one of these Unicode properties:-
Unicode categories:
-
Mark
(M
). -
Decimal Number
(Nd
) -
Connector Punctuation
(Pc
).
-
-
Unicode properties:
-
Alpha
-
Join_Control
-
-
-
/\p{ASCII}/
: A character in the ASCII character set. -
/\p{Any}/
: Any Unicode character (including unassigned characters). -
/\p{Assigned}/
: An assigned character.
Unicode Character Categories
A Unicode character category name:
-
May be either its full name or its abbreviated name.
-
Is case-insensitive.
-
Treats a space, a hyphen, and an underscore as equivalent.
Examples:
/\p{lu}/ # => /\p{lu}/
/\p{LU}/ # => /\p{LU}/
/\p{Uppercase Letter}/ # => /\p{Uppercase Letter}/
/\p{Uppercase_Letter}/ # => /\p{Uppercase_Letter}/
/\p{UPPERCASE-LETTER}/ # => /\p{UPPERCASE-LETTER}/
Below are the Unicode character category abbreviations and names. Enumerations of characters in each category are at the links.
Letters:
-
L
,Letter
:LC
,Lm
, orLo
. -
LC
,Cased_Letter
:Ll
,Lt
, orLu
.
Marks:
-
M
,Mark
:Mc
,Me
, orMn
.
Numbers:
-
N
,Number
:Nd
,Nl
, orNo
.
Punctuation:
-
P
,Punctuation
:Pc
,Pd
,Pe
,Pf
,Pi
,Po
, orPs
. -
S
,::Symbol
:Sc
,Sk
,Sm
, orSo
. -
Z
,Separator
:Zl
,Zp
, orZs
. -
C
,Other
:Cc
,Cf
,Cn
,Co
, orCs
.
Unicode Scripts and Blocks
Among the Unicode properties are:
POSIX Bracket Expressions
A POSIX bracket expression is also similar to a character class. These expressions provide a portable alternative to the above, with the added benefit of encompassing non-ASCII characters:
-
/\d/
matches only ASCII decimal digits0
through9
. -
/[[:digit:]]/
matches any character in the UnicodeDecimal Number
(Nd
) category; see below.
The POSIX bracket expressions:
-
/[[:digit:]]/
: Matches a Unicode digit:/[[:digit:]]/.match('9') # => #<MatchData "9"> /[[:digit:]]/.match("\u1fbf9") # => #<MatchData "9">
-
/[[:xdigit:]]/
: Matches a digit allowed in a hexadecimal number; equivalent to[0-9a-fA-F]
. -
/[[:upper:]]/
: Matches a Unicode uppercase letter:/[[:upper:]]/.match('A') # => #<MatchData "A"> /[[:upper:]]/.match("\u00c6") # => #<MatchData "Æ">
-
/[[:lower:]]/
: Matches a Unicode lowercase letter:/[[:lower:]]/.match('a') # => #<MatchData "a"> /[[:lower:]]/.match("\u01fd") # => #<MatchData "ǽ">
-
/[[:alpha:]]/
: Matches/[[:upper:]]/
or/[[:lower:]]/
. -
/[[:alnum:]]/
: Matches/[[:alpha:]]/
or/[[:digit:]]/
. -
/[[:space:]]/
: Matches Unicode space character:/[[:space:]]/.match(' ') # => #<MatchData " "> /[[:space:]]/.match("\u2005") # => #<MatchData " ">
-
/[[:blank:]]/
: Matches/[[:space:]]/
or tab character:/[[:blank:]]/.match(' ') # => #<MatchData " "> /[[:blank:]]/.match("\u2005") # => #<MatchData " "> /[[:blank:]]/.match("\t") # => #<MatchData "\t">
-
/[[:cntrl:]]/
: Matches Unicode control character:/[[:cntrl:]]/.match("\u0000") # => #<MatchData "\u0000"> /[[:cntrl:]]/.match("\u009f") # => #<MatchData "\u009F">
-
/[[:graph:]]/
: Matches any character except/[[:space:]]/
or/[[:cntrl:]]/
. -
/[[:print:]]/
: Matches/[[:graph:]]/
or space character. -
/[[:punct:]]/
: Matches any (Unicode punctuation character}[www.compart.com/en/unicode/category/Po]:
::Ruby
also supports these (non-POSIX) bracket expressions:
-
/[[:ascii:]]/
: Matches a character in the ASCII character set. -
/[[:word:]]/
: Matches a character in one of these Unicode character categories or having one of these Unicode properties:-
Unicode categories:
-
Mark
(M
). -
Decimal Number
(Nd
) -
Connector Punctuation
(Pc
).
-
-
Unicode properties:
-
Alpha
-
Join_Control
-
-
Comments
A comment may be included in a regexp pattern using the (?#
comment)
construct, where comment is a substring that is to be ignored. arbitrary text ignored by the regexp engine:
/foo(?#Ignore me)bar/.match('foobar') # => #<MatchData "foobar">
The comment may not include an unescaped terminator character.
See also Extended Mode
.
Modes
Each of these modifiers sets a mode for the regexp:
-
i
:/pattern/i
setsCase-Insensitive Mode
. -
m
:/pattern/m
setsMultiline Mode
. -
x
:/pattern/x
setsExtended Mode
. -
o
:/pattern/o
setsInterpolation Mode
.
Any, all, or none of these may be applied.
Modifiers i
, m
, and x
may be applied to subexpressions:
-
(?modifier)
turns the mode “on” for ensuing subexpressions -
(?-modifier)
turns the mode “off” for ensuing subexpressions -
(?modifier:subexp)
turns the mode “on” for subexp within the group -
(?-modifier:subexp)
turns the mode “off” for subexp within the group
Example:
re = /(?i)te(?-i)st/
re.match('test') # => #<MatchData "test">
re.match('TEst') # => #<MatchData "TEst">
re.match('TEST') # => nil
re.match('teST') # => nil
re = /t(?i:e)st/
re.match('test') # => #<MatchData "test">
re.match('tEst') # => #<MatchData "tEst">
re.match('tEST') # => nil
Method #options returns an integer whose value showing the settings for case-insensitivity mode, multiline mode, and extended mode.
Case-Insensitive Mode
By default, a regexp is case-sensitive:
/foo/.match('FOO') # => nil
Modifier i
enables case-insensitive mode:
/foo/i.match('FOO')
# => #<MatchData "FOO">
Method #casefold? returns whether the mode is case-insensitive.
Multiline Mode
The multiline-mode in ::Ruby
is what is commonly called a “dot-all mode”:
-
Without the
m
modifier, the subexpression.
does not match newlines:/a.c/.match("a\nc") # => nil
-
With the modifier, it does match:
/a.c/m.match("a\nc") # => #<MatchData "a\nc">
Unlike other languages, the modifier m
does not affect the anchors ^
and $
. These anchors always match at line-boundaries in ::Ruby
.
Extended Mode
Modifier x
enables extended mode, which means that:
-
Literal white space in the pattern is to be ignored.
-
Character
#
marks the remainder of its containing line as a comment, which is also to be ignored for matching purposes.
In extended mode, whitespace and comments may be used to form a self-documented regexp.
Regexp
not in extended mode (matches some Roman numerals):
pattern = '^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'
re = /#{pattern}/
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">
Regexp
in extended mode:
pattern = <<-EOT
^ # beginning of string
M{0,3} # thousands - 0 to 3 Ms
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs),
# or 500-800 (D, followed by 0 to 3 Cs)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs),
# or 50-80 (L, followed by 0 to 3 Xs)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is),
# or 5-8 (V, followed by 0 to 3 Is)
$ # end of string
EOT
re = /#{pattern}/x
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">
Interpolation Mode
Modifier o
means that the first time a literal regexp with interpolations is encountered, the generated Regexp
object is saved and used for all future evaluations of that literal regexp. Without modifier o
, the generated Regexp
is not saved, so each evaluation of the literal regexp generates a new Regexp
object.
Without modifier o
:
def letters; sleep 5; /[A-Z][a-z]/; end
words = %w[abc def xyz]
start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/) }
Time.now - start # => 15.0174892
With modifier o
:
start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/o) }
Time.now - start # => 5.0010866
Note that if the literal regexp does not have interpolations, the o
behavior is the default.
Encodings
By default, a regexp with only US-ASCII characters has US-ASCII encoding:
re = /foo/
re.source.encoding # => #<Encoding:US-ASCII>
re.encoding # => #<Encoding:US-ASCII>
A regular expression containing non-US-ASCII characters is assumed to use the source encoding. This can be overridden with one of the following modifiers.
-
/pat/n
: US-ASCII if only containing US-ASCII characters, otherwise ASCII-8BIT:/foo/n.encoding # => #<Encoding:US-ASCII> /foo\xff/n.encoding # => #<Encoding:ASCII-8BIT> /foo\x7f/n.encoding # => #<Encoding:US-ASCII>
-
/pat/u
: UTF-8/foo/u.encoding # => #<Encoding:UTF-8>
-
/pat/e
: EUC-JP/foo/e.encoding # => #<Encoding:EUC-JP>
-
/pat/s
: Windows-31J/foo/s.encoding # => #<Encoding:Windows-31J>
A regexp can be matched against a target string when either:
-
They have the same encoding.
-
The regexp’s encoding is a fixed encoding and the string contains only ASCII characters. Method Regexp#fixed_encoding? returns whether the regexp has a fixed encoding.
If a match between incompatible encodings is attempted an ::Encoding::CompatibilityError
exception is raised.
Example:
re = eval("# encoding: ISO-8859-1\n/foo\\xff?/")
re.encoding # => #<Encoding:ISO-8859-1>
re =~ "foo".encode("UTF-8") # => 0
re =~ "foo\u0100" # Raises Encoding::CompatibilityError
The encoding may be explicitly fixed by including FIXEDENCODING in the second argument for .new:
# Regexp with encoding ISO-8859-1.
re = Regexp.new("a".force_encoding('iso-8859-1'), Regexp::FIXEDENCODING)
re.encoding # => #<Encoding:ISO-8859-1>
# Target string with encoding UTF-8.
s = "a\u3042"
s.encoding # => #<Encoding:UTF-8>
re.match(s) # Raises Encoding::CompatibilityError.
Timeouts
When either a regexp source or a target string comes from untrusted input, malicious values could become a denial-of-service attack; to prevent such an attack, it is wise to set a timeout.
Regexp has two timeout values:
-
A class default timeout, used for a regexp whose instance timeout is
nil
; this default is initiallynil
, and may be set by method Regexp.timeout=:Regexp.timeout # => nil Regexp.timeout = 3.0 Regexp.timeout # => 3.0
-
An instance timeout, which defaults to
nil
and may be set in .new:re = Regexp.new('foo', timeout: 5.0) re.timeout # => 5.0
When regexp.timeout is nil
, the timeout “falls through” to Regexp.timeout;
when regexp.timeout is non-nil
, that value controls timing out:
| regexp.timeout Value | Regexp.timeout Value | Result |
|----------------------|----------------------|-----------------------------|
| nil | nil | Never times out. |
| nil | Float | Times out in Float seconds. |
| Float | Any | Times out in Float seconds. |
Optimization
For certain values of the pattern and target string, matching time can grow polynomially or exponentially in relation to the input size; the potential vulnerability arising from this is the regular expression denial-of-service (ReDoS) attack.
Regexp matching can apply an optimization to prevent ReDoS attacks. When the optimization is applied, matching time increases linearly (not polynomially or exponentially) in relation to the input size, and a ReDoS attach is not possible.
This optimization is applied if the pattern meets these criteria:
-
No backreferences.
-
No subexpression calls.
-
No nested lookaround anchors or atomic groups.
-
No nested quantifiers with counting (i.e. no nested
{n}
,{min,}
,{,max}
, or{min,max}
style quantifiers)
You can use method .linear_time? to determine whether a pattern meets these criteria:
Regexp.linear_time?(/a*/) # => true
Regexp.linear_time?('a*') # => true
Regexp.linear_time?(/(a*)\1/) # => false
However, an untrusted source may not be safe even if the method returns true
, because the optimization uses memoization (which may invoke large memory consumption).
References
Read (online PDF books):
-
Mastering Regular Expressions by Jeffrey E.F. Friedl.
-
Regular Expressions Cookbook by Jan Goyvaerts & Steven Levithan.
Explore, test (interactive online editor):
Constant Summary
-
EXTENDED =
# File 're.c', line 4838
INT2FIX(ONIG_OPTION_EXTEND)
-
FIXEDENCODING =
# File 're.c', line 4842
INT2FIX(ARG_ENCODING_FIXED)
-
IGNORECASE =
# File 're.c', line 4836
INT2FIX(ONIG_OPTION_IGNORECASE)
-
MULTILINE =
# File 're.c', line 4840
INT2FIX(ONIG_OPTION_MULTILINE)
-
NOENCODING =
# File 're.c', line 4844
INT2FIX(ARG_ENCODING_NONE)
Class Attribute Summary
-
.timeout ⇒ Float?
rw
It returns the current default timeout interval for
Regexp
matching in second. -
.timeout=(float or nil)
rw
It sets the default timeout interval for
Regexp
matching in second.
Class Method Summary
-
.compile
Alias for .new
-
.escape(string) ⇒ String
Alias for .quote.
-
.last_match ⇒ MatchData?
With no argument, returns the value of
$~
, which is the result of the most recent pattern match (see
):Regexp
global variables -
.linear_time?(re)
Returns
true
if matching againstre
can be done in linear time to the input string. -
.new(string, options = 0, timeout: nil) ⇒ Regexp
constructor
With argument
string
given, returns a new regexp with the given string and options: -
.escape(string) ⇒ String
(also: .escape)
Returns a new string that escapes any characters that have special meaning in a regular expression:
-
.try_convert(object) ⇒ Regexp?
Returns
object
if it is a regexp: -
.union(*patterns) ⇒ Regexp
Returns a new regexp that is the union of the given patterns:
Instance Attribute Summary
-
#casefold?
readonly
Returns
true
if the case-insensitivity flag inself
is set,false
otherwise: -
#fixed_encoding? ⇒ Boolean
readonly
Returns
false
ifself
is applicable to a string with any ASCII-compatible encoding; otherwise returnstrue
:
Instance Method Summary
-
#==(object) ⇒ Boolean
(also: #eql?)
Returns
true
ifobject
is another Regexp whose pattern, flags, and encoding are the same asself
,false
otherwise: -
#===(string) ⇒ Boolean
Returns
true
ifself
finds a match instring
: -
#=~(string) ⇒ Integer?
Returns the integer index (in characters) of the first match for
self
andstring
, ornil
if none; also sets theRegexp global variables
: -
#encoding ⇒ Encoding
Returns the
::Encoding
object that represents the encoding of obj. -
#eql?(object) ⇒ Boolean
Alias for #==.
-
#hash ⇒ Integer
Returns the integer hash value for
self
. -
#inspect ⇒ String
Returns a nicely-formatted string representation of
self
: -
#match(string, offset = 0) ⇒ MatchData?
With no block given, returns the
::MatchData
object that describes the match, if any, ornil
if none; the search begins at the given characteroffset
instring
: -
#match?(string) ⇒ Boolean
Returns
true
orfalse
to indicate whether the regexp is matched or not without updating $~ and other related variables. -
#named_captures ⇒ Hash
Returns a hash representing named captures of
self
(seeNamed Captures
): -
#names ⇒ array_of_names
Returns an array of names of captures (see
Named Captures
): -
#options ⇒ Integer
Returns an integer whose bits show the options set in
self
. -
#source ⇒ String
Returns the original string of
self
: -
#timeout ⇒ Float?
It returns the timeout interval for
Regexp
matching in second. -
#to_s ⇒ String
Returns a string showing the options and string of
self
: -
#~(rxp) ⇒ Integer?
Equivalent to
rxp =~ $_
: - #initialize_copy(re) Internal use only
Constructor Details
.new(string, options = 0, timeout: nil) ⇒ Regexp
.new(regexp, timeout: nil) ⇒ Regexp
Regexp
.new(regexp, timeout: nil) ⇒ Regexp
With argument string
given, returns a new regexp with the given string and options:
r = Regexp.new('foo') # => /foo/
r.source # => "foo"
r. # => 0
Optional argument #options is one of the following:
-
A String of options:
Regexp.new('foo', 'i') # => /foo/i Regexp.new('foo', 'im') # => /foo/im
-
The bit-wise OR of one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, Regexp::MULTILINE, and Regexp::NOENCODING:
Regexp.new('foo', Regexp::IGNORECASE) # => /foo/i Regexp.new('foo', Regexp::EXTENDED) # => /foo/x Regexp.new('foo', Regexp::MULTILINE) # => /foo/m Regexp.new('foo', Regexp::NOENCODING) # => /foo/n flags = Regexp::IGNORECASE | Regexp::EXTENDED | Regexp::MULTILINE Regexp.new('foo', flags) # => /foo/mix
-
nil
orfalse
, which is ignored. -
Any other truthy value, in which case the regexp will be case-insensitive.
If optional keyword argument .timeout is given, its float value overrides the timeout interval for the class, .timeout. If nil
is passed as +timeout, it uses the timeout interval for the class, .timeout.
With argument regexp
given, returns a new regexp. The source, options, timeout are the same as regexp
. #options and n_flag
arguments are ineffective. The timeout can be overridden by .timeout keyword.
= Regexp::MULTILINE
r = Regexp.new('foo', , timeout: 1.1) # => /foo/m
r2 = Regexp.new(r) # => /foo/m
r2.timeout # => 1.1
r3 = Regexp.new(r, timeout: 3.14) # => /foo/m
r3.timeout # => 3.14
# File 're.c', line 4004
static VALUE rb_reg_initialize_m(int argc, VALUE *argv, VALUE self) { struct reg_init_args args; VALUE re = reg_extract_args(argc, argv, &args); if (NIL_P(re)) { reg_init_args(self, args.str, args.enc, args.flags); } else { reg_copy(self, re); } set_timeout(&RREGEXP_PTR(self)->timelimit, args.timeout); return self; }
Class Attribute Details
.timeout ⇒ Float? (rw)
It returns the current default timeout interval for Regexp
matching in second. nil
means no default timeout configuration.
# File 're.c', line 4704
static VALUE rb_reg_s_timeout_get(VALUE dummy) { double d = hrtime2double(rb_reg_match_time_limit); if (d == 0.0) return Qnil; return DBL2NUM(d); }
.timeout=(float or nil) (rw)
It sets the default timeout interval for Regexp
matching in second. nil
means no default timeout configuration. This configuration is process-global. If you want to set timeout for each Regexp
, use .timeout keyword for .new.
Regexp.timeout = 1
/^a*b?a*$/ =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
# File 're.c', line 4725
static VALUE rb_reg_s_timeout_set(VALUE dummy, VALUE timeout) { rb_ractor_ensure_main_ractor("can not access Regexp.timeout from non-main Ractors"); set_timeout(&rb_reg_match_time_limit, timeout); return timeout; }
Class Method Details
.compile
Alias for .new
Alias for .quote.
With no argument, returns the value of $~
, which is the result of the most recent pattern match (see
):Regexp
global variables
/c(.)t/ =~ 'cat' # => 0
Regexp.last_match # => #<MatchData "cat" 1:"a">
/a/ =~ 'foo' # => nil
Regexp.last_match # => nil
With non-negative integer argument n
, returns the _n_th field in the matchdata, if any, or nil if none:
/c(.)t/ =~ 'cat' # => 0
Regexp.last_match(0) # => "cat"
Regexp.last_match(1) # => "a"
Regexp.last_match(2) # => nil
With negative integer argument n
, counts backwards from the last field:
Regexp.last_match(-1) # => "a"
With string or symbol argument name
, returns the string value for the named capture, if any:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ 'var = val'
Regexp.last_match # => #<MatchData "var = val" lhs:"var"rhs:"val">
Regexp.last_match(:lhs) # => "var"
Regexp.last_match('rhs') # => "val"
Regexp.last_match('foo') # Raises IndexError.
# File 're.c', line 4642
static VALUE rb_reg_s_last_match(int argc, VALUE *argv, VALUE _) { if (rb_check_arity(argc, 0, 1) == 1) { VALUE match = rb_backref_get(); int n; if (NIL_P(match)) return Qnil; n = match_backref_number(match, argv[0]); return rb_reg_nth_match(n, match); } return match_getter(); }
.linear_time?(re)
.linear_time?(string, options = 0)
Returns true
if matching against re
can be done in linear time to the input string.
Regexp.linear_time?(/re/) # => true
Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.
# File 're.c', line 4419
static VALUE rb_reg_s_linear_time_p(int argc, VALUE *argv, VALUE self) { struct reg_init_args args; VALUE re = reg_extract_args(argc, argv, &args); if (NIL_P(re)) { re = reg_init_args(rb_reg_alloc(), args.str, args.enc, args.flags); } return RBOOL(onig_check_linear_time(RREGEXP_PTR(re))); }
.escape(string) ⇒ String Also known as: .escape
Returns a new string that escapes any characters that have special meaning in a regular expression:
s = Regexp.escape('\*?{}.') # => "\\\\\\*\\?\\{\\}\\."
For any string s
, this call returns a ::MatchData
object:
r = Regexp.new(Regexp.escape(s)) # => /\\\\\\\*\\\?\\\{\\\}\\\./
r.match(s) # => #<MatchData "\\\\\\*\\?\\{\\}\\.">
# File 're.c', line 4191
static VALUE rb_reg_s_quote(VALUE c, VALUE str) { return rb_reg_quote(reg_operand(str, TRUE)); }
.try_convert(object) ⇒ Regexp
?
Returns object
if it is a regexp:
Regexp.try_convert(/re/) # => /re/
Otherwise if object
responds to :to_regexp
, calls object.to_regexp
and returns the result.
Returns nil
if object
does not respond to :to_regexp
.
Regexp.try_convert('re') # => nil
Raises an exception unless object.to_regexp
returns a regexp.
# File 're.c', line 4233
static VALUE rb_reg_s_try_convert(VALUE dummy, VALUE re) { return rb_check_regexp_type(re); }
.union(*patterns) ⇒ Regexp
.union(array_of_patterns) ⇒ Regexp
Regexp
.union(array_of_patterns) ⇒ Regexp
Returns a new regexp that is the union of the given patterns:
r = Regexp.union(%w[cat dog]) # => /cat|dog/
r.match('cat') # => #<MatchData "cat">
r.match('dog') # => #<MatchData "dog">
r.match('cog') # => nil
For each pattern that is a string, Regexp.new(pattern)
is used:
Regexp.union('penzance') # => /penzance/
Regexp.union('a+b*c') # => /a\+b\*c/
Regexp.union('skiing', 'sledding') # => /skiing|sledding/
Regexp.union(['skiing', 'sledding']) # => /skiing|sledding/
For each pattern that is a regexp, it is used as is, including its flags:
Regexp.union(/foo/i, /bar/m, /baz/x)
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
Regexp.union([/foo/i, /bar/m, /baz/x])
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
With no arguments, returns /(?!)/
:
Regexp.union # => /(?!)/
If any regexp pattern contains captures, the behavior is unspecified.
# File 're.c', line 4387
static VALUE rb_reg_s_union_m(VALUE self, VALUE args) { VALUE v; if (RARRAY_LEN(args) == 1 && !NIL_P(v = rb_check_array_type(rb_ary_entry(args, 0)))) { return rb_reg_s_union(self, v); } return rb_reg_s_union(self, args); }
Instance Attribute Details
#casefold? (readonly)
Returns true
if the case-insensitivity flag in self
is set, false
otherwise:
/a/.casefold? # => false
/a/i.casefold? # => true
/(?i:a)/.casefold? # => false
# File 're.c', line 744
static VALUE rb_reg_casefold_p(VALUE re) { rb_reg_check(re); return RBOOL(RREGEXP_PTR(re)->options & ONIG_OPTION_IGNORECASE); }
#fixed_encoding? ⇒ Boolean
(readonly)
Returns false
if self
is applicable to a string with any ASCII-compatible encoding; otherwise returns true
:
r = /a/ # => /a/
r.fixed_encoding? # => false
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2 a".force_encoding("euc-jp")) # => true
r.match?("abc".force_encoding("euc-jp")) # => true
r = /a/u # => /a/
r.fixed_encoding? # => true
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception.
r.match?("abc".force_encoding("euc-jp")) # => true
r = /\u{6666}/ # => /\u{6666}/
r.fixed_encoding? # => true
r.encoding # => #<Encoding:UTF-8>
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception.
r.match?("abc".force_encoding("euc-jp")) # => false
# File 're.c', line 1564
static VALUE rb_reg_fixed_encoding_p(VALUE re) { return RBOOL(FL_TEST(re, KCODE_FIXED)); }
Instance Method Details
#==(object) ⇒ Boolean
Also known as: #eql?
# File 're.c', line 3533
VALUE rb_reg_equal(VALUE re1, VALUE re2) { if (re1 == re2) return Qtrue; if (!RB_TYPE_P(re2, T_REGEXP)) return Qfalse; rb_reg_check(re1); rb_reg_check(re2); if (FL_TEST(re1, KCODE_FIXED) != FL_TEST(re2, KCODE_FIXED)) return Qfalse; if (RREGEXP_PTR(re1)->options != RREGEXP_PTR(re2)->options) return Qfalse; if (RREGEXP_SRC_LEN(re1) != RREGEXP_SRC_LEN(re2)) return Qfalse; if (ENCODING_GET(re1) != ENCODING_GET(re2)) return Qfalse; return RBOOL(memcmp(RREGEXP_SRC_PTR(re1), RREGEXP_SRC_PTR(re2), RREGEXP_SRC_LEN(re1)) == 0); }
#===(string) ⇒ Boolean
Returns true
if self
finds a match in string
:
/^[a-z]*$/ === 'HELLO' # => false
/^[A-Z]*$/ === 'HELLO' # => true
This method is called in case statements:
s = 'HELLO'
case s
when /\A[a-z]*\z/; print "Lower case\n"
when /\A[A-Z]*\z/; print "Upper case\n"
else print "Mixed case\n"
end # => "Upper case"
# File 're.c', line 3723
static VALUE rb_reg_eqq(VALUE re, VALUE str) { long start; str = reg_operand(str, FALSE); if (NIL_P(str)) { rb_backref_set(Qnil); return Qfalse; } start = rb_reg_search(re, str, 0, 0); return RBOOL(start >= 0); }
#=~(string) ⇒ Integer?
Returns the integer index (in characters) of the first match for self
and string
, or nil
if none; also sets the Regexp global variables
:
/at/ =~ 'input data' # => 7
$~ # => #<MatchData "at">
/ax/ =~ 'input data' # => nil
$~ # => nil
Assigns named captures to local variables of the same names if and only if self
:
-
Is a regexp literal; see
Regexp Literals
. -
Does not contain interpolations; see
Regexp interpolation
. -
Is at the left of the expression.
Example:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ ' x = y '
p lhs # => "x"
p rhs # => "y"
Assigns nil
if not matched:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ ' x = '
p lhs # => nil
p rhs # => nil
Does not make local variable assignments if self
is not a regexp literal:
r = /(?<foo>\w)\s*=\s*(?<foo>\w)/
r =~ ' x = y '
p foo # Undefined local variable
p # Undefined local variable
The assignment does not occur if the regexp is not at the left:
' x = y ' =~ /(?<foo>\w)\s*=\s*(?<foo>\w)/
p foo, foo # Undefined local variables
A regexp interpolation, #{}
, also disables the assignment:
r = /(?<foo>\w+)/
/(?<foo>\w+)\s*=\s*#{r}/ =~ 'x = y'
p foo # Undefined local variable
# File 're.c', line 3694
VALUE rb_reg_match(VALUE re, VALUE str) { long pos = reg_match_pos(re, &str, 0, NULL); if (pos < 0) return Qnil; pos = rb_str_sublen(str, pos); return LONG2FIX(pos); }
#encoding ⇒ Encoding
Returns the ::Encoding
object that represents the encoding of obj.
# File 'encoding.c', line 1162
VALUE rb_obj_encoding(VALUE obj) { int idx = rb_enc_get_index(obj); if (idx < 0) { rb_raise(rb_eTypeError, "unknown encoding"); } return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK); }
#==(object) ⇒ Boolean
#eql?(object) ⇒ Boolean
Boolean
#eql?(object) ⇒ Boolean
Alias for #==.
#hash ⇒ Integer
Returns the integer hash value for self
.
Related: Object#hash.
# File 're.c', line 3500
VALUE rb_reg_hash(VALUE re) { st_index_t hashval = reg_hash(re); return ST2FIX(hashval); }
#initialize_copy(re)
# File 're.c', line 4433
static VALUE rb_reg_init_copy(VALUE copy, VALUE re) { if (!OBJ_INIT_COPY(copy, re)) return copy; rb_reg_check(re); return reg_copy(copy, re); }
#inspect ⇒ String
Returns a nicely-formatted string representation of self
:
/ab+c/ix.inspect # => "/ab+c/ix"
Related: #to_s.
# File 're.c', line 526
static VALUE rb_reg_inspect(VALUE re) { if (!RREGEXP_PTR(re) || !RREGEXP_SRC(re) || !RREGEXP_SRC_PTR(re)) { return rb_any_to_s(re); } return rb_reg_desc(re); }
With no block given, returns the ::MatchData
object that describes the match, if any, or nil
if none; the search begins at the given character offset
in string
:
/abra/.match('abracadabra') # => #<MatchData "abra">
/abra/.match('abracadabra', 4) # => #<MatchData "abra">
/abra/.match('abracadabra', 8) # => nil
/abra/.match('abracadabra', 800) # => nil
string = "\u{5d0 5d1 5e8 5d0}cadabra"
/abra/.match(string, 7) #=> #<MatchData "abra">
/abra/.match(string, 8) #=> nil
/abra/.match(string.b, 8) #=> #<MatchData "abra">
With a block given, calls the block if and only if a match is found; returns the block’s value:
/abra/.match('abracadabra') {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 4) {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 8) {|matchdata| p matchdata }
# => nil
/abra/.match('abracadabra', 8) {|marchdata| fail 'Cannot happen' }
# => nil
Output (from the first two blocks above):
#<MatchData "abra">
#<MatchData "abra">
/(.)(.)(.)/.match("abc")[2] # => "b"
/(.)(.)/.match("abc", 1)[2] # => "c"
# File 're.c', line 3810
static VALUE rb_reg_match_m(int argc, VALUE *argv, VALUE re) { VALUE result = Qnil, str, initpos; long pos; if (rb_scan_args(argc, argv, "11", &str, &initpos) == 2) { pos = NUM2LONG(initpos); } else { pos = 0; } pos = reg_match_pos(re, &str, pos, &result); if (pos < 0) { rb_backref_set(Qnil); return Qnil; } rb_match_busy(result); if (!NIL_P(result) && rb_block_given_p()) { return rb_yield(result); } return result; }
#match?(string) ⇒ Boolean
#match?(string, offset = 0) ⇒ Boolean
Boolean
#match?(string, offset = 0) ⇒ Boolean
Returns true
or false
to indicate whether the regexp is matched or not without updating $~ and other related variables. If the second parameter is present, it specifies the position in the string to begin the search.
/R.../.match?("Ruby") # => true
/R.../.match?("Ruby", 1) # => false
/P.../.match?("Ruby") # => false
$& # => nil
# File 're.c', line 3851
static VALUE rb_reg_match_m_p(int argc, VALUE *argv, VALUE re) { long pos = rb_check_arity(argc, 1, 2) > 1 ? NUM2LONG(argv[1]) : 0; return rb_reg_match_p(re, argv[0], pos); }
#named_captures ⇒ Hash
Returns a hash representing named captures of self
(see Named Captures
):
-
Each key is the name of a named capture.
-
Each value is an array of integer indexes for that named capture.
Examples:
/(?<foo>.)(?<bar>.)/.named_captures # => {"foo"=>[1], "bar"=>[2]}
/(?<foo>.)(?<foo>.)/.named_captures # => {"foo"=>[1, 2]}
/(.)(.)/.named_captures # => {}
# File 're.c', line 862
static VALUE rb_reg_named_captures(VALUE re) { regex_t *reg = (rb_reg_check(re), RREGEXP_PTR(re)); VALUE hash = rb_hash_new_with_size(onig_number_of_names(reg)); onig_foreach_name(reg, reg_named_captures_iter, (void*)hash); return hash; }
#names ⇒ array_of_names
Returns an array of names of captures (see Named Captures
):
/(?<foo>.)(?<bar>.)(?<baz>.)/.names # => ["foo", "bar", "baz"]
/(?<foo>.)(?<foo>.)/.names # => ["foo"]
/(.)(.)/.names # => []
# File 're.c', line 818
static VALUE rb_reg_names(VALUE re) { VALUE ary; rb_reg_check(re); ary = rb_ary_new_capa(onig_number_of_names(RREGEXP_PTR(re))); onig_foreach_name(RREGEXP_PTR(re), reg_names_iter, (void*)ary); return ary; }
#options ⇒ Integer
Returns an integer whose bits show the options set in self
.
The option bits are:
Regexp::IGNORECASE # => 1
Regexp::EXTENDED # => 2
Regexp::MULTILINE # => 4
Examples:
/foo/. # => 0
/foo/i. # => 1
/foo/x. # => 2
/foo/m. # => 4
/foo/mix. # => 7
Note that additional bits may be set in the returned integer; these are maintained internally in self
, are ignored if passed to .new, and may be ignored by the caller:
Returns the set of bits corresponding to the options used when creating this regexp (see .new for details). Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to .new:
r = /\xa1\xa2/e # => /\xa1\xa2/
r.source # => "\\xa1\\xa2"
r. # => 16
Regexp.new(r.source, r. ) # => /\xa1\xa2/
# File 're.c', line 789
static VALUE rb_reg_options_m(VALUE re) { int options = rb_reg_options(re); return INT2NUM(options); }
#source ⇒ String
Returns the original string of self
:
/ab+c/ix.source # => "ab+c"
Regexp
escape sequences are retained:
/\x20\+/.source # => "\\x20\\+"
Lexer escape characters are not retained:
/\//.source # => "/"
# File 're.c', line 505
static VALUE rb_reg_source(VALUE re) { VALUE str; rb_reg_check(re); str = rb_str_dup(RREGEXP_SRC(re)); return str; }
#timeout ⇒ Float?
It returns the timeout interval for Regexp
matching in second. nil
means no default timeout configuration.
This configuration is per-object. The global configuration set by .timeout= is ignored if per-object configuration is set.
re = Regexp.new("^a*b?a*$", timeout: 1)
re.timeout #=> 1.0
re =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
# File 're.c', line 4750
static VALUE rb_reg_timeout_get(VALUE re) { rb_reg_check(re); double d = hrtime2double(RREGEXP_PTR(re)->timelimit); if (d == 0.0) return Qnil; return DBL2NUM(d); }
#to_s ⇒ String
Returns a string showing the options and string of self
:
r0 = /ab+c/ix
s0 = r0.to_s # => "(?ix-m:ab+c)"
The returned string may be used as an argument to .new, or as interpolated text for a
:Regexp
interpolation
r1 = Regexp.new(s0) # => /(?ix-m:ab+c)/
r2 = /#{s0}/ # => /(?ix-m:ab+c)/
Note that r1
and r2
are not equal to r0
because their original strings are different:
r0 == r1 # => false
r0.source # => "ab+c"
r1.source # => "(?ix-m:ab+c)"
Related: #inspect.
# File 're.c', line 564
static VALUE rb_reg_to_s(VALUE re) { return rb_reg_str_with_term(re, '/'); }
#~(rxp) ⇒ Integer?
Equivalent to rxp =~ $_
:
$_ = "input data"
~ /at/ # => 7
# File 're.c', line 3749
VALUE rb_reg_match2(VALUE re) { long start; VALUE line = rb_lastline_get(); if (!RB_TYPE_P(line, T_STRING)) { rb_backref_set(Qnil); return Qnil; } start = rb_reg_search(re, line, 0, 0); if (start < 0) { return Qnil; } start = rb_str_sublen(line, start); return LONG2FIX(start); }