123456789_123456789_123456789_123456789_123456789_

Class: Array

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Instance Chain:
self, ::Enumerable
Inherits: Object
Defined in: array.c,
array.rb,
pack.rb

Overview

An Array object is an ordered, integer-indexed collection of objects, called elements; the object represents an ) array data structure.

An element may be any object (even another array); elements may be any mixture of objects of different types.

Important data structures that use arrays include:

There are also array-like data structures:

Array Indexes

Array indexing starts at 0, as in C or Java.

A non-negative index is an offset from the first element:

  • Index 0 indicates the first element.

  • Index 1 indicates the second element.

A negative index is an offset, backwards, from the end of the array:

  • Index -1 indicates the last element.

  • Index -2 indicates the next-to-last element.

In-Range and Out-of-Range Indexes

A non-negative index is in range if and only if it is smaller than the size of the array. For a 3-element array:

  • Indexes 0 through 2 are in range.

  • Index 3 is out of range.

A negative index is in range if and only if its absolute value is not larger than the size of the array. For a 3-element array:

  • Indexes -1 through -3 are in range.

  • Index -4 is out of range.

Effective Index

Although the effective index into an array is always an integer, some methods (both within class Array and elsewhere) accept one or more non-integer arguments that are integer-convertible objects.

Creating Arrays

You can create an Array object explicitly with:

  • An array literal:

    [1, 'one', :one, [2, 'two', :two]]
  • A %w or %W string-array Literal:

    %w[foo bar baz] # => ["foo", "bar", "baz"]
    %w[1 % *]       # => ["1", "%", "*"]
  • A %i or %I symbol-array Literal:

    %i[foo bar baz] # => [:foo, :bar, :baz]
    %i[1 % *]       # => [:"1", :%, :*]
  • Method Kernel.Array:

    Array(["a", "b"])             # => ["a", "b"]
    Array(1..5)                   # => [1, 2, 3, 4, 5]
    Array(key: :value)            # => [[:key, :value]]
    Array(nil)                    # => []
    Array(1)                      # => [1]
    Array({:a => "a", :b => "b"}) # => [[:a, "a"], [:b, "b"]]
  • Method .new:

    Array.new               # => []
    Array.new(3)            # => [nil, nil, nil]
    Array.new(4) {Hash.new} # => [{}, {}, {}, {}]
    Array.new(3, true)      # => [true, true, true]

    Note that the last example above populates the array with references to the same object. This is recommended only in cases where that object is a natively immutable object such as a symbol, a numeric, nil, true, or false.

    Another way to create an array with various objects, using a block; this usage is safe for mutable objects such as hashes, strings or other arrays:

    Array.new(4) {|i| i.to_s } # => ["0", "1", "2", "3"]

    Here is a way to create a multi-dimensional array:

    Array.new(3) {Array.new(3)}
    # => [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

A number of Ruby methods, both in the core and in the standard library, provide instance method #to_a, which converts an object to an array.

Example Usage

In addition to the methods it mixes in through the ::Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the #[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the #at method

arr.at(0) #=> 1

The #slice method works in an identical manner to #[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use #fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods #first and #last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use #take

arr.take(3) #=> [1, 2, 3]

#drop does the opposite of #take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use #length, #count or #size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either #push or #<<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

#unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With #insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the #insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method #pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use #shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use #delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is #compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive #uniq, and destructive method #uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the ::Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s #each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each {|a| print a -= 10, " "}
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is #reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each {|word| str += "#{word} "}
p str #=> "sixth fifth fourth third second first "

The #map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map {|a| 2*a}     #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! {|a| a**2}   #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select {|a| a > 3}       #=> [4, 5, 6]
arr.reject {|a| a < 3}       #=> [3, 4, 5, 6]
arr.drop_while {|a| a < 4}   #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

#select! and #reject! are the corresponding destructive methods to #select and #reject

Similar to #select vs. #reject, #delete_if and #keep_if have the exact opposite result when supplied with the same block:

arr.delete_if {|a| a < 4}   #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if {|a| a < 4}   #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

What’s Here

First, what’s elsewhere. Class Array:

  • Inherits from class Object.

  • Includes module Enumerable, which provides dozens of additional methods.

Here, class Array provides methods that are useful for:

  • {Array@Methods+for+Creating+an+Array Creating an }

  • Querying

  • Comparing

  • Fetching

  • Assigning

  • Deleting

  • Combining

  • Iterating

  • Converting

  • And more.…

Methods for Creating an Array

  • .[]: Returns a new array populated with given objects.

  • .new: Returns a new array.

  • .try_convert: Returns a new array created from a given object.

See also Creating s.

Methods for Querying

  • #all?: Returns whether all elements meet a given criterion.

  • #any?: Returns whether any element meets a given criterion.

  • #count: Returns the count of elements that meet a given criterion.

  • #empty?: Returns whether there are no elements.

  • #find_index (aliased as #index): Returns the index of the first element that meets a given criterion.

  • #hash: Returns the integer hash code.

  • #include?: Returns whether any element #== a given object.

  • #length (aliased as #size): Returns the count of elements.

  • #none?: Returns whether no element #== a given object.

  • #one?: Returns whether exactly one element #== a given object.

  • #rindex: Returns the index of the last element that meets a given criterion.

Methods for Comparing

  • #<=>: Returns -1, 0, or 1, as self is less than, equal to, or greater than a given object.

  • #==: Returns whether each element in self is #== to the corresponding element in a given object.

  • #eql?: Returns whether each element in self is #eql? to the corresponding element in a given object.

Methods for Fetching

These methods do not modify self.

  • #[] (aliased as #slice): Returns consecutive elements as determined by a given argument.

  • #assoc: Returns the first element that is an array whose first element #== a given object.

  • #at: Returns the element at a given offset.

  • #bsearch: Returns an element selected via a binary search as determined by a given block.

  • #bsearch_index: Returns the index of an element selected via a binary search as determined by a given block.

  • #compact: Returns an array containing all non-nil elements.

  • #dig: Returns the object in nested objects that is specified by a given index and additional arguments.

  • #drop: Returns trailing elements as determined by a given index.

  • #drop_while: Returns trailing elements as determined by a given block.

  • #fetch: Returns the element at a given offset.

  • #fetch_values: Returns elements at given offsets.

  • #first: Returns one or more leading elements.

  • #last: Returns one or more trailing elements.

  • #max: Returns one or more maximum-valued elements, as determined by #<=> or a given block.

  • #min: Returns one or more minimum-valued elements, as determined by #<=> or a given block.

  • #minmax: Returns the minimum-valued and maximum-valued elements, as determined by #<=> or a given block.

  • #rassoc: Returns the first element that is an array whose second element #== a given object.

  • #reject: Returns an array containing elements not rejected by a given block.

  • #reverse: Returns all elements in reverse order.

  • #rotate: Returns all elements with some rotated from one end to the other.

  • #sample: Returns one or more random elements.

  • #select (aliased as #filter): Returns an array containing elements selected by a given block.

  • #shuffle: Returns elements in a random order.

  • #sort: Returns all elements in an order determined by #<=> or a given block.

  • #take: Returns leading elements as determined by a given index.

  • #take_while: Returns leading elements as determined by a given block.

  • #uniq: Returns an array containing non-duplicate elements.

  • #values_at: Returns the elements at given offsets.

Methods for Assigning

These methods add, replace, or reorder elements in self.

  • #<<: Appends an element.

  • #[]=: Assigns specified elements with a given object.

  • #concat: Appends all elements from given arrays.

  • #fill: Replaces specified elements with specified objects.

  • #flatten!: Replaces each nested array in self with the elements from that array.

  • #initialize_copy (aliased as #replace): Replaces the content of self with the content of a given array.

  • #insert: Inserts given objects at a given offset; does not replace elements.

  • #push (aliased as #append): Appends elements.

  • #reverse!: Replaces self with its elements reversed.

  • #rotate!: Replaces self with its elements rotated.

  • #shuffle!: Replaces self with its elements in random order.

  • #sort!: Replaces self with its elements sorted, as determined by #<=> or a given block.

  • #sort_by!: Replaces self with its elements sorted, as determined by a given block.

  • #unshift (aliased as #prepend): Prepends leading elements.

Methods for Deleting

Each of these methods removes elements from self:

  • #clear: Removes all elements.

  • #compact!: Removes all nil elements.

  • #delete: Removes elements equal to a given object.

  • #delete_at: Removes the element at a given offset.

  • #delete_if: Removes elements specified by a given block.

  • #keep_if: Removes elements not specified by a given block.

  • #pop: Removes and returns the last element.

  • #reject!: Removes elements specified by a given block.

  • #select! (aliased as #filter!): Removes elements not specified by a given block.

  • #shift: Removes and returns the first element.

  • #slice!: Removes and returns a sequence of elements.

  • #uniq!: Removes duplicates.

Methods for Combining

  • #&: Returns an array containing elements found both in self and a given array.

  • #+: Returns an array containing all elements of self followed by all elements of a given array.

  • #-: Returns an array containing all elements of self that are not found in a given array.

  • #|: Returns an array containing all element of self and all elements of a given array, duplicates removed.

  • #difference: Returns an array containing all elements of self that are not found in any of the given arrays..

  • #intersection: Returns an array containing elements found both in self and in each given array.

  • #product: Returns or yields all combinations of elements from self and given arrays.

  • #reverse: Returns an array containing all elements of self in reverse order.

  • #union: Returns an array containing all elements of self and all elements of given arrays, duplicates removed.

Methods for Iterating

  • #combination: Calls a given block with combinations of elements of self; a combination does not use the same element more than once.

  • #cycle: Calls a given block with each element, then does so again, for a specified number of times, or forever.

  • #each: Passes each element to a given block.

  • #each_index: Passes each element index to a given block.

  • #permutation: Calls a given block with permutations of elements of self; a permutation does not use the same element more than once.

  • #repeated_combination: Calls a given block with combinations of elements of self; a combination may use the same element more than once.

  • #repeated_permutation: Calls a given block with permutations of elements of self; a permutation may use the same element more than once.

  • #reverse_each: Passes each element, in reverse order, to a given block.

Methods for Converting

  • #collect (aliased as #map): Returns an array containing the block return-value for each element.

  • #collect! (aliased as #map!): Replaces each element with a block return-value.

  • #flatten: Returns an array that is a recursive flattening of self.

  • #inspect (aliased as #to_s): Returns a new ::String containing the elements.

  • #join: Returns a newsString containing the elements joined by the field separator.

  • #to_a: Returns self or a new array containing all elements.

  • #to_ary: Returns self.

  • #to_h: Returns a new hash formed from the elements.

  • #transpose: Transposes self, which must be an array of arrays.

  • #zip: Returns a new array of arrays containing self and given arrays.

Other Methods

  • #*: Returns one of the following:

    • With integer argument n, a new array that is the concatenation of n copies of self.

    • With string argument field_separator, a new string that is equivalent to join(field_separator).

  • #pack: Packs the elements into a binary sequence.

  • #sum: Returns a sum of elements according to either + or a given block.

Class Method Summary

Instance Attribute Summary

  • #empty? ⇒ Boolean readonly

    Returns true if the count of elements in self is zero, false otherwise.

Instance Method Summary

::Enumerable - Included

#all?

Returns whether every element meets a given criterion.

#any?

Returns whether any element meets a given criterion.

#chain

Returns an enumerator object generated from this enumerator and given enumerables.

#chunk

Each element in the returned enumerator is a 2-element array consisting of:

#chunk_while

Creates an enumerator for each chunked elements.

#collect

Alias for Enumerable#map.

#collect_concat
#compact

Returns an array of all non-nil elements:

#count

Returns the count of elements, based on an argument or block criterion, if given.

#cycle

When called with positive integer argument n and a block, calls the block with each element, then does so again, until it has done so n times; returns nil:

#detect

Alias for Enumerable#find.

#drop

For positive integer n, returns an array containing all but the first n elements:

#drop_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements after that point:

#each_cons

Calls the block with each successive overlapped n-tuple of elements; returns self:

#each_entry

Calls the given block with each element, converting multiple values from yield to an array; returns self:

#each_slice

Calls the block with each successive disjoint n-tuple of elements; returns self:

#each_with_index

Invoke self.each with *args.

#each_with_object

Calls the block once for each element, passing both the element and the given object:

#entries

Alias for Enumerable#to_a.

#filter

Returns an array containing elements selected by the block.

#filter_map

Returns an array containing truthy elements returned by the block.

#find

Returns the first element for which the block returns a truthy value.

#find_all
#find_index

Returns the index of the first element that meets a specified criterion, or nil if no such element is found.

#first

Returns the first element or elements.

#flat_map

Returns an array of flattened objects returned by the block.

#grep

Returns an array of objects based elements of self that match the given pattern.

#grep_v

Returns an array of objects based on elements of self that don’t match the given pattern.

#group_by

With a block given returns a hash:

#include?
#inject

Returns the result of applying a reducer to an initial value and the first element of the ::Enumerable.

#lazy

Returns an ::Enumerator::Lazy, which redefines most ::Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.

#map

Returns an array of objects returned by the block.

#max

Returns the element with the maximum element according to a given criterion.

#max_by

Returns the elements for which the block returns the maximum values.

#member?

Returns whether for any element object == element:

#min

Returns the element with the minimum element according to a given criterion.

#min_by

Returns the elements for which the block returns the minimum values.

#minmax

Returns a 2-element array containing the minimum and maximum elements according to a given criterion.

#minmax_by

Returns a 2-element array containing the elements for which the block returns minimum and maximum values:

#none?

Returns whether no element meets a given criterion.

#one?

Returns whether exactly one element meets a given criterion.

#partition

With a block given, returns an array of two arrays:

#reduce
#reject

Returns an array of objects rejected by the block.

#reverse_each

With a block given, calls the block with each element, but in reverse order; returns self:

#select
#slice_after

Creates an enumerator for each chunked elements.

#slice_before

With argument pattern, returns an enumerator that uses the pattern to partition elements into arrays (“slices”).

#slice_when

Creates an enumerator for each chunked elements.

#sort

Returns an array containing the sorted elements of self.

#sort_by

With a block given, returns an array of elements of self, sorted according to the value returned by the block for each element.

#sum

With no block given, returns the sum of initial_value and the elements:

#take

For non-negative integer n, returns the first n elements:

#take_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements up to that point:

#tally

When argument #hash is not given, returns a new hash whose keys are the distinct elements in self; each integer value is the count of occurrences of each element:

#to_a

Returns an array containing the items in self:

#to_h

When self consists of 2-element arrays, returns a hash each of whose entries is the key-value pair formed from one of those arrays:

#to_set

Makes a set from the enumerable object with given arguments.

#uniq

With no block, returns a new array containing only unique elements; the array has no two elements e0 and e1 such that e0.eql?(e1):

#zip

With no block given, returns a new array new_array of size self.size whose elements are arrays.

Constructor Details

.new(*args)

This method is for internal use only.
[ GitHub ]

  
# File 'array.c', line 1050

static VALUE
rb_ary_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary;

    if (klass == rb_cArray) {
        long size = 0;
        if (argc > 0 && FIXNUM_P(argv[0])) {
            size = FIX2LONG(argv[0]);
            if (size < 0) size = 0;
        }

        ary = ary_new(klass, size);

        rb_obj_call_init_kw(ary, argc, argv, RB_PASS_CALLED_KEYWORDS);
    }
    else {
        ary = rb_class_new_instance_pass_kw(argc, argv, klass);
    }

    return ary;
}

#newArray #new(array) ⇒ Array #new(size, default_value = nil) ⇒ Array #new(size = 0) {|index| ... } ⇒ Array

Returns a new array.

With no block and no argument given, returns a new empty array:

Array.new # => []

With no block and array argument given, returns a new array with the same elements:

Array.new([:foo, 'bar', 2]) # => [:foo, "bar", 2]

With no block and integer argument given, returns a new array containing that many instances of the given default_value:

Array.new(0)    # => []
Array.new(3)    # => [nil, nil, nil]
Array.new(2, 3) # => [3, 3]

With a block given, returns an array of the given #size; calls the block with each #index in the range (0...size); the element at that #index in the returned array is the blocks return value:

Array.new(3)  {|index| "Element #{index}" } # => ["Element 0", "Element 1", "Element 2"]

A common pitfall for new Rubyists is providing an expression as default_value:

array = Array.new(2, {})
array # => [{}, {}]
array[0][:a] = 1
array # => [{a: 1}, {a: 1}], as array[0] and array[1] are same object

If you want the elements of the array to be distinct, you should pass a block:

array = Array.new(2) { {} }
array # => [{}, {}]
array[0][:a] = 1
array # => [{a: 1}, {}], as array[0] and array[1] are different objects

Raises TypeError if the first argument is not either an array or an integer-convertible object). Raises ArgumentError if the first argument is a negative integer.

Related: see Methods for Creating an Array.

[ GitHub ]

  
# File 'array.c', line 1124

static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
    long len;
    VALUE size, val;

    rb_ary_modify(ary);
    if (argc == 0) {
        rb_ary_reset(ary);
        RUBY_ASSERT(ARY_EMBED_P(ary));
        RUBY_ASSERT(ARY_EMBED_LEN(ary) == 0);
        if (rb_block_given_p()) {
            rb_warning("given block not used");
        }
        return ary;
    }
    rb_scan_args(argc, argv, "02", &size, &val);
    if (argc == 1 && !FIXNUM_P(size)) {
        val = rb_check_array_type(size);
        if (!NIL_P(val)) {
            rb_ary_replace(ary, val);
            return ary;
        }
    }

    len = NUM2LONG(size);
    /* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */
    if (len < 0) {
        rb_raise(rb_eArgError, "negative array size");
    }
    if (len > ARY_MAX_SIZE) {
        rb_raise(rb_eArgError, "array size too big");
    }
    /* recheck after argument conversion */
    rb_ary_modify(ary);
    ary_resize_capa(ary, len);
    if (rb_block_given_p()) {
        long i;

        if (argc == 2) {
            rb_warn("block supersedes default value argument");
        }
        for (i=0; i<len; i++) {
            rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
            ARY_SET_LEN(ary, i + 1);
        }
    }
    else {
        ary_memfill(ary, 0, len, val);
        ARY_SET_LEN(ary, len);
    }
    return ary;
}

Class Method Details

.[](*args)

Returns a new array, populated with the given objects:

Array[1, 'a', /^A/]    # => [1, "a", /^A/]
Array[]                # => []
Array.[](1, 'a', /^A/) # => [1, "a", /^A/]

Related: see Methods for Creating an Array.

[ GitHub ]

  
# File 'array.c', line 1188

static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary = ary_new(klass, argc);
    if (argc > 0 && argv) {
        ary_memcpy(ary, 0, argc, argv);
        ARY_SET_LEN(ary, argc);
    }

    return ary;
}

.try_convert(object) ⇒ Object, ...

Attempts to return an array, based on the given object.

If object is an array, returns object.

Otherwise if object responds to :to_ary. calls object.to_ary: if the return value is an array or nil, returns that value; if not, raises ::TypeError.

Otherwise returns nil.

Related: see Methods for Creating an Array.

[ GitHub ]

  
# File 'array.c', line 1043

static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
    return rb_check_array_type(ary);
}

Instance Attribute Details

#empty?Boolean (readonly)

Returns true if the count of elements in self is zero, false otherwise.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 2764

static VALUE
rb_ary_empty_p(VALUE ary)
{
    return RBOOL(RARRAY_LEN(ary) == 0);
}

Instance Method Details

#&(other_array) ⇒ Array

Returns a new array containing the intersection of self and other_array; that is, containing those elements found in both self and other_array:

[0, 1, 2, 3] & [1, 2] # => [1, 2]

Omits duplicates:

[0, 1, 1, 0] & [0, 1] # => [0, 1]

Preserves order from self:

[0, 1, 2] & [3, 2, 1, 0] # => [0, 1, 2]

Identifies common elements using method #eql? (as defined in each element of self).

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5646

static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new();
    if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return ary3;

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            v = RARRAY_AREF(ary1, i);
            if (!rb_ary_includes_by_eql(ary2, v)) continue;
            if (rb_ary_includes_by_eql(ary3, v)) continue;
            rb_ary_push(ary3, v);
        }
        return ary3;
    }

    hash = ary_make_hash(ary2);

    for (i=0; i<RARRAY_LEN(ary1); i++) {
        v = RARRAY_AREF(ary1, i);
        vv = (st_data_t)v;
        if (rb_hash_stlike_delete(hash, &vv, 0)) {
            rb_ary_push(ary3, v);
        }
    }

    return ary3;
}

#*(n) ⇒ Array #*(string_separator) ⇒ String

When non-negative integer argument n is given, returns a new array built by concatenating n copies of self:

a = ['x', 'y']
a * 3 # => ["x", "y", "x", "y", "x", "y"]

When string argument string_separator is given, equivalent to self.join(string_separator):

[0, [0, 1], {foo: 0}] * ', ' # => "0, 0, 1, {foo: 0}"
[ GitHub ]

  
# File 'array.c', line 5091

static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
    VALUE ary2, tmp;
    const VALUE *ptr;
    long t, len;

    tmp = rb_check_string_type(times);
    if (!NIL_P(tmp)) {
        return rb_ary_join(ary, tmp);
    }

    len = NUM2LONG(times);
    if (len == 0) {
        ary2 = ary_new(rb_cArray, 0);
        goto out;
    }
    if (len < 0) {
        rb_raise(rb_eArgError, "negative argument");
    }
    if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
        rb_raise(rb_eArgError, "argument too big");
    }
    len *= RARRAY_LEN(ary);

    ary2 = ary_new(rb_cArray, len);
    ARY_SET_LEN(ary2, len);

    ptr = RARRAY_CONST_PTR(ary);
    t = RARRAY_LEN(ary);
    if (0 < t) {
        ary_memcpy(ary2, 0, t, ptr);
        while (t <= len/2) {
            ary_memcpy(ary2, t, t, RARRAY_CONST_PTR(ary2));
            t *= 2;
        }
        if (t < len) {
            ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR(ary2));
        }
    }
  out:
    return ary2;
}

#+(other_array) ⇒ Array

Returns a new array containing all elements of self followed by all elements of other_array:

a = [0, 1] + [2, 3]
a # => [0, 1, 2, 3]

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5004

VALUE
rb_ary_plus(VALUE x, VALUE y)
{
    VALUE z;
    long len, xlen, ylen;

    y = to_ary(y);
    xlen = RARRAY_LEN(x);
    ylen = RARRAY_LEN(y);
    len = xlen + ylen;
    z = rb_ary_new2(len);

    ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR(x));
    ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR(y));
    ARY_SET_LEN(z, len);
    return z;
}

#-(other_array) ⇒ Array

Returns a new array containing only those elements of self that are not found in other_array; the order from self is preserved:

[0, 1, 1, 2, 1, 1, 3, 1, 1] - [1]             # => [0, 2, 3]
[0, 1, 1, 2, 1, 1, 3, 1, 1] - [3, 2, 0, :foo] # => [1, 1, 1, 1, 1, 1]
[0, 1, 2] - [:foo]                            # => [0, 1, 2]

Element are compared using method #eql? (as defined in each element of self).

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5537

VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
    VALUE ary3;
    VALUE hash;
    long i;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary2) == 0) { return ary_make_shared_copy(ary1); }
    ary3 = rb_ary_new();

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN || RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            VALUE elt = rb_ary_elt(ary1, i);
            if (rb_ary_includes_by_eql(ary2, elt)) continue;
            rb_ary_push(ary3, elt);
        }
        return ary3;
    }

    hash = ary_make_hash(ary2);
    for (i=0; i<RARRAY_LEN(ary1); i++) {
        if (rb_hash_stlike_lookup(hash, RARRAY_AREF(ary1, i), NULL)) continue;
        rb_ary_push(ary3, rb_ary_elt(ary1, i));
    }

    return ary3;
}

#<<(object) ⇒ self

Appends object as the last element in self; returns self:

[:foo, 'bar', 2] << :baz # => [:foo, "bar", 2, :baz]

Appends object as a single element, even if it is another array:

[:foo, 'bar', 2] << [3, 4] # => [:foo, "bar", 2, [3, 4]]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 1377

VALUE
rb_ary_push(VALUE ary, VALUE item)
{
    long idx = RARRAY_LEN((ary_verify(ary), ary));
    VALUE target_ary = ary_ensure_room_for_push(ary, 1);
    RARRAY_PTR_USE(ary, ptr, {
        RB_OBJ_WRITE(target_ary, &ptr[idx], item);
    });
    ARY_SET_LEN(ary, idx + 1);
    ary_verify(ary);
    return ary;
}

#<=>(other_array) ⇒ 1, 0

Returns -1, 0, or 1 as self is determined to be less than, equal to, or greater than other_array.

Iterates over each index i in (0...self.size):

  • Computes result[i] as self[i] <=> other_array[i].

  • Immediately returns 1 if result[i] is 1:

    [0, 1, 2] <=> [0, 0, 2] # => 1
  • Immediately returns -1 if result[i] is -1:

    [0, 1, 2] <=> [0, 2, 2] # => -1
  • Continues if result[i] is 0.

When every result is 0, returns self.size <=> other_array.size (see Integer#<=>):

[0, 1, 2] <=> [0, 1]        # => 1
[0, 1, 2] <=> [0, 1, 2]     # => 0
[0, 1, 2] <=> [0, 1, 2, 3]  # => -1

Note that when other_array is larger than self, its trailing elements do not affect the result:

[0, 1, 2] <=> [0, 1, 2, -3] # => -1
[0, 1, 2] <=> [0, 1, 2, 0]  # => -1
[0, 1, 2] <=> [0, 1, 2, 3]  # => -1

Related: see Methods for Comparing.

[ GitHub ]

  
# File 'array.c', line 5454

VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
    long len;
    VALUE v;

    ary2 = rb_check_array_type(ary2);
    if (NIL_P(ary2)) return Qnil;
    if (ary1 == ary2) return INT2FIX(0);
    v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
    if (!UNDEF_P(v)) return v;
    len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
    if (len == 0) return INT2FIX(0);
    if (len > 0) return INT2FIX(1);
    return INT2FIX(-1);
}

#==(other_array) ⇒ Boolean

Returns whether both:

  • self and other_array are the same size.

  • Their corresponding elements are the same; that is, for each index i in (0...self.size), self[i] == other_array[i].

Examples:

[:foo, 'bar', 2] == [:foo, 'bar', 2]   # => true
[:foo, 'bar', 2] == [:foo, 'bar', 2.0] # => true
[:foo, 'bar', 2] == [:foo, 'bar']      # => false # Different sizes.
[:foo, 'bar', 2] == [:foo, 'bar', 3]   # => false # Different elements.

This method is different from method #eql?, which compares elements using Object#eql?.

Related: see Methods for Comparing.

[ GitHub ]

  
# File 'array.c', line 5257

static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) {
        if (!rb_respond_to(ary2, idTo_ary)) {
            return Qfalse;
        }
        return rb_equal(ary2, ary1);
    }
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
}

#[](index) ⇒ Object? #[](start, length) ⇒ Object? #[](range) ⇒ Object? #[](aseq) ⇒ Object? #slice(index) ⇒ Object? #slice(start, length) ⇒ Object? #slice(range) ⇒ Object? #slice(aseq) ⇒ Object?
Also known as: #slice

Returns elements from self; does not modify self.

In brief:

a = [:foo, 'bar', 2]

# Single argument index: returns one element.
a[0]     # => :foo          # Zero-based index.
a[-1]    # => 2             # Negative index counts backwards from end.

# Arguments start and length: returns an array.
a[1, 2]  # => ["bar", 2]
a[-2, 2] # => ["bar", 2]    # Negative start counts backwards from end.

# Single argument range: returns an array.
a[0..1]  # => [:foo, "bar"]
a[0..-2] # => [:foo, "bar"] # Negative range-begin counts backwards from end.
a[-2..2] # => ["bar", 2]    # Negative range-end counts backwards from end.

When a single integer argument #index is given, returns the element at offset #index:

a = [:foo, 'bar', 2]
a[0] # => :foo
a[2] # => 2
a # => [:foo, "bar", 2]

If #index is negative, counts backwards from the end of self:

a = [:foo, 'bar', 2]
a[-1] # => 2
a[-2] # => "bar"

If #index is out of range, returns nil.

When two ::Integer arguments start and #length are given, returns a new Array of size #length containing successive elements beginning at offset start:

a = [:foo, 'bar', 2]
a[0, 2] # => [:foo, "bar"]
a[1, 2] # => ["bar", 2]

If start + length is greater than self.length, returns all elements from offset start to the end:

a = [:foo, 'bar', 2]
a[0, 4] # => [:foo, "bar", 2]
a[1, 3] # => ["bar", 2]
a[2, 2] # => [2]

If start == self.size and length >= 0, returns a new empty Array.

If #length is negative, returns nil.

When a single ::Range argument range is given, treats range.min as start above and range.size as #length above:

a = [:foo, 'bar', 2]
a[0..1] # => [:foo, "bar"]
a[1..2] # => ["bar", 2]

Special case: If range.start == a.size, returns a new empty Array.

If range.end is negative, calculates the end index from the end:

a = [:foo, 'bar', 2]
a[0..-1] # => [:foo, "bar", 2]
a[0..-2] # => [:foo, "bar"]
a[0..-3] # => [:foo]

If range.start is negative, calculates the start index from the end:

a = [:foo, 'bar', 2]
a[-1..2] # => [2]
a[-2..2] # => ["bar", 2]
a[-3..2] # => [:foo, "bar", 2]

If range.start is larger than the array size, returns nil.

a = [:foo, 'bar', 2]
a[4..1] # => nil
a[4..0] # => nil
a[4..-1] # => nil

When a single ::Enumerator::ArithmeticSequence argument aseq is given, returns an Array of elements corresponding to the indexes produced by the sequence.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..).step(2)] # => ["data1", "data2", "data3"]

Unlike slicing with range, if the start or the end of the arithmetic sequence is larger than array size, throws ::RangeError.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..11).step(2)]
# RangeError (((1..11).step(2)) out of range)
a[(7..).step(2)]
# RangeError (((7..).step(2)) out of range)

If given a single argument, and its type is not one of the listed, tries to convert it to ::Integer, and raises if it is impossible:

a = [:foo, 'bar', 2]
# Raises TypeError (no implicit conversion of Symbol into Integer):
a[:foo]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 1888

VALUE
rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return rb_ary_aref2(ary, argv[0], argv[1]);
    }
    return rb_ary_aref1(ary, argv[0]);
}

#[]=(index, object) ⇒ Object #[]=(start, length, object) ⇒ Object #[]=(range, object) ⇒ Object

Assigns elements in self, based on the given object; returns object.

In brief:

a_orig = [:foo, 'bar', 2]

# With argument index.
a = a_orig.dup
a[0] = 'foo' # => "foo"
a # => ["foo", "bar", 2]
a = a_orig.dup
a[7] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"]

# With arguments start and length.
a = a_orig.dup
a[0, 2] = 'foo' # => "foo"
a # => ["foo", 2]
a = a_orig.dup
a[6, 50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

# With argument range.
a = a_orig.dup
a[0..1] = 'foo' # => "foo"
a # => ["foo", 2]
a = a_orig.dup
a[6..50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

When Integer argument #index is given, assigns object to an element in self.

If #index is non-negative, assigns object the element at offset #index:

a = [:foo, 'bar', 2]
a[0] = 'foo' # => "foo"
a # => ["foo", "bar", 2]

If #index is greater than self.length, extends the array:

a = [:foo, 'bar', 2]
a[7] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"]

If #index is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-1] = 'two' # => "two"
a # => [:foo, "bar", "two"]

When Integer arguments start and #length are given and object is not an Array, removes length - 1 elements beginning at offset start, and assigns object at offset start:

a = [:foo, 'bar', 2]
a[0, 2] = 'foo' # => "foo"
a # => ["foo", 2]

If start is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-2, 2] = 'foo' # => "foo"
a # => [:foo, "foo"]

If start is non-negative and outside the array ( >= self.size), extends the array with nil, assigns object at offset start, and ignores #length:

a = [:foo, 'bar', 2]
a[6, 50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

If #length is zero, shifts elements at and following offset start and assigns object at offset start:

a = [:foo, 'bar', 2]
a[1, 0] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]

If #length is too large for the existing array, does not extend the array:

a = [:foo, 'bar', 2]
a[1, 5] = 'foo' # => "foo"
a # => [:foo, "foo"]

When Range argument range is given and object is not an Array, removes length - 1 elements beginning at offset start, and assigns object at offset start:

a = [:foo, 'bar', 2]
a[0..1] = 'foo' # => "foo"
a # => ["foo", 2]

if range.begin is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-2..2] = 'foo' # => "foo"
a # => [:foo, "foo"]

If the array length is less than range.begin, extends the array with nil, assigns object at offset range.begin, and ignores #length:

a = [:foo, 'bar', 2]
a[6..50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

If range.end is zero, shifts elements at and following offset start and assigns object at offset start:

a = [:foo, 'bar', 2]
a[1..0] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]

If range.end is negative, assigns object at offset start, retains range.end.abs -1 elements past that, and removes those beyond:

a = [:foo, 'bar', 2]
a[1..-1] = 'foo' # => "foo"
a # => [:foo, "foo"]
a = [:foo, 'bar', 2]
a[1..-2] = 'foo' # => "foo"
a # => [:foo, "foo", 2]
a = [:foo, 'bar', 2]
a[1..-3] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]
a = [:foo, 'bar', 2]

If range.end is too large for the existing array, replaces array elements, but does not extend the array with nil values:

a = [:foo, 'bar', 2]
a[1..5] = 'foo' # => "foo"
a # => [:foo, "foo"]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 2493

static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
    long offset, beg, len;

    rb_check_arity(argc, 2, 3);
    rb_ary_modify_check(ary);
    if (argc == 3) {
        beg = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        return ary_aset_by_rb_ary_splice(ary, beg, len, argv[2]);
    }
    if (FIXNUM_P(argv[0])) {
        offset = FIX2LONG(argv[0]);
        return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
    }
    if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
        /* check if idx is Range */
        return ary_aset_by_rb_ary_splice(ary, beg, len, argv[1]);
    }

    offset = NUM2LONG(argv[0]);
    return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
}

#all?Boolean #all?(object) ⇒ Boolean #all? {|element| ... } ⇒ Boolean

Returns whether for every element of self, a given criterion is satisfied.

With no block and no argument, returns whether every element of self is truthy:

[[], {}, '', 0, 0.0, Object.new].all? # => true  # All truthy objects.
[[], {}, '', 0, 0.0, nil].all?        # => false # nil is not truthy.
[[], {}, '', 0, 0.0, false].all?      # => false # false is not truthy.

With argument object given, returns whether object === ele for every element ele in self:

[0, 0, 0].all?(0)                    # => true
[0, 1, 2].all?(1)                    # => false
['food', 'fool', 'foot'].all?(/foo/) # => true
['food', 'drink'].all?(/foo/)        # => false

With a block given, calls the block with each element in self; returns whether the block returns only truthy values:

[0, 1, 2].all? { |ele| ele < 3 } # => true
[0, 1, 2].all? { |ele| ele < 2 } # => false

With both a block and argument object given, ignores the block and uses object as above.

Special case: returns true if self is empty (regardless of any given argument or block).

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 7850

static VALUE
rb_ary_all_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qtrue;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (!RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (!RTEST(RARRAY_AREF(ary, i))) return Qfalse;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    return Qtrue;
}

#any?Boolean #any?(object) ⇒ Boolean #any? {|element| ... } ⇒ Boolean

Returns whether for any element of self, a given criterion is satisfied.

With no block and no argument, returns whether any element of self is truthy:

[nil, false, []].any? # => true  # Array object is truthy.
[nil, false, {}].any? # => true  # Hash object is truthy.
[nil, false, ''].any? # => true  # String object is truthy.
[nil, false].any?     # => false # Nil and false are not truthy.

With argument object given, returns whether object === ele for any element ele in self:

[nil, false, 0].any?(0)          # => true
[nil, false, 1].any?(0)          # => false
[nil, false, 'food'].any?(/foo/) # => true
[nil, false, 'food'].any?(/bar/) # => false

With a block given, calls the block with each element in self; returns whether the block returns any truthy value:

[0, 1, 2].any? {|ele| ele < 1 } # => true
[0, 1, 2].any? {|ele| ele < 0 } # => false

With both a block and argument object given, ignores the block and uses object as above.

Special case: returns false if self is empty (regardless of any given argument or block).

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 7783

static VALUE
rb_ary_any_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qfalse;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qtrue;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) return Qtrue;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue;
        }
    }
    return Qfalse;
}

#push(*objects) ⇒ self #append(*objects) ⇒ self

Alias for #push.

#assoc(object) ⇒ Array?

Returns the first element ele in self such that ele is an array and ele[0] == object:

a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
a.assoc(4) # => [4, 5, 6]

Returns nil if no such element is found.

Related: Array#rassoc; see also Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 5151

VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = rb_check_array_type(RARRAY_AREF(ary, i));
        if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
            rb_equal(RARRAY_AREF(v, 0), key))
            return v;
    }
    return Qnil;
}

#at(index) ⇒ Object?

Returns the element of self specified by the given #index or nil if there is no such element; #index must be an integer-convertible object.

For non-negative #index, returns the element of self at offset #index:

a = [:foo, 'bar', 2]
a.at(0)   # => :foo
a.at(2)   # => 2
a.at(2.0) # => 2

For negative #index, counts backwards from the end of self:

a.at(-2) # => "bar"

Related: Array#[]; see also Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 1955

VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
    return rb_ary_entry(ary, NUM2LONG(pos));
}

#bsearch {|element| ... } ⇒ found_element? #bsearchEnumerator

Returns the element from self found by a binary search, or nil if the search found no suitable element.

See Binary Searching.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3503

static VALUE
rb_ary_bsearch(VALUE ary)
{
    VALUE index_result = rb_ary_bsearch_index(ary);

    if (FIXNUM_P(index_result)) {
        return rb_ary_entry(ary, FIX2LONG(index_result));
    }
    return index_result;
}

#bsearch_index {|element| ... } ⇒ Integer? #bsearch_indexEnumerator

Returns the integer index of the element from self found by a binary search, or nil if the search found no suitable element.

See Binary Searching.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3527

static VALUE
rb_ary_bsearch_index(VALUE ary)
{
    long low = 0, high = RARRAY_LEN(ary), mid;
    int smaller = 0, satisfied = 0;
    VALUE v, val;

    RETURN_ENUMERATOR(ary, 0, 0);
    while (low < high) {
        mid = low + ((high - low) / 2);
        val = rb_ary_entry(ary, mid);
        v = rb_yield(val);
        if (FIXNUM_P(v)) {
            if (v == INT2FIX(0)) return INT2FIX(mid);
            smaller = (SIGNED_VALUE)v < 0; /* Fixnum preserves its sign-bit */
        }
        else if (v == Qtrue) {
            satisfied = 1;
            smaller = 1;
        }
        else if (!RTEST(v)) {
            smaller = 0;
        }
        else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
            const VALUE zero = INT2FIX(0);
            switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, zero)) {
              case 0: return INT2FIX(mid);
              case 1: smaller = 0; break;
              case -1: smaller = 1;
            }
        }
        else {
            rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE
                     " (must be numeric, true, false or nil)",
                     rb_obj_class(v));
        }
        if (smaller) {
            high = mid;
        }
        else {
            low = mid + 1;
        }
    }
    if (!satisfied) return Qnil;
    return INT2FIX(low);
}

#clearself

Removes all elements from self; returns self:

a = [:foo, 'bar', 2]
a.clear # => []

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4728

VALUE
rb_ary_clear(VALUE ary)
{
    rb_ary_modify_check(ary);
    if (ARY_SHARED_P(ary)) {
        rb_ary_unshare(ary);
        FL_SET_EMBED(ary);
        ARY_SET_EMBED_LEN(ary, 0);
    }
    else {
        ARY_SET_LEN(ary, 0);
        if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
            ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
        }
    }
    ary_verify(ary);
    return ary;
}

#collect {|element| ... } ⇒ Array #collectEnumerator #map {|element| ... } ⇒ Array #mapEnumerator

Alias for #map.

#collect! {|element| ... } ⇒ Array #collect!Enumerator #map! {|element| ... } ⇒ Array #map!Enumerator

Alias for #map!.

#combination(count) {|element| ... } ⇒ self #combination(count) ⇒ Enumerator

When a block and a positive integer-convertible object argument #count (0 < count <= self.size) are given, calls the block with each combination of self of size #count; returns self:

a = %w[a b c]                                   # => ["a", "b", "c"]
a.combination(2) {|combination| p combination } # => ["a", "b", "c"]

Output:

["a", "b"]
["a", "c"]
["b", "c"]

The order of the yielded combinations is not guaranteed.

When #count is zero, calls the block once with a new empty array:

a.combination(0) {|combination| p combination }
[].combination(0) {|combination| p combination }

Output:

[]
[]

When #count is negative or larger than self.size and self is non-empty, does not call the block:

a.combination(-1) {|combination| fail 'Cannot happen' } # => ["a", "b", "c"]
a.combination(4)  {|combination| fail 'Cannot happen' } # => ["a", "b", "c"]

With no block given, returns a new ::Enumerator.

Related: Array#permutation; see also Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 7218

static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
    long i, n, len;

    n = NUM2LONG(num);
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
    len = RARRAY_LEN(ary);
    if (n < 0 || len < n) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        volatile VALUE t0;
        long *stack = ALLOCV_N(long, t0, n+1);

        RBASIC_CLEAR_CLASS(ary0);
        combinate0(len, n, stack, ary0);
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#compactArray

Returns a new array containing only the non-nil elements from self; element order is preserved:

a = [nil, 0, nil, false, nil, '', nil, [], nil, {}]
a.compact # => [0, false, "", [], {}]

Related: Array#compact!; see also Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 6433

static VALUE
rb_ary_compact(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_compact_bang(ary);
    return ary;
}

#compact!self?

Removes all nil elements from self; Returns self if any elements are removed, nil otherwise:

a = [nil, 0, nil, false, nil, '', nil, [], nil, {}]
a.compact! # => [0, false, "", [], {}]
a          # => [0, false, "", [], {}]
a.compact! # => nil

Related: Array#compact; see also Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 6396

static VALUE
rb_ary_compact_bang(VALUE ary)
{
    VALUE *p, *t, *end;
    long n;

    rb_ary_modify(ary);
    p = t = (VALUE *)RARRAY_CONST_PTR(ary); /* WB: no new reference */
    end = p + RARRAY_LEN(ary);

    while (t < end) {
        if (NIL_P(*t)) t++;
        else *p++ = *t++;
    }
    n = p - RARRAY_CONST_PTR(ary);
    if (RARRAY_LEN(ary) == n) {
        return Qnil;
    }
    ary_resize_smaller(ary, n);

    return ary;
}

#concat(*other_arrays) ⇒ self

Adds to self all elements from each array in other_arrays; returns self:

a = [0, 1]
a.concat(['two', 'three'], [:four, :five], a)
# => [0, 1, "two", "three", :four, :five, 0, 1]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 5046

static VALUE
rb_ary_concat_multi(int argc, VALUE *argv, VALUE ary)
{
    rb_ary_modify_check(ary);

    if (argc == 1) {
        rb_ary_concat(ary, argv[0]);
    }
    else if (argc > 1) {
        int i;
        VALUE args = rb_ary_hidden_new(argc);
        for (i = 0; i < argc; i++) {
            rb_ary_concat(args, argv[i]);
        }
        ary_append(ary, args);
    }

    ary_verify(ary);
    return ary;
}

#countInteger #count(object) ⇒ Integer #count {|element| ... } ⇒ Integer

Returns a count of specified elements.

With no argument and no block, returns the count of all elements:

[0, :one, 'two', 3, 3.0].count # => 5

With argument object given, returns the count of elements #== to object:

[0, :one, 'two', 3, 3.0].count(3) # => 2

With no argument and a block given, calls the block with each element; returns the count of elements for which the block returns a truthy value:

[0, 1, 2, 3].count {|element| element > 1 } # => 2

With argument object and a block given, issues a warning, ignores the block, and returns the count of elements #== to object.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 6468

static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
    long i, n = 0;

    if (rb_check_arity(argc, 0, 1) == 0) {
        VALUE v;

        if (!rb_block_given_p())
            return LONG2NUM(RARRAY_LEN(ary));

        for (i = 0; i < RARRAY_LEN(ary); i++) {
            v = RARRAY_AREF(ary, i);
            if (RTEST(rb_yield(v))) n++;
        }
    }
    else {
        VALUE obj = argv[0];

        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
        }
    }

    return LONG2NUM(n);
}

#cycle(count = nil) {|element| ... } ⇒ nil #cycle(count = nil) ⇒ Enumerator

With a block given, may call the block, depending on the value of argument #count; #count must be an integer-convertible object, or nil.

When #count is positive, calls the block with each element, then does so repeatedly, until it has done so #count times; returns nil:

output = []
[0, 1].cycle(2) {|element| output.push(element) } # => nil
output # => [0, 1, 0, 1]

When #count is zero or negative, does not call the block:

[0, 1].cycle(0) {|element| fail 'Cannot happen' }  # => nil
[0, 1].cycle(-1) {|element| fail 'Cannot happen' } # => nil

When #count is nil, cycles forever:

# Prints 0 and 1 forever.
[0, 1].cycle {|element| puts element }
[0, 1].cycle(nil) {|element| puts element }

With no block given, returns a new ::Enumerator.

Related: see Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 6924

static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
    long n, i;

    rb_check_arity(argc, 0, 1);

    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
    if (argc == 0 || NIL_P(argv[0])) {
        n = -1;
    }
    else {
        n = NUM2LONG(argv[0]);
        if (n <= 0) return Qnil;
    }

    while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
        for (i=0; i<RARRAY_LEN(ary); i++) {
            rb_yield(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

#deconstruct

This method is for internal use only.
[ GitHub ]

  
# File 'array.c', line 8216

static VALUE
rb_ary_deconstruct(VALUE ary)
{
    return ary;
}

#delete(object) ⇒ last_removed_object #delete(object) {|element| ... } ⇒ last_removed_object, block_return

Removes zero or more elements from self.

With no block given, removes from self each element ele such that ele == object; returns the last removed element:

a = [0, 1, 2, 2.0]
a.delete(2) # => 2.0
a           # => [0, 1]

Returns nil if no elements removed:

a.delete(2) # => nil

With a block given, removes from self each element ele such that ele == object.

If any such elements are found, ignores the block and returns the last removed element:

a = [0, 1, 2, 2.0]
a.delete(2) {|element| fail 'Cannot happen' } # => 2.0
a                                             # => [0, 1]

If no such element is found, returns the block’s return value:

a.delete(2) {|element| "Element #{element} not found." }
# => "Element 2 not found."

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4047

VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
    VALUE v = item;
    long i1, i2;

    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
        VALUE e = RARRAY_AREF(ary, i1);

        if (rb_equal(e, item)) {
            v = e;
            continue;
        }
        if (i1 != i2) {
            rb_ary_store(ary, i2, e);
        }
        i2++;
    }
    if (RARRAY_LEN(ary) == i2) {
        if (rb_block_given_p()) {
            return rb_yield(item);
        }
        return Qnil;
    }

    ary_resize_smaller(ary, i2);

    ary_verify(ary);
    return v;
}

#delete_at(index) ⇒ removed_object?

Removes the element of self at the given #index, which must be an integer-convertible object.

When #index is non-negative, deletes the element at offset #index:

a = [:foo, 'bar', 2]
a.delete_at(1) # => "bar"
a # => [:foo, 2]

When #index is negative, counts backward from the end of the array:

a = [:foo, 'bar', 2]
a.delete_at(-2) # => "bar"
a # => [:foo, 2]

When #index is out of range, returns nil.

a = [:foo, 'bar', 2]
a.delete_at(3)  # => nil
a.delete_at(-4) # => nil

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4151

static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
    return rb_ary_delete_at(ary, NUM2LONG(pos));
}

#delete_if {|element| ... } ⇒ self #delete_ifnew_numerator

With a block given, calls the block with each element of self; removes the element if the block returns a truthy value; returns self:

a = [:foo, 'bar', 2, 'bat']
a.delete_if {|element| element.to_s.start_with?('b') } # => [:foo, 2]

With no block given, returns a new ::Enumerator.

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4428

static VALUE
rb_ary_delete_if(VALUE ary)
{
    ary_verify(ary);
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    ary_reject_bang(ary);
    return ary;
}

#difference(*other_arrays = []) ⇒ Array

Returns a new array containing only those elements from self that are not found in any of the given other_arrays; items are compared using #eql?; order from self is preserved:

[0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3]
[0, 1, 2, 3].difference([3, 0], [1, 3])     # => [2]
[0, 1, 2].difference([4])                   # => [0, 1, 2]
[0, 1, 2].difference                        # => [0, 1, 2]

Returns a copy of self if no arguments are given.

Related: Array#-; see also Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5585

static VALUE
rb_ary_difference_multi(int argc, VALUE *argv, VALUE ary)
{
    VALUE ary_diff;
    long i, length;
    volatile VALUE t0;
    bool *is_hash = ALLOCV_N(bool, t0, argc);
    ary_diff = rb_ary_new();
    length = RARRAY_LEN(ary);

    for (i = 0; i < argc; i++) {
        argv[i] = to_ary(argv[i]);
        is_hash[i] = (length > SMALL_ARRAY_LEN && RARRAY_LEN(argv[i]) > SMALL_ARRAY_LEN);
        if (is_hash[i]) argv[i] = ary_make_hash(argv[i]);
    }

    for (i = 0; i < RARRAY_LEN(ary); i++) {
        int j;
        VALUE elt = rb_ary_elt(ary, i);
        for (j = 0; j < argc; j++) {
            if (is_hash[j]) {
                if (rb_hash_stlike_lookup(argv[j], RARRAY_AREF(ary, i), NULL))
                    break;
            }
            else {
                if (rb_ary_includes_by_eql(argv[j], elt)) break;
            }
        }
        if (j == argc) rb_ary_push(ary_diff, elt);
    }

    ALLOCV_END(t0);

    return ary_diff;
}

#dig(index, *identifiers) ⇒ Object

Finds and returns the object in nested object specified by #index and identifiers; the nested objects may be instances of various classes. See Dig Methods.

Examples:

a = [:foo, [:bar, :baz, [:bat, :bam]]]
a.dig(1) # => [:bar, :baz, [:bat, :bam]]
a.dig(1, 2) # => [:bat, :bam]
a.dig(1, 2, 0) # => :bat
a.dig(1, 2, 3) # => nil

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 8033

static VALUE
rb_ary_dig(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    self = rb_ary_at(self, *argv);
    if (!--argc) return self;
    ++argv;
    return rb_obj_dig(argc, argv, self, Qnil);
}

#drop(count) ⇒ Array

Returns a new array containing all but the first #count element of self, where #count is a non-negative integer; does not modify self.

Examples:

a = [0, 1, 2, 3, 4, 5]
a.drop(0) # => [0, 1, 2, 3, 4, 5]
a.drop(1) # => [1, 2, 3, 4, 5]
a.drop(2) # => [2, 3, 4, 5]
a.drop(9) # => []

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 7700

static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
    VALUE result;
    long pos = NUM2LONG(n);
    if (pos < 0) {
        rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
    if (NIL_P(result)) result = rb_ary_new();
    return result;
}

#drop_while {|element| ... } ⇒ Array #drop_whileEnumerator

With a block given, calls the block with each successive element of self; stops if the block returns false or nil; returns a new array omitting those elements for which the block returned a truthy value; does not modify self:

a = [0, 1, 2, 3, 4, 5]
a.drop_while {|element| element < 3 } # => [3, 4, 5]

With no block given, returns a new ::Enumerator.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 7732

static VALUE
rb_ary_drop_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_drop(ary, LONG2FIX(i));
}

#each {|element| ... } ⇒ self #eachEnumerator

With a block given, iterates over the elements of self, passing each element to the block; returns self:

a = [:foo, 'bar', 2]
a.each {|element|  puts "#{element.class} #{element}" }

Output:

Symbol foo
String bar
Integer 2

Allows the array to be modified during iteration:

a = [:foo, 'bar', 2]
a.each {|element| puts element; a.clear if element.to_s.start_with?('b') }

Output:

foo
bar

With no block given, returns a new ::Enumerator.

Related: see Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 2634

VALUE
rb_ary_each(VALUE ary)
{
    long i;
    ary_verify(ary);
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(RARRAY_AREF(ary, i));
    }
    return ary;
}

#each_index {|index| ... } ⇒ self #each_indexEnumerator

With a block given, iterates over the elements of self, passing each array index to the block; returns self:

a = [:foo, 'bar', 2]
a.each_index {|index|  puts "#{index} #{a[index]}" }

Output:

0 foo
1 bar
2 2

Allows the array to be modified during iteration:

a = [:foo, 'bar', 2]
a.each_index {|index| puts index; a.clear if index > 0 }
a # => []

Output:

0
1

With no block given, returns a new ::Enumerator.

Related: see Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 2680

static VALUE
rb_ary_each_index(VALUE ary)
{
    long i;
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);

    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(LONG2NUM(i));
    }
    return ary;
}

#eql?(other_array) ⇒ Boolean

Returns true if self and other_array are the same size, and if, for each index i in self, self[i].eql?(other_array[i]):

a0 = [:foo, 'bar', 2]
a1 = [:foo, 'bar', 2]
a1.eql?(a0) # => true

Otherwise, returns false.

This method is different from method #==, which compares using method Object#==.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 5304

static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}

#fetch(index) ⇒ element #fetch(index, default_value) ⇒ element, default_value #fetch(index) {|index| ... } ⇒ element, block_return_value

Returns the element of self at offset #index if #index is in range; #index must be an integer-convertible object.

With the single argument #index and no block, returns the element at offset #index:

a = [:foo, 'bar', 2]
a.fetch(1)   # => "bar"
a.fetch(1.1) # => "bar"

If #index is negative, counts from the end of the array:

a = [:foo, 'bar', 2]
a.fetch(-1) # => 2
a.fetch(-2) # => "bar"

With arguments #index and default_value (which may be any object) and no block, returns default_value if #index is out-of-range:

a = [:foo, 'bar', 2]
a.fetch(1, nil)  # => "bar"
a.fetch(3, :foo) # => :foo

With argument #index and a block, returns the element at offset #index if index is in range (and the block is not called); otherwise calls the block with index and returns its return value:

a = [:foo, 'bar', 2]
a.fetch(1) {|index| raise 'Cannot happen' } # => "bar"
a.fetch(50) {|index| "Value for #{index}" } # => "Value for 50"

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 2039

static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
    VALUE pos, ifnone;
    long block_given;
    long idx;

    rb_scan_args(argc, argv, "11", &pos, &ifnone);
    block_given = rb_block_given_p();
    if (block_given && argc == 2) {
        rb_warn("block supersedes default value argument");
    }
    idx = NUM2LONG(pos);

    if (idx < 0) {
        idx +=  RARRAY_LEN(ary);
    }
    if (idx < 0 || RARRAY_LEN(ary) <= idx) {
        if (block_given) return rb_yield(pos);
        if (argc == 1) {
            rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
                        idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
        }
        return ifnone;
    }
    return RARRAY_AREF(ary, idx);
}

#fetch_values(*indexes) ⇒ Array #fetch_values(*indexes) {|index| ... } ⇒ Array

With no block given, returns a new array containing the elements of self at the offsets specified by indexes. Each of the indexes must be an integer-convertible object:

a = [:foo, :bar, :baz]
a.fetch_values(2, 0)   # => [:baz, :foo]
a.fetch_values(2.1, 0) # => [:baz, :foo]
a.fetch_values         # => []

For a negative index, counts backwards from the end of the array:

a.fetch_values(-2, -1) # [:bar, :baz]

When no block is given, raises an exception if any index is out of range.

With a block given, for each index:

  • If the index is in range, uses an element of self (as above).

  • Otherwise, calls the block with the index and uses the block’s return value.

Example:

a = [:foo, :bar, :baz]
a.fetch_values(1, 0, 42, 777) { |index| index.to_s }
# => [:bar, :foo, "42", "777"]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.rb', line 210

def fetch_values(*indexes, &block)
  indexes.map! { |i| fetch(i, &block) }
  indexes
end

#fill(object, start = nil, count = nil) ⇒ Array #fill(object, range) ⇒ Array #fill(start = nil, count = nil) {|element| ... } ⇒ Array #fill(range) {|element| ... } ⇒ Array

Replaces selected elements in self; may add elements to self; always returns self (never a new array).

In brief:

# Non-negative start.
['a', 'b', 'c', 'd'].fill('-', 1, 2)          # => ["a", "-", "-", "d"]
['a', 'b', 'c', 'd'].fill(1, 2) {|e| e.to_s } # => ["a", "1", "2", "d"]

# Extends with specified values if necessary.
['a', 'b', 'c', 'd'].fill('-', 3, 2)          # => ["a", "b", "c", "-", "-"]
['a', 'b', 'c', 'd'].fill(3, 2) {|e| e.to_s } # => ["a", "b", "c", "3", "4"]

# Fills with nils if necessary.
['a', 'b', 'c', 'd'].fill('-', 6, 2)          # => ["a", "b", "c", "d", nil, nil, "-", "-"]
['a', 'b', 'c', 'd'].fill(6, 2) {|e| e.to_s } # => ["a", "b", "c", "d", nil, nil, "6", "7"]

# For negative start, counts backwards from the end.
['a', 'b', 'c', 'd'].fill('-', -3, 3)          # => ["a", "-", "-", "-"]
['a', 'b', 'c', 'd'].fill(-3, 3) {|e| e.to_s } # => ["a", "1", "2", "3"]

# Range.
['a', 'b', 'c', 'd'].fill('-', 1..2)          # => ["a", "-", "-", "d"]
['a', 'b', 'c', 'd'].fill(1..2) {|e| e.to_s } # => ["a", "1", "2", "d"]

When arguments start and #count are given, they select the elements of self to be replaced; each must be an integer-convertible object (or nil):

  • start specifies the zero-based offset of the first element to be replaced; nil means zero.

  • #count is the number of consecutive elements to be replaced; nil means “all the rest.”

With argument object given, that one object is used for all replacements:

o = Object.new           # => #<Object:0x0000014e7bff7600>
a = ['a', 'b', 'c', 'd'] # => ["a", "b", "c", "d"]
a.fill(o, 1, 2)
# => ["a", #<Object:0x0000014e7bff7600>, #<Object:0x0000014e7bff7600>, "d"]

With a block given, the block is called once for each element to be replaced; the value passed to the block is the index of the element to be replaced (not the element itself); the block’s return value replaces the element:

a = ['a', 'b', 'c', 'd']               # => ["a", "b", "c", "d"]
a.fill(1, 2) {|element| element.to_s } # => ["a", "1", "2", "d"]

For arguments start and #count:

  • If start is non-negative, replaces #count elements beginning at offset start:

    ['a', 'b', 'c', 'd'].fill('-', 0, 2) # => ["-", "-", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 1, 2) # => ["a", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 2, 2) # => ["a", "b", "-", "-"]
    
    ['a', 'b', 'c', 'd'].fill(0, 2) {|e| e.to_s } # => ["0", "1", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(1, 2) {|e| e.to_s } # => ["a", "1", "2", "d"]
    ['a', 'b', 'c', 'd'].fill(2, 2) {|e| e.to_s } # => ["a", "b", "2", "3"]

    Extends self if necessary:

    ['a', 'b', 'c', 'd'].fill('-', 3, 2) # => ["a", "b", "c", "-", "-"]
    ['a', 'b', 'c', 'd'].fill('-', 4, 2) # => ["a", "b", "c", "d", "-", "-"]
    
    ['a', 'b', 'c', 'd'].fill(3, 2) {|e| e.to_s } # => ["a", "b", "c", "3", "4"]
    ['a', 'b', 'c', 'd'].fill(4, 2) {|e| e.to_s } # => ["a", "b", "c", "d", "4", "5"]

    Fills with nil if necessary:

    ['a', 'b', 'c', 'd'].fill('-', 5, 2) # => ["a", "b", "c", "d", nil, "-", "-"]
    ['a', 'b', 'c', 'd'].fill('-', 6, 2) # => ["a", "b", "c", "d", nil, nil, "-", "-"]
    
    ['a', 'b', 'c', 'd'].fill(5, 2) {|e| e.to_s } # => ["a", "b", "c", "d", nil, "5", "6"]
    ['a', 'b', 'c', 'd'].fill(6, 2) {|e| e.to_s } # => ["a", "b", "c", "d", nil, nil, "6", "7"]

    Does nothing if #count is non-positive:

    ['a', 'b', 'c', 'd'].fill('-', 2, 0)    # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 2, -100) # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 6, -100) # => ["a", "b", "c", "d"]
    
    ['a', 'b', 'c', 'd'].fill(2, 0) {|e| fail 'Cannot happen' }    # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(2, -100) {|e| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(6, -100) {|e| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
  • If start is negative, counts backwards from the end of self:

    ['a', 'b', 'c', 'd'].fill('-', -4, 3) # => ["-", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill('-', -3, 3) # => ["a", "-", "-", "-"]
    
    ['a', 'b', 'c', 'd'].fill(-4, 3) {|e| e.to_s } # => ["0", "1", "2", "d"]
    ['a', 'b', 'c', 'd'].fill(-3, 3) {|e| e.to_s } # => ["a", "1", "2", "3"]

    Extends self if necessary:

    ['a', 'b', 'c', 'd'].fill('-', -2, 3) # => ["a", "b", "-", "-", "-"]
    ['a', 'b', 'c', 'd'].fill('-', -1, 3) # => ["a", "b", "c", "-", "-", "-"]
    
    ['a', 'b', 'c', 'd'].fill(-2, 3) {|e| e.to_s } # => ["a", "b", "2", "3", "4"]
    ['a', 'b', 'c', 'd'].fill(-1, 3) {|e| e.to_s } # => ["a", "b", "c", "3", "4", "5"]

    Starts at the beginning of self if start is negative and out-of-range:

    ['a', 'b', 'c', 'd'].fill('-', -5, 2) # => ["-", "-", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', -6, 2) # => ["-", "-", "c", "d"]
    
    ['a', 'b', 'c', 'd'].fill(-5, 2) {|e| e.to_s } # => ["0", "1", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(-6, 2) {|e| e.to_s } # => ["0", "1", "c", "d"]

    Does nothing if #count is non-positive:

    ['a', 'b', 'c', 'd'].fill('-', -2, 0)  # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', -2, -1) # => ["a", "b", "c", "d"]
    
    ['a', 'b', 'c', 'd'].fill(-2, 0) {|e| fail 'Cannot happen' }  # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(-2, -1) {|e| fail 'Cannot happen' } # => ["a", "b", "c", "d"]

When argument range is given, it must be a ::Range object whose members are numeric; its begin and end values determine the elements of self to be replaced:

  • If both begin and end are positive, they specify the first and last elements to be replaced:

    ['a', 'b', 'c', 'd'].fill('-', 1..2)          # => ["a", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill(1..2) {|e| e.to_s } # => ["a", "1", "2", "d"]

    If end is smaller than begin, replaces no elements:

    ['a', 'b', 'c', 'd'].fill('-', 2..1)          # => ["a", "b", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(2..1) {|e| e.to_s } # => ["a", "b", "c", "d"]
  • If either is negative (or both are negative), counts backwards from the end of self:

    ['a', 'b', 'c', 'd'].fill('-', -3..2)  # => ["a", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 1..-2)  # => ["a", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill('-', -3..-2) # => ["a", "-", "-", "d"]
    
    ['a', 'b', 'c', 'd'].fill(-3..2) {|e| e.to_s }  # => ["a", "1", "2", "d"]
    ['a', 'b', 'c', 'd'].fill(1..-2) {|e| e.to_s }  # => ["a", "1", "2", "d"]
    ['a', 'b', 'c', 'd'].fill(-3..-2) {|e| e.to_s } # => ["a", "1", "2", "d"]
  • If the end value is excluded (see Range#exclude_end?), omits the last replacement:

    ['a', 'b', 'c', 'd'].fill('-', 1...2)  # => ["a", "-", "c", "d"]
    ['a', 'b', 'c', 'd'].fill('-', 1...-2) # => ["a", "-", "c", "d"]
    
    ['a', 'b', 'c', 'd'].fill(1...2) {|e| e.to_s }  # => ["a", "1", "c", "d"]
    ['a', 'b', 'c', 'd'].fill(1...-2) {|e| e.to_s } # => ["a", "1", "c", "d"]
  • If the range is endless (see Endless Ranges), replaces elements to the end of self:

    ['a', 'b', 'c', 'd'].fill('-', 1..)          # => ["a", "-", "-", "-"]
    ['a', 'b', 'c', 'd'].fill(1..) {|e| e.to_s } # => ["a", "1", "2", "3"]
  • If the range is beginless (see Beginless Ranges), replaces elements from the beginning of self:

    ['a', 'b', 'c', 'd'].fill('-', ..2)          # => ["-", "-", "-", "d"]
    ['a', 'b', 'c', 'd'].fill(..2) {|e| e.to_s } # => ["0", "1", "2", "d"]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 4927

static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
    VALUE item = Qundef, arg1, arg2;
    long beg = 0, end = 0, len = 0;

    if (rb_block_given_p()) {
        rb_scan_args(argc, argv, "02", &arg1, &arg2);
        argc += 1;		/* hackish */
    }
    else {
        rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
    }
    switch (argc) {
      case 1:
        beg = 0;
        len = RARRAY_LEN(ary);
        break;
      case 2:
        if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
            break;
        }
        /* fall through */
      case 3:
        beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
        if (beg < 0) {
            beg = RARRAY_LEN(ary) + beg;
            if (beg < 0) beg = 0;
        }
        len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
        break;
    }
    rb_ary_modify(ary);
    if (len < 0) {
        return ary;
    }
    if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
        rb_raise(rb_eArgError, "argument too big");
    }
    end = beg + len;
    if (RARRAY_LEN(ary) < end) {
        if (end >= ARY_CAPA(ary)) {
            ary_resize_capa(ary, end);
        }
        ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
        ARY_SET_LEN(ary, end);
    }

    if (UNDEF_P(item)) {
        VALUE v;
        long i;

        for (i=beg; i<end; i++) {
            v = rb_yield(LONG2NUM(i));
            if (i>=RARRAY_LEN(ary)) break;
            ARY_SET(ary, i, v);
        }
    }
    else {
        ary_memfill(ary, beg, len, item);
    }
    return ary;
}

#select {|element| ... } ⇒ Array #selectEnumerator #filter {|element| ... } ⇒ Array #filterEnumerator
Also known as: #select

With a block given, calls the block with each element of self; returns a new array containing those elements of self for which the block returns a truthy value:

a = [:foo, 'bar', 2, :bam]
a.select {|element| element.to_s.start_with?('b') }
# => ["bar", :bam]

With no block given, returns a new ::Enumerator.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3877

static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
            rb_ary_push(result, rb_ary_elt(ary, i));
        }
    }
    return result;
}

#select! {|element| ... } ⇒ self? #select!Enumerator #filter! {|element| ... } ⇒ self? #filter!Enumerator
Also known as: #select!

With a block given, calls the block with each element of self; removes from self those elements for which the block returns false or nil.

Returns self if any elements were removed:

a = [:foo, 'bar', 2, :bam]
a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam]

Returns nil if no elements were removed.

With no block given, returns a new ::Enumerator.

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 3960

static VALUE
rb_ary_select_bang(VALUE ary)
{
    struct select_bang_arg args;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);

    args.ary = ary;
    args.len[0] = args.len[1] = 0;
    return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
}

#find_index(object) ⇒ Integer? #find_index {|element| ... } ⇒ Integer? #find_indexEnumerator #index(object) ⇒ Integer? #index {|element| ... } ⇒ Integer? #indexEnumerator

Alias for #index.

#firstObject? #first(count) ⇒ Array

Returns elements from self, or nil; does not modify self.

With no argument given, returns the first element (if available):

a = [:foo, 'bar', 2]
a.first # => :foo
a # => [:foo, "bar", 2]

If self is empty, returns nil.

[].first # => nil

With a non-negative integer argument #count given, returns the first #count elements (as available) in a new array:

a.first(0)  # => []
a.first(2)  # => [:foo, "bar"]
a.first(50) # => [:foo, "bar", 2]

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.rb', line 129

def first n = unspecified = true
  if Primitive.mandatory_only?
    Primitive.attr! :leaf
    Primitive.cexpr! %q{ ary_first(self) }
  else
    if unspecified
      Primitive.cexpr! %q{ ary_first(self) }
    else
      Primitive.cexpr! %q{  ary_take_first_or_last_n(self, NUM2LONG(n), ARY_TAKE_FIRST) }
    end
  end
end

#flatten(depth = nil) ⇒ Array

Returns a new array that is a recursive flattening of self to depth levels of recursion; depth must be an integer-convertible object or nil. At each level of recursion:

  • Each element that is an array is “flattened” (that is, replaced by its individual array elements).

  • Each element that is not an array is unchanged (even if the element is an object that has instance method flatten).

With non-negative integer argument depth, flattens recursively through depth levels:

a = [ 0, [ 1, [2, 3], 4 ], 5, {foo: 0}, Set.new([6, 7]) ]
a              # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(0)   # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(1  ) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(1.1) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(2)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(3)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

With nil or negative depth, flattens all levels.

a.flatten     # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(-1) # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

Related: Array#flatten!; see also Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 6675

static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
    int level = -1;
    VALUE result;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) {
        level = NUM2INT(argv[0]);
        if (level == 0) return ary_make_shared_copy(ary);
    }

    result = flatten(ary, level);
    if (result == ary) {
        result = ary_make_shared_copy(ary);
    }

    return result;
}

#flatten!(depth = nil) ⇒ self?

Returns self as a recursively flattening of self to depth levels of recursion; depth must be an integer-convertible object, or nil. At each level of recursion:

  • Each element that is an array is “flattened” (that is, replaced by its individual array elements).

  • Each element that is not an array is unchanged (even if the element is an object that has instance method #flatten).

Returns nil if no elements were flattened.

With non-negative integer argument depth, flattens recursively through depth levels:

a = [ 0, [ 1, [2, 3], 4 ], 5, {foo: 0}, Set.new([6, 7]) ]
a                   # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(1)   # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(1.1) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(2)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(3)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

With nil or negative argument depth, flattens all levels:

a.dup.flatten!     # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(-1) # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

Related: Array#flatten; see also Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 6618

static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    lv = (rb_check_arity(argc, 0, 1) ? argv[0] : Qnil);
    rb_ary_modify_check(ary);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return Qnil;

    result = flatten(ary, level);
    if (result == ary) {
        return Qnil;
    }
    if (!(mod = ARY_EMBED_P(result))) rb_ary_freeze(result);
    rb_ary_replace(ary, result);
    if (mod) ARY_SET_EMBED_LEN(result, 0);

    return ary;
}

#freezeself

Freezes self (if not already frozen); returns self:

a = []
a.frozen? # => false
a.freeze
a.frozen? # => true

No further changes may be made to self; raises ::FrozenError if a change is attempted.

Related: Object#frozen?.

[ GitHub ]

  
# File 'array.c', line 641

VALUE
rb_ary_freeze(VALUE ary)
{
    RUBY_ASSERT(RB_TYPE_P(ary, T_ARRAY));

    if (OBJ_FROZEN(ary)) return ary;

    if (!ARY_EMBED_P(ary) && !ARY_SHARED_P(ary) && !ARY_SHARED_ROOT_P(ary)) {
        ary_shrink_capa(ary);
    }

    return rb_obj_freeze(ary);
}

#hashInteger

Returns the integer hash value for self.

Two arrays with the same content will have the same hash value (and will compare using eql?):

['a', 'b'].hash == ['a', 'b'].hash # => true
['a', 'b'].hash == ['a', 'c'].hash # => false
['a', 'b'].hash == ['a'].hash      # => false
[ GitHub ]

  
# File 'array.c', line 5346

static VALUE
rb_ary_hash(VALUE ary)
{
    return rb_ary_hash_values(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary));
}

#include?(object) ⇒ Boolean

Returns whether for some element element in self, object == element:

[0, 1, 2].include?(2)   # => true
[0, 1, 2].include?(2.0) # => true
[0, 1, 2].include?(2.1) # => false

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 5366

VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
    long i;
    VALUE e;

    for (i=0; i<RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (rb_equal(e, item)) {
            return Qtrue;
        }
    }
    return Qfalse;
}

#find_index(object) ⇒ Integer? #find_index {|element| ... } ⇒ Integer? #find_indexEnumerator #index(object) ⇒ Integer? #index {|element| ... } ⇒ Integer? #indexEnumerator
Also known as: #find_index

Returns the zero-based integer index of a specified element, or nil.

With only argument object given, returns the index of the first element element for which object == element:

a = [:foo, 'bar', 2, 'bar']
a.index('bar') # => 1

Returns nil if no such element found.

With only a block given, calls the block with each successive element; returns the index of the first element for which the block returns a truthy value:

a = [:foo, 'bar', 2, 'bar']
a.index {|element| element == 'bar' } # => 1

Returns nil if the block never returns a truthy value.

With neither an argument nor a block given, returns a new ::Enumerator.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 2101

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        for (i=0; i<RARRAY_LEN(ary); i++) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
                return LONG2NUM(i);
            }
        }
        return Qnil;
    }
    rb_check_arity(argc, 0, 1);
    val = argv[0];
    if (rb_block_given_p())
        rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
        VALUE e = RARRAY_AREF(ary, i);
        if (rb_equal(e, val)) {
            return LONG2NUM(i);
        }
    }
    return Qnil;
}

#initialize_copy(other_array) ⇒ self #replace(other_array) ⇒ self

Alias for #replace.

#insert(index, *objects) ⇒ self

Inserts the given objects as elements of self; returns self.

When #index is non-negative, inserts objects before the element at offset #index:

a = ['a', 'b', 'c']     # => ["a", "b", "c"]
a.insert(1, :x, :y, :z) # => ["a", :x, :y, :z, "b", "c"]

Extends the array if #index is beyond the array (index >= self.size):

a = ['a', 'b', 'c']     # => ["a", "b", "c"]
a.insert(5, :x, :y, :z) # => ["a", "b", "c", nil, nil, :x, :y, :z]

When #index is negative, inserts objects after the element at offset index + self.size:

a = ['a', 'b', 'c']      # => ["a", "b", "c"]
a.insert(-2, :x, :y, :z) # => ["a", "b", :x, :y, :z, "c"]

With no objects given, does nothing:

a = ['a', 'b', 'c'] # => ["a", "b", "c"]
a.insert(1)         # => ["a", "b", "c"]
a.insert(50)        # => ["a", "b", "c"]
a.insert(-50)       # => ["a", "b", "c"]

Raises IndexError if objects are given and #index is negative and out of range.

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 2554

static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
    long pos;

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_ary_modify_check(ary);
    pos = NUM2LONG(argv[0]);
    if (argc == 1) return ary;
    if (pos == -1) {
        pos = RARRAY_LEN(ary);
    }
    else if (pos < 0) {
        long minpos = -RARRAY_LEN(ary) - 1;
        if (pos < minpos) {
            rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
                     pos, minpos);
        }
        pos++;
    }
    rb_ary_splice(ary, pos, 0, argv + 1, argc - 1);
    return ary;
}

#inspectString #to_sString

Alias for #to_s.

#intersect?(other_array) ⇒ Boolean

Returns whether other_array has at least one element that is #eql? to some element of self:

[1, 2, 3].intersect?([3, 4, 5]) # => true
[1, 2, 3].intersect?([4, 5, 6]) # => false

Each element must correctly implement method #hash.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 5844

static VALUE
rb_ary_intersect_p(VALUE ary1, VALUE ary2)
{
    VALUE hash, v, result, shorter, longer;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return Qfalse;

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            v = RARRAY_AREF(ary1, i);
            if (rb_ary_includes_by_eql(ary2, v)) return Qtrue;
        }
        return Qfalse;
    }

    shorter = ary1;
    longer = ary2;
    if (RARRAY_LEN(ary1) > RARRAY_LEN(ary2)) {
        longer = ary1;
        shorter = ary2;
    }

    hash = ary_make_hash(shorter);
    result = Qfalse;

    for (i=0; i<RARRAY_LEN(longer); i++) {
        v = RARRAY_AREF(longer, i);
        vv = (st_data_t)v;
        if (rb_hash_stlike_lookup(hash, vv, 0)) {
            result = Qtrue;
            break;
        }
    }

    return result;
}

#intersection(*other_arrays) ⇒ Array

Returns a new array containing each element in self that is #eql? to at least one element in each of the given other_arrays; duplicates are omitted:

[0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]

Each element must correctly implement method #hash.

Order from self is preserved:

[0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]

Returns a copy of self if no arguments are given.

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5701

static VALUE
rb_ary_intersection_multi(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = rb_ary_dup(ary);
    int i;

    for (i = 0; i < argc; i++) {
        result = rb_ary_and(result, argv[i]);
    }

    return result;
}

#join(separator = $,) ⇒ String

Returns the new string formed by joining the converted elements of self; for each element element:

  • Converts recursively using element.join(separator) if element is a kind_of?(Array).

  • Otherwise, converts using element.to_s.

With no argument given, joins using the output field separator, $,:

a = [:foo, 'bar', 2]
$, # => nil
a.join # => "foobar2"

With string argument separator given, joins using that separator:

a = [:foo, 'bar', 2]
a.join("\n") # => "foo\nbar\n2"

Joins recursively for nested arrays:

a = [:foo, [:bar, [:baz, :bat]]]
a.join # => "foobarbazbat"

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 2952

static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE sep;

    if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(sep = argv[0])) {
        sep = rb_output_fs;
        if (!NIL_P(sep)) {
            rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value");
        }
    }

    return rb_ary_join(ary, sep);
}

#keep_if {|element| ... } ⇒ self #keep_ifEnumerator

With a block given, calls the block with each element of self; removes the element from self if the block does not return a truthy value:

a = [:foo, 'bar', 2, :bam]
a.keep_if {|element| element.to_s.start_with?('b') } # => ["bar", :bam]

With no block given, returns a new ::Enumerator.

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 3989

static VALUE
rb_ary_keep_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_select_bang(ary);
    return ary;
}

#lastlast_object? #last(count) ⇒ Array

Returns elements from self, or nil; self is not modified.

With no argument given, returns the last element, or nil if self is empty:

a = [:foo, 'bar', 2]
a.last # => 2
a # => [:foo, "bar", 2]
[].last # => nil

With non-negative integer argument #count given, returns a new array containing the trailing #count elements of self, as available:

a = [:foo, 'bar', 2]
a.last(2)  # => ["bar", 2]
a.last(50) # => [:foo, "bar", 2]
a.last(0)  # => []
[].last(3) # => []

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.rb', line 166

def last n = unspecified = true
  if Primitive.mandatory_only?
    Primitive.attr! :leaf
    Primitive.cexpr! %q{ ary_last(self) }
  else
    if unspecified
      Primitive.cexpr! %q{ ary_last(self) }
    else
      Primitive.cexpr! %q{ ary_take_first_or_last_n(self, NUM2LONG(n), ARY_TAKE_LAST) }
    end
  end
end

#lengthInteger #sizeInteger
Also known as: #size

Returns the count of elements in self:

[0, 1, 2].length # => 3
[].length        # => 0

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 2747

static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}

#collect {|element| ... } ⇒ Array #collectEnumerator #map {|element| ... } ⇒ Array #mapEnumerator
Also known as: #collect

With a block given, calls the block with each element of self; returns a new array whose elements are the return values from the block:

a = [:foo, 'bar', 2]
a1 = a.map {|element| element.class }
a1 # => [Symbol, String, Integer]

With no block given, returns a new ::Enumerator.

Related: #collect!; see also Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 3636

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
    }
    return collect;
}

#collect! {|element| ... } ⇒ Array #collect!Enumerator #map! {|element| ... } ⇒ Array #map!Enumerator
Also known as: #collect!

With a block given, calls the block with each element of self and replaces the element with the block’s return value; returns self:

a = [:foo, 'bar', 2]
a.map! { |element| element.class } # => [Symbol, String, Integer]

With no block given, returns a new ::Enumerator.

Related: #collect; see also Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 3671

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
    }
    return ary;
}

#maxelement #max(count) ⇒ Array #max {|a, b| ... } ⇒ element #max(count) {|a, b| ... } ⇒ Array

Returns one of the following:

  • The maximum-valued element from self.

  • A new array of maximum-valued elements from self.

Does not modify self.

With no block given, each element in self must respond to method #<=> with a numeric.

With no argument and no block, returns the element in self having the maximum value per method #<=>:

[1, 0, 3, 2].max # => 3

With non-negative numeric argument #count and no block, returns a new array with at most #count elements, in descending order, per method #<=>:

[1, 0, 3, 2].max(3)   # => [3, 2, 1]
[1, 0, 3, 2].max(3.0) # => [3, 2, 1]
[1, 0, 3, 2].max(9)   # => [3, 2, 1, 0]
[1, 0, 3, 2].max(0)   # => []

With a block given, the block must return a numeric.

With a block and no argument, calls the block self.size - 1 times to compare elements; returns the element having the maximum value per the block:

['0', '', '000', '00'].max {|a, b| a.size <=> b.size }
# => "000"

With non-negative numeric argument #count and a block, returns a new array with at most #count elements, in descending order, per the block:

['0', '', '000', '00'].max(2) {|a, b| a.size <=> b.size }
# => ["000", "00"]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 6021

static VALUE
rb_ary_max(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = Qundef, v;
    VALUE num;
    long i;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(ary, num, 0, 1, 1);

    const long n = RARRAY_LEN(ary);
    if (rb_block_given_p()) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
           v = RARRAY_AREF(ary, i);
           if (UNDEF_P(result) || rb_cmpint(rb_yield_values(2, v, result), v, result) > 0) {
               result = v;
           }
        }
    }
    else if (n > 0) {
        result = RARRAY_AREF(ary, 0);
        if (n > 1) {
            if (FIXNUM_P(result) && CMP_OPTIMIZABLE(INTEGER)) {
                return ary_max_opt_fixnum(ary, 1, result);
            }
            else if (STRING_P(result) && CMP_OPTIMIZABLE(STRING)) {
                return ary_max_opt_string(ary, 1, result);
            }
            else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(FLOAT)) {
                return ary_max_opt_float(ary, 1, result);
            }
            else {
                return ary_max_generic(ary, 1, result);
            }
        }
    }
    if (UNDEF_P(result)) return Qnil;
    return result;
}

#minelement #min(count) ⇒ Array #min {|a, b| ... } ⇒ element #min(count) {|a, b| ... } ⇒ Array

Returns one of the following:

  • The minimum-valued element from self.

  • A new array of minimum-valued elements from self.

Does not modify self.

With no block given, each element in self must respond to method #<=> with a numeric.

With no argument and no block, returns the element in self having the minimum value per method #<=>:

[1, 0, 3, 2].min # => 0

With non-negative numeric argument #count and no block, returns a new array with at most #count elements, in ascending order, per method #<=>:

[1, 0, 3, 2].min(3)   # => [0, 1, 2]
[1, 0, 3, 2].min(3.0) # => [0, 1, 2]
[1, 0, 3, 2].min(9)   # => [0, 1, 2, 3]
[1, 0, 3, 2].min(0)   # => []

With a block given, the block must return a numeric.

With a block and no argument, calls the block self.size - 1 times to compare elements; returns the element having the minimum value per the block:

['0', '', '000', '00'].min {|a, b| a.size <=> b.size }
# => ""

With non-negative numeric argument #count and a block, returns a new array with at most #count elements, in ascending order, per the block:

['0', '', '000', '00'].min(2) {|a, b| a.size <=> b.size }
# => ["", "0"]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 6198

static VALUE
rb_ary_min(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = Qundef, v;
    VALUE num;
    long i;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(ary, num, 0, 0, 1);

    const long n = RARRAY_LEN(ary);
    if (rb_block_given_p()) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
           v = RARRAY_AREF(ary, i);
           if (UNDEF_P(result) || rb_cmpint(rb_yield_values(2, v, result), v, result) < 0) {
               result = v;
           }
        }
    }
    else if (n > 0) {
        result = RARRAY_AREF(ary, 0);
        if (n > 1) {
            if (FIXNUM_P(result) && CMP_OPTIMIZABLE(INTEGER)) {
                return ary_min_opt_fixnum(ary, 1, result);
            }
            else if (STRING_P(result) && CMP_OPTIMIZABLE(STRING)) {
                return ary_min_opt_string(ary, 1, result);
            }
            else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(FLOAT)) {
                return ary_min_opt_float(ary, 1, result);
            }
            else {
                return ary_min_generic(ary, 1, result);
            }
        }
    }
    if (UNDEF_P(result)) return Qnil;
    return result;
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a 2-element array containing the minimum-valued and maximum-valued elements from self; does not modify self.

With no block given, the minimum and maximum values are determined using method #<=>:

[1, 0, 3, 2].minmax # => [0, 3]

With a block given, the block must return a numeric; the block is called self.size - 1 times to compare elements; returns the elements having the minimum and maximum values per the block:

['0', '', '000', '00'].minmax {|a, b| a.size <=> b.size }
# => ["", "000"]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 6260

static VALUE
rb_ary_minmax(VALUE ary)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(rb_ary_min(0, 0, ary), rb_ary_max(0, 0, ary));
}

#none?Boolean #none?(object) ⇒ Boolean #none? {|element| ... } ⇒ Boolean

Returns true if no element of self meets a given criterion, false otherwise.

With no block given and no argument, returns true if self has no truthy elements, false otherwise:

[nil, false].none?    # => true
[nil, 0, false].none? # => false
[].none?              # => true

With argument object given, returns false if for any element element, object === element; true otherwise:

['food', 'drink'].none?(/bar/) # => true
['food', 'drink'].none?(/foo/) # => false
[].none?(/foo/)                # => true
[0, 1, 2].none?(3)             # => true
[0, 1, 2].none?(1)             # => false

With a block given, calls the block with each element in self; returns true if the block returns no truthy value, false otherwise:

[0, 1, 2].none? {|element| element > 3 } # => true
[0, 1, 2].none? {|element| element > 1 } # => false

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 7911

static VALUE
rb_ary_none_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qtrue;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) return Qfalse;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    return Qtrue;
}

#one?Boolean #one? {|element| ... } ⇒ Boolean #one?(object) ⇒ Boolean

Returns true if exactly one element of self meets a given criterion.

With no block given and no argument, returns true if self has exactly one truthy element, false otherwise:

[nil, 0].one? # => true
[0, 0].one? # => false
[nil, nil].one? # => false
[].one? # => false

With a block given, calls the block with each element in self; returns true if the block a truthy value for exactly one element, false otherwise:

[0, 1, 2].one? {|element| element > 0 } # => false
[0, 1, 2].one? {|element| element > 1 } # => true
[0, 1, 2].one? {|element| element > 2 } # => false

With argument object given, returns true if for exactly one element element, object === element; false otherwise:

[0, 1, 2].one?(0) # => true
[0, 0, 1].one?(0) # => false
[1, 1, 2].one?(0) # => false
['food', 'drink'].one?(/bar/) # => false
['food', 'drink'].one?(/foo/) # => true
[].one?(/foo/) # => false

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 7975

static VALUE
rb_ary_one_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);
    VALUE result = Qfalse;

    rb_check_arity(argc, 0, 1);
    if (!len) return Qfalse;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    return result;
}

#pack(template, buffer: nil) ⇒ String

Formats each element in self into a binary string; returns that string. See Packed Data.

[ GitHub ]

  
# File 'pack.rb', line 7

def pack(fmt, buffer: nil)
  Primitive.pack_pack(fmt, buffer)
end

#permutation(count = self.size) {|permutation| ... } ⇒ self #permutation(count = self.size) ⇒ Enumerator

Iterates over permutations of the elements of self; the order of permutations is indeterminate.

With a block and an in-range positive integer argument #count (0 < count <= self.size) given, calls the block with each permutation of self of size #count; returns self:

a = [0, 1, 2]
perms = []
a.permutation(1) {|perm| perms.push(perm) }
perms # => [[0], [1], [2]]

perms = []
a.permutation(2) {|perm| perms.push(perm) }
perms # => [[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]

perms = []
a.permutation(3) {|perm| perms.push(perm) }
perms # => [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]

When #count is zero, calls the block once with a new empty array:

perms = []
a.permutation(0) {|perm| perms.push(perm) }
perms # => [[]]

When #count is out of range (negative or larger than self.size), does not call the block:

a.permutation(-1) {|permutation| fail 'Cannot happen' }
a.permutation(4) {|permutation| fail 'Cannot happen' }

With no block given, returns a new ::Enumerator.

Related: Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 7106

static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size);   /* Return enumerator if no block */
    r = n;
    if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0]))
        r = NUM2LONG(argv[0]);            /* Permutation size from argument */

    if (r < 0 || n < r) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, r+roomof(n, sizeof(long)));
        char *used = (char*)(p + r);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        MEMZERO(used, char, n); /* initialize array */

        permute0(n, r, p, used, ary0); /* compute and yield permutations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#popObject? #pop(count) ⇒ Array

Removes and returns trailing elements of self.

With no argument given, removes and returns the last element, if available; otherwise returns nil:

a = [:foo, 'bar', 2]
a.pop  # => 2
a      # => [:foo, "bar"]
[].pop # => nil

With non-negative integer argument #count given, returns a new array containing the trailing #count elements of self, as available:

a = [:foo, 'bar', 2]
a.pop(2) # => ["bar", 2]
a        # => [:foo]

a = [:foo, 'bar', 2]
a.pop(50) # => [:foo, "bar", 2]
a         # => []

Related: Array#push; see also Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 1473

static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;

    if (argc == 0) {
        return rb_ary_pop(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
    ary_verify(ary);
    return result;
}

#unshift(*objects) ⇒ self #prepend(*objects) ⇒ self
Also known as: #unshift

Prepends the given objects to self:

a = [:foo, 'bar', 2]
a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]

Related: Array#shift; see also Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 1695

VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE target_ary;

    if (argc == 0) {
        rb_ary_modify_check(ary);
        return ary;
    }

    target_ary = ary_ensure_room_for_unshift(ary, argc);
    ary_memcpy0(ary, 0, argc, argv, target_ary);
    ARY_SET_LEN(ary, len + argc);
    return ary;
}

#product(*other_arrays) ⇒ Array #product(*other_arrays) {|combination| ... } ⇒ self

Computes all combinations of elements from all the arrays, including both self and other_arrays:

  • The number of combinations is the product of the sizes of all the arrays, including both self and other_arrays.

  • The order of the returned combinations is indeterminate.

With no block given, returns the combinations as an array of arrays:

p = [0, 1].product([2, 3])
# => [[0, 2], [0, 3], [1, 2], [1, 3]]
p.size # => 4
p = [0, 1].product([2, 3], [4, 5])
# => [[0, 2, 4], [0, 2, 5], [0, 3, 4], [0, 3, 5], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3,...
p.size # => 8

If self or any argument is empty, returns an empty array:

[].product([2, 3], [4, 5]) # => []
[0, 1].product([2, 3], []) # => []

If no argument is given, returns an array of 1-element arrays, each containing an element of self:

a.product # => [[0], [1], [2]]

With a block given, calls the block with each combination; returns self:

p = []
[0, 1].product([2, 3]) {|combination| p.push(combination) }
p # => [[0, 2], [0, 3], [1, 2], [1, 3]]

If self or any argument is empty, does not call the block:

[].product([2, 3], [4, 5]) {|combination| fail 'Cannot happen' }
# => []
[0, 1].product([2, 3], []) {|combination| fail 'Cannot happen' }
# => [0, 1]

If no argument is given, calls the block with each element of self as a 1-element array:

p = []
[0, 1].product {|combination| p.push(combination) }
p # => [[0], [1]]

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 7532

static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
    int n = argc+1;    /* How many arrays we're operating on */
    volatile VALUE t0 = rb_ary_hidden_new(n);
    volatile VALUE t1 = Qundef;
    VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
    int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
    VALUE result = Qnil;      /* The array we'll be returning, when no block given */
    long i,j;
    long resultlen = 1;

    RBASIC_CLEAR_CLASS(t0);

    /* initialize the arrays of arrays */
    ARY_SET_LEN(t0, n);
    arrays[0] = ary;
    for (i = 1; i < n; i++) arrays[i] = Qnil;
    for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);

    /* initialize the counters for the arrays */
    for (i = 0; i < n; i++) counters[i] = 0;

    /* Otherwise, allocate and fill in an array of results */
    if (rb_block_given_p()) {
        /* Make defensive copies of arrays; exit if any is empty */
        for (i = 0; i < n; i++) {
            if (RARRAY_LEN(arrays[i]) == 0) goto done;
            arrays[i] = ary_make_shared_copy(arrays[i]);
        }
    }
    else {
        /* Compute the length of the result array; return [] if any is empty */
        for (i = 0; i < n; i++) {
            long k = RARRAY_LEN(arrays[i]);
            if (k == 0) {
                result = rb_ary_new2(0);
                goto done;
            }
            if (MUL_OVERFLOW_LONG_P(resultlen, k))
                rb_raise(rb_eRangeError, "too big to product");
            resultlen *= k;
        }
        result = rb_ary_new2(resultlen);
    }
    for (;;) {
        int m;
        /* fill in one subarray */
        VALUE subarray = rb_ary_new2(n);
        for (j = 0; j < n; j++) {
            rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
        }

        /* put it on the result array */
        if (NIL_P(result)) {
            FL_SET(t0, RARRAY_SHARED_ROOT_FLAG);
            rb_yield(subarray);
            if (!FL_TEST(t0, RARRAY_SHARED_ROOT_FLAG)) {
                rb_raise(rb_eRuntimeError, "product reentered");
            }
            else {
                FL_UNSET(t0, RARRAY_SHARED_ROOT_FLAG);
            }
        }
        else {
            rb_ary_push(result, subarray);
        }

        /*
         * Increment the last counter.  If it overflows, reset to 0
         * and increment the one before it.
         */
        m = n-1;
        counters[m]++;
        while (counters[m] == RARRAY_LEN(arrays[m])) {
            counters[m] = 0;
            /* If the first counter overflows, we are done */
            if (--m < 0) goto done;
            counters[m]++;
        }
    }

done:
    ALLOCV_END(t1);

    return NIL_P(result) ? ary : result;
}

#push(*objects) ⇒ self #append(*objects) ⇒ self
Also known as: #append

Appends each argument in objects to self; returns self:

a = [:foo, 'bar', 2] # => [:foo, "bar", 2]
a.push(:baz, :bat)   # => [:foo, "bar", 2, :baz, :bat]

Appends each argument as a single element, even if it is another array:

a = [:foo, 'bar', 2]               # => [:foo, "bar", 2]
  a.push([:baz, :bat], [:bam, :bad]) # => [:foo, "bar", 2, [:baz, :bat], [:bam, :bad]]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 1418

static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
    return rb_ary_cat(ary, argv, argc);
}

#rassoc(object) ⇒ Array?

Returns the first element ele in self such that ele is an array and ele[1] == object:

a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
a.rassoc(4) # => [2, 4]
a.rassoc(5) # => [4, 5, 6]

Returns nil if no such element is found.

Related: Array#assoc; see also Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 5183

VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = rb_check_array_type(RARRAY_AREF(ary, i));
        if (RB_TYPE_P(v, T_ARRAY) &&
            RARRAY_LEN(v) > 1 &&
            rb_equal(RARRAY_AREF(v, 1), value))
            return v;
    }
    return Qnil;
}

#reject {|element| ... } ⇒ Array #rejectEnumerator

With a block given, returns a new array whose elements are all those from self for which the block returns false or nil:

a = [:foo, 'bar', 2, 'bat']
a1 = a.reject {|element| element.to_s.start_with?('b') }
a1 # => [:foo, 2]

With no block given, returns a new ::Enumerator.

Related: Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 4400

static VALUE
rb_ary_reject(VALUE ary)
{
    VALUE rejected_ary;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rejected_ary = rb_ary_new();
    ary_reject(ary, rejected_ary);
    return rejected_ary;
}

#reject! {|element| ... } ⇒ self? #reject!Enumerator

With a block given, calls the block with each element of self; removes each element for which the block returns a truthy value.

Returns self if any elements removed:

a = [:foo, 'bar', 2, 'bat']
a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]

Returns nil if no elements removed.

With no block given, returns a new ::Enumerator.

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4375

static VALUE
rb_ary_reject_bang(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    return ary_reject_bang(ary);
}

#repeated_combination(size) {|combination| ... } ⇒ self #repeated_combination(size) ⇒ Enumerator

With a block given, calls the block with each repeated combination of length #size of the elements of self; each combination is an array; returns self. The order of the combinations is indeterminate.

If a positive integer argument #size is given, calls the block with each #size-tuple repeated combination of the elements of self. The number of combinations is (size+1)(size+2)/2.

Examples:

If #size is zero, calls the block once with an empty array.

If #size is negative, does not call the block:

[0, 1, 2].repeated_combination(-1) {|combination| fail 'Cannot happen' }

With no block given, returns a new ::Enumerator.

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 7444

static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);                 /* Combination size from argument */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size);   /* Return enumerator if no block */
    len = RARRAY_LEN(ary);
    if (n < 0) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else if (len == 0) {
        /* yield nothing */
    }
    else {
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, n);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#repeated_permutation(size) {|permutation| ... } ⇒ self #repeated_permutation(size) ⇒ Enumerator

With a block given, calls the block with each repeated permutation of length #size of the elements of self; each permutation is an array; returns self. The order of the permutations is indeterminate.

If a positive integer argument #size is given, calls the block with each #size-tuple repeated permutation of the elements of self. The number of permutations is self.size**size.

Examples:

If #size is zero, calls the block once with an empty array.

If #size is negative, does not call the block:

[0, 1, 2].repeated_permutation(-1) {|permutation| fail 'Cannot happen' }

With no block given, returns a new ::Enumerator.

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 7338

static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size);      /* Return Enumerator if no block */
    r = NUM2LONG(num);                    /* Permutation size from argument */

    if (r < 0) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, r);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#initialize_copy(other_array) ⇒ self #replace(other_array) ⇒ self
Also known as: #initialize_copy

Replaces the elements of self with the elements of other_array, which must be an array-convertible object; returns self:

a = ['a', 'b', 'c']   # => ["a", "b", "c"]
a.replace(['d', 'e']) # => ["d", "e"]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 4673

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    rb_ary_reset(copy);

    /* orig has enough space to embed the contents of orig. */
    if (RARRAY_LEN(orig) <= ary_embed_capa(copy)) {
        RUBY_ASSERT(ARY_EMBED_P(copy));
        ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR(orig));
        ARY_SET_EMBED_LEN(copy, RARRAY_LEN(orig));
    }
    /* orig is embedded but copy does not have enough space to embed the
     * contents of orig. */
    else if (ARY_EMBED_P(orig)) {
        long len = ARY_EMBED_LEN(orig);
        VALUE *ptr = ary_heap_alloc_buffer(len);

        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ptr);
        ARY_SET_LEN(copy, len);
        ARY_SET_CAPA(copy, len);

        // No allocation and exception expected that could leave `copy` in a
        // bad state from the edits above.
        ary_memcpy(copy, 0, len, RARRAY_CONST_PTR(orig));
    }
    /* Otherwise, orig is on heap and copy does not have enough space to embed
     * the contents of orig. */
    else {
        VALUE shared_root = ary_make_shared(orig);
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ARY_HEAP_PTR(orig));
        ARY_SET_LEN(copy, ARY_HEAP_LEN(orig));
        rb_ary_set_shared(copy, shared_root);
    }
    ary_verify(copy);
    return copy;
}

#reverseArray

Returns a new array containing the elements of self in reverse order:

[0, 1, 2].reverse # => [2, 1, 0]

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 3159

static VALUE
rb_ary_reverse_m(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE dup = rb_ary_new2(len);

    if (len > 0) {
        const VALUE *p1 = RARRAY_CONST_PTR(ary);
        VALUE *p2 = (VALUE *)RARRAY_CONST_PTR(dup) + len - 1;
        do *p2-- = *p1++; while (--len > 0);
    }
    ARY_SET_LEN(dup, RARRAY_LEN(ary));
    return dup;
}

#reverse!self

Reverses the order of the elements of self; returns self:

a = [0, 1, 2]
a.reverse! # => [2, 1, 0]
a          # => [2, 1, 0]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 3142

static VALUE
rb_ary_reverse_bang(VALUE ary)
{
    return rb_ary_reverse(ary);
}

#reverse_each {|element| ... } ⇒ self #reverse_eachEnumerator

When a block given, iterates backwards over the elements of self, passing, in reverse order, each element to the block; returns self:

a = []
[0, 1, 2].reverse_each {|element| a.push(element) }
a # => [2, 1, 0]

Allows the array to be modified during iteration:

a = ['a', 'b', 'c']
a.reverse_each {|element| a.clear if element.start_with?('b') }
a # => []

When no block given, returns a new ::Enumerator.

Related: see Methods for Iterating.

[ GitHub ]

  
# File 'array.c', line 2716

static VALUE
rb_ary_reverse_each(VALUE ary)
{
    long len;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    len = RARRAY_LEN(ary);
    while (len--) {
        long nlen;
        rb_yield(RARRAY_AREF(ary, len));
        nlen = RARRAY_LEN(ary);
        if (nlen < len) {
            len = nlen;
        }
    }
    return ary;
}

#rindex(object) ⇒ Integer? #rindex {|element| ... } ⇒ Integer? #rindexEnumerator

Returns the index of the last element for which object == element.

With argument object given, returns the index of the last such element found:

a = [:foo, 'bar', 2, 'bar']
a.rindex('bar') # => 3

Returns nil if no such object found.

With a block given, calls the block with each successive element; returns the index of the last element for which the block returns a truthy value:

a = [:foo, 'bar', 2, 'bar']
a.rindex {|element| element == 'bar' } # => 3

Returns nil if the block never returns a truthy value.

When neither an argument nor a block is given, returns a new ::Enumerator.

Related: see Methods for Querying.

[ GitHub ]

  
# File 'array.c', line 2157

static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i = RARRAY_LEN(ary), len;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        while (i--) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
                return LONG2NUM(i);
            if (i > (len = RARRAY_LEN(ary))) {
                i = len;
            }
        }
        return Qnil;
    }
    rb_check_arity(argc, 0, 1);
    val = argv[0];
    if (rb_block_given_p())
        rb_warn("given block not used");
    while (i--) {
        VALUE e = RARRAY_AREF(ary, i);
        if (rb_equal(e, val)) {
            return LONG2NUM(i);
        }
        if (i > RARRAY_LEN(ary)) {
            break;
        }
    }
    return Qnil;
}

#rotate(count = 1) ⇒ Array

Returns a new array formed from self with elements rotated from one end to the other.

With non-negative numeric #count, rotates elements from the beginning to the end:

[0, 1, 2, 3].rotate(2)   # => [2, 3, 0, 1]
[0, 1, 2, 3].rotate(2.1) # => [2, 3, 0, 1]

If #count is large, uses count % array.size as the count:

[0, 1, 2, 3].rotate(22) # => [2, 3, 0, 1]

With a #count of zero, rotates no elements:

[0, 1, 2, 3].rotate(0) # => [0, 1, 2, 3]

With negative numeric #count, rotates in the opposite direction, from the end to the beginning:

[0, 1, 2, 3].rotate(-1) # => [3, 0, 1, 2]

If #count is small (far from zero), uses count % array.size as the count:

[0, 1, 2, 3].rotate(-21) # => [3, 0, 1, 2]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3289

static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE rotated;
    const VALUE *ptr;
    long len;
    long cnt = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);

    len = RARRAY_LEN(ary);
    rotated = rb_ary_new2(len);
    if (len > 0) {
        cnt = rotate_count(cnt, len);
        ptr = RARRAY_CONST_PTR(ary);
        len -= cnt;
        ary_memcpy(rotated, 0, len, ptr + cnt);
        ary_memcpy(rotated, len, cnt, ptr);
    }
    ARY_SET_LEN(rotated, RARRAY_LEN(ary));
    return rotated;
}

#rotate!(count = 1) ⇒ self

Rotates self in place by moving elements from one end to the other; returns self.

With non-negative numeric #count, rotates #count elements from the beginning to the end:

[0, 1, 2, 3].rotate!(2)   # => [2, 3, 0, 1]
  [0, 1, 2, 3].rotate!(2.1) # => [2, 3, 0, 1]

If #count is large, uses count % array.size as the count:

[0, 1, 2, 3].rotate!(21) # => [1, 2, 3, 0]

If #count is zero, rotates no elements:

[0, 1, 2, 3].rotate!(0) # => [0, 1, 2, 3]

With a negative numeric #count, rotates in the opposite direction, from end to beginning:

[0, 1, 2, 3].rotate!(-1) # => [3, 0, 1, 2]

If #count is small (far from zero), uses count % array.size as the count:

[0, 1, 2, 3].rotate!(-21) # => [3, 0, 1, 2]

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 3248

static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
    long n = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
    rb_ary_rotate(ary, n);
    return ary;
}

#sample(random: Random) ⇒ Object #sample(count, random: Random) ⇒ Array

Returns random elements from self, as selected by the object given by the keyword argument random.

With no argument #count given, returns one random element from self:

a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a.sample # => 3
a.sample # => 8

Returns nil if self is empty:

[].sample # => nil

With a non-negative numeric argument #count given, returns a new array containing #count random elements from self:

a.sample(3) # => [8, 9, 2]
a.sample(6) # => [9, 6, 0, 3, 1, 4]

The order of the result array is unrelated to the order of self.

Returns a new empty Array if self is empty:

[].sample(4) # => []

May return duplicates in self:

a = [1, 1, 1, 2, 2, 3]
a.sample(a.size) # => [1, 1, 3, 2, 1, 2]

Returns no more than a.size elements (because no new duplicates are introduced):

a.sample(50) # => [6, 4, 1, 8, 5, 9, 0, 2, 3, 7]

The object given with the keyword argument random is used as the random number generator:

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a.sample(random: Random.new(1))     # => 6
a.sample(4, random: Random.new(1))  # => [6, 10, 9, 2]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.rb', line 95

def sample(n = (ary = false), random: Random)
  if Primitive.mandatory_only?
    # Primitive.cexpr! %{ rb_ary_sample(self, rb_cRandom, Qfalse, Qfalse) }
    Primitive.ary_sample0
  else
    # Primitive.cexpr! %{ rb_ary_sample(self, random, n, ary) }
    Primitive.ary_sample(random, n, ary)
  end
end

#select {|element| ... } ⇒ Array #selectEnumerator #filter {|element| ... } ⇒ Array #filterEnumerator

Alias for #filter.

#select! {|element| ... } ⇒ self? #select!Enumerator #filter! {|element| ... } ⇒ self? #filter!Enumerator

Alias for #filter!.

#shiftObject? #shift(count) ⇒ Array?

Removes and returns leading elements from self.

With no argument, removes and returns one element, if available, or nil otherwise:

a = [0, 1, 2, 3]
a.shift  # => 0
a        # => [1, 2, 3]
[].shift # => nil

With non-negative numeric argument #count given, removes and returns the first #count elements:

a = [0, 1, 2, 3]
a.shift(2)   # => [0, 1]
a            # => [2, 3]
a.shift(1.1) # => [2]
a            # => [3]
a.shift(0)   # => []
a            # => [3]

If #count is large, removes and returns all elements:

a = [0, 1, 2, 3]
a.shift(50) # => [0, 1, 2, 3]
a           # => []

If self is empty, returns a new empty array.

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 1545

static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;
    long n;

    if (argc == 0) {
        return rb_ary_shift(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    n = RARRAY_LEN(result);
    rb_ary_behead(ary,n);

    return result;
}

#shuffle(random: Random) ⇒ Array

Returns a new array containing all elements from self in a random order, as selected by the object given by the keyword argument random:

a =            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a.shuffle # => [0, 8, 1, 9, 6, 3, 4, 7, 2, 5]
a.shuffle # => [8, 9, 0, 5, 1, 2, 6, 4, 7, 3]

Duplicate elements are included:

a =            [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
a.shuffle # => [1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
a.shuffle # => [1, 1, 0, 0, 0, 1, 1, 0, 0, 1]

The object given with the keyword argument random is used as the random number generator.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.rb', line 45

def shuffle(random: Random)
  Primitive.rb_ary_shuffle(random)
end

#shuffle!(random: Random) ⇒ self

Shuffles all elements in self into a random order, as selected by the object given by the keyword argument random. Returns self:

a =             [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a.shuffle! # => [5, 3, 8, 7, 6, 1, 9, 4, 2, 0]
a.shuffle! # => [9, 4, 0, 6, 2, 8, 1, 5, 3, 7]

Duplicate elements are included:

a =             [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
a.shuffle! # => [1, 0, 0, 1, 1, 0, 1, 0, 0, 1]
a.shuffle! # => [0, 1, 0, 1, 1, 0, 1, 0, 1, 0]

The object given with the keyword argument random is used as the random number generator.

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.rb', line 22

def shuffle!(random: Random)
  Primitive.rb_ary_shuffle_bang(random)
end

#lengthInteger #sizeInteger

Alias for #length.

#[](index) ⇒ Object? #[](start, length) ⇒ Object? #[](range) ⇒ Object? #[](aseq) ⇒ Object? #slice(index) ⇒ Object? #slice(start, length) ⇒ Object? #slice(range) ⇒ Object? #slice(aseq) ⇒ Object?

Alias for #[].

#slice!(index) ⇒ Object? #slice!(start, length) ⇒ Array? #slice!(range) ⇒ Array?

Removes and returns elements from self.

With numeric argument #index given, removes and returns the element at offset #index:

a = ['a', 'b', 'c', 'd']
a.slice!(2)   # => "c"
a             # => ["a", "b", "d"]
a.slice!(2.1) # => "d"
a             # => ["a", "b"]

If #index is negative, counts backwards from the end of self:

a = ['a', 'b', 'c', 'd']
a.slice!(-2) # => "c"
a            # => ["a", "b", "d"]

If #index is out of range, returns nil.

With numeric arguments start and #length given, removes #length elements from self beginning at zero-based offset start; returns the removed objects in a new array:

a = ['a', 'b', 'c', 'd']
a.slice!(1, 2)     # => ["b", "c"]
a                  # => ["a", "d"]
a.slice!(0.1, 1.1) # => ["a"]
a                  # => ["d"]

If start is negative, counts backwards from the end of self:

a = ['a', 'b', 'c', 'd']
a.slice!(-2, 1) # => ["c"]
a               # => ["a", "b", "d"]

If start is out-of-range, returns nil:

a = ['a', 'b', 'c', 'd']
a.slice!(5, 1)  # => nil
a.slice!(-5, 1) # => nil

If start + length exceeds the array size, removes and returns all elements from offset start to the end:

a = ['a', 'b', 'c', 'd']
a.slice!(2, 50) # => ["c", "d"]
a               # => ["a", "b"]

If start == a.size and #length is non-negative, returns a new empty array.

If #length is negative, returns nil.

With Range argument range given, treats range.min as start (as above) and range.size as #length (as above):

a = ['a', 'b', 'c', 'd']
a.slice!(1..2) # => ["b", "c"]
a              # => ["a", "d"]

If range.start == a.size, returns a new empty array:

a = ['a', 'b', 'c', 'd']
a.slice!(4..5) # => []

If range.start is larger than the array size, returns nil:

a = ['a', 'b', 'c', 'd']
  a.slice!(5..6) # => nil

If range.start is negative, calculates the start index by counting backwards from the end of self:

a = ['a', 'b', 'c', 'd']
a.slice!(-2..2) # => ["c"]

If range.end is negative, calculates the end index by counting backwards from the end of self:

a = ['a', 'b', 'c', 'd']
a.slice!(0..-2) # => ["a", "b", "c"]

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 4279

static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg1;
    long pos, len;

    rb_ary_modify_check(ary);
    rb_check_arity(argc, 1, 2);
    arg1 = argv[0];

    if (argc == 2) {
        pos = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
    }

    if (!FIXNUM_P(arg1)) {
        switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
          case Qtrue:
            /* valid range */
            return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
          case Qnil:
            /* invalid range */
            return Qnil;
          default:
            /* not a range */
            break;
        }
    }

    return rb_ary_delete_at(ary, NUM2LONG(arg1));
}

#sortArray #sort {|a, b| ... } ⇒ Array

Returns a new array containing the elements of self, sorted.

With no block given, compares elements using operator #<=> (see Object#<=>):

[0, 2, 3, 1].sort # => [0, 1, 2, 3]

With a block given, calls the block with each combination of pairs of elements from self; for each pair a and b, the block should return a numeric:

  • Negative when b is to follow a.

  • Zero when a and b are equivalent.

  • Positive when a is to follow b.

Example:

a = [3, 2, 0, 1]
a.sort {|a, b| a <=> b } # => [0, 1, 2, 3]
a.sort {|a, b| b <=> a } # => [3, 2, 1, 0]

When the block returns zero, the order for a and b is indeterminate, and may be unstable.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3480

VALUE
rb_ary_sort(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_sort_bang(ary);
    return ary;
}

#sort!self #sort! {|a, b| ... } ⇒ self

Like #sort, but returns self with its elements sorted in place.

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 3387

VALUE
rb_ary_sort_bang(VALUE ary)
{
    rb_ary_modify(ary);
    RUBY_ASSERT(!ARY_SHARED_P(ary));
    if (RARRAY_LEN(ary) > 1) {
        VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
        struct ary_sort_data data;
        long len = RARRAY_LEN(ary);
        RBASIC_CLEAR_CLASS(tmp);
        data.ary = tmp;
        data.receiver = ary;
        RARRAY_PTR_USE(tmp, ptr, {
            ruby_qsort(ptr, len, sizeof(VALUE),
                       rb_block_given_p()?sort_1:sort_2, &data);
        }); /* WB: no new reference */
        rb_ary_modify(ary);
        if (ARY_EMBED_P(tmp)) {
            if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
                rb_ary_unshare(ary);
                FL_SET_EMBED(ary);
            }
            if (ARY_EMBED_LEN(tmp) > ARY_CAPA(ary)) {
                ary_resize_capa(ary, ARY_EMBED_LEN(tmp));
            }
            ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
            ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
        }
        else {
            if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
                FL_UNSET_SHARED(ary);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            else {
                RUBY_ASSERT(!ARY_SHARED_P(tmp));
                if (ARY_EMBED_P(ary)) {
                    FL_UNSET_EMBED(ary);
                }
                else if (ARY_SHARED_P(ary)) {
                    /* ary might be destructively operated in the given block */
                    rb_ary_unshare(ary);
                }
                else {
                    ary_heap_free(ary);
                }
                ARY_SET_PTR(ary, ARY_HEAP_PTR(tmp));
                ARY_SET_HEAP_LEN(ary, len);
                ARY_SET_CAPA(ary, ARY_HEAP_LEN(tmp));
            }
            /* tmp was lost ownership for the ptr */
            FL_UNSET(tmp, FL_FREEZE);
            FL_SET_EMBED(tmp);
            ARY_SET_EMBED_LEN(tmp, 0);
            FL_SET(tmp, FL_FREEZE);
        }
        /* tmp will be GC'ed. */
        RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
    }
    ary_verify(ary);
    return ary;
}

#sort_by! {|element| ... } ⇒ self #sort_by!Enumerator

With a block given, sorts the elements of self in place; returns self.

Calls the block with each successive element; sorts elements based on the values returned from the block:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! {|element| element.size }
a # => ["d", "cc", "bbb", "aaaa"]

For duplicate values returned by the block, the ordering is indeterminate, and may be unstable.

With no block given, returns a new ::Enumerator.

Related: see Methods for Assigning.

[ GitHub ]

  
# File 'array.c', line 3603

static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
    VALUE sorted;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
    rb_ary_replace(ary, sorted);
    return ary;
}

#sum(init = 0) ⇒ Object #sum(init = 0) {|element| ... } ⇒ Object

With no block given, returns the sum of init and all elements of self; for array array and value init, equivalent to:

sum = init
array.each {|element| sum += element }
sum

For example, [e0, e1, e2].sum returns init + e0 + e1 + e2.

Examples:

[0, 1, 2, 3].sum                 # => 6
[0, 1, 2, 3].sum(100)            # => 106
['abc', 'def', 'ghi'].sum('jkl') # => "jklabcdefghi"
[[:foo, :bar], ['foo', 'bar']].sum([2, 3])
# => [2, 3, :foo, :bar, "foo", "bar"]

The init value and elements need not be numeric, but must all be +-compatible:

# Raises TypeError: Array can't be coerced into Integer.
[[:foo, :bar], ['foo', 'bar']].sum(2)

With a block given, calls the block with each element of self; the block’s return value (instead of the element itself) is used as the addend:

['zero', 1, :two].sum('Coerced and concatenated: ') {|element| element.to_s }
# => "Coerced and concatenated: zero1two"

Notes:

  • #join and #flatten may be faster than sum for an array of strings or an array of arrays.

  • sum method may not respect method redefinition of “+” methods such as Integer#+.

[ GitHub ]

  
# File 'array.c', line 8098

static VALUE
rb_ary_sum(int argc, VALUE *argv, VALUE ary)
{
    VALUE e, v, r;
    long i, n;
    int block_given;

    v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));

    block_given = rb_block_given_p();

    if (RARRAY_LEN(ary) == 0)
        return v;

    n = 0;
    r = Qundef;

    if (!FIXNUM_P(v) && !RB_BIGNUM_TYPE_P(v) && !RB_TYPE_P(v, T_RATIONAL)) {
        i = 0;
        goto init_is_a_value;
    }

    for (i = 0; i < RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (block_given)
            e = rb_yield(e);
        if (FIXNUM_P(e)) {
            n += FIX2LONG(e); /* should not overflow long type */
            if (!FIXABLE(n)) {
                v = rb_big_plus(LONG2NUM(n), v);
                n = 0;
            }
        }
        else if (RB_BIGNUM_TYPE_P(e))
            v = rb_big_plus(e, v);
        else if (RB_TYPE_P(e, T_RATIONAL)) {
            if (UNDEF_P(r))
                r = e;
            else
                r = rb_rational_plus(r, e);
        }
        else
            goto not_exact;
    }
    v = finish_exact_sum(n, r, v, argc!=0);
    return v;

  not_exact:
    v = finish_exact_sum(n, r, v, i!=0);

    if (RB_FLOAT_TYPE_P(e)) {
        /*
         * Kahan-Babuska balancing compensated summation algorithm
         * See https://link.springer.com/article/10.1007/s00607-005-0139-x
         */
        double f, c;
        double x, t;

        f = NUM2DBL(v);
        c = 0.0;
        goto has_float_value;
        for (; i < RARRAY_LEN(ary); i++) {
            e = RARRAY_AREF(ary, i);
            if (block_given)
                e = rb_yield(e);
            if (RB_FLOAT_TYPE_P(e))
              has_float_value:
                x = RFLOAT_VALUE(e);
            else if (FIXNUM_P(e))
                x = FIX2LONG(e);
            else if (RB_BIGNUM_TYPE_P(e))
                x = rb_big2dbl(e);
            else if (RB_TYPE_P(e, T_RATIONAL))
                x = rb_num2dbl(e);
            else
                goto not_float;

            if (isnan(f)) continue;
            if (isnan(x)) {
                f = x;
                continue;
            }
            if (isinf(x)) {
                if (isinf(f) && signbit(x) != signbit(f))
                    f = NAN;
                else
                    f = x;
                continue;
            }
            if (isinf(f)) continue;

            t = f + x;
            if (fabs(f) >= fabs(x))
                c += ((f - t) + x);
            else
                c += ((x - t) + f);
            f = t;
        }
        f += c;
        return DBL2NUM(f);

      not_float:
        v = DBL2NUM(f);
    }

    goto has_some_value;
    init_is_a_value:
    for (; i < RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (block_given)
            e = rb_yield(e);
      has_some_value:
        v = rb_funcall(v, idPLUS, 1, e);
    }
    return v;
}

#take(count) ⇒ Array

Returns a new array containing the first #count element of self (as available); #count must be a non-negative numeric; does not modify self:

a = ['a', 'b', 'c', 'd']
a.take(2)   # => ["a", "b"]
a.take(2.1) # => ["a", "b"]
a.take(50)  # => ["a", "b", "c", "d"]
a.take(0)   # => []

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 7638

static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
    long len = NUM2LONG(n);
    if (len < 0) {
        rb_raise(rb_eArgError, "attempt to take negative size");
    }
    return rb_ary_subseq(obj, 0, len);
}

#take_while {|element| ... } ⇒ Array #take_whileEnumerator

With a block given, calls the block with each successive element of self; stops iterating if the block returns false or nil; returns a new array containing those elements for which the block returned a truthy value:

a = [0, 1, 2, 3, 4, 5]
a.take_while {|element| element < 3 } # => [0, 1, 2]
a.take_while {|element| true }        # => [0, 1, 2, 3, 4, 5]
a.take_while {|element| false }       # => []

With no block given, returns a new ::Enumerator.

Does not modify self.

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 7669

static VALUE
rb_ary_take_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_take(ary, LONG2FIX(i));
}

#to_aself, Array

When self is an instance of Array, returns self.

Otherwise, returns a new array containing the elements of self:

class MyArray < Array; end
my_a = MyArray.new(['foo', 'bar', 'two'])
a = my_a.to_a
a # => ["foo", "bar", "two"]
a.class # => Array # Not MyArray.

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 3029

static VALUE
rb_ary_to_a(VALUE ary)
{
    if (rb_obj_class(ary) != rb_cArray) {
        VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
        rb_ary_replace(dup, ary);
        return dup;
    }
    return ary;
}

#to_aryself

Returns self.

[ GitHub ]

  
# File 'array.c', line 3096

static VALUE
rb_ary_to_ary_m(VALUE ary)
{
    return ary;
}

#to_hHash #to_h {|element| ... } ⇒ Hash

Returns a new hash formed from self.

With no block given, each element of self must be a 2-element sub-array; forms each sub-array into a key-value pair in the new hash:

a = [['foo', 'zero'], ['bar', 'one'], ['baz', 'two']]
a.to_h # => {"foo"=>"zero", "bar"=>"one", "baz"=>"two"}
[].to_h # => {}

With a block given, the block must return a 2-element array; calls the block with each element of self; forms each returned array into a key-value pair in the returned hash:

a = ['foo', :bar, 1, [2, 3], {baz: 4}]
a.to_h {|element| [element, element.class] }
# => {"foo"=>String, :bar=>Symbol, 1=>Integer, [2, 3]=>Array, {:baz=>4}=>Hash}

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 3065

static VALUE
rb_ary_to_h(VALUE ary)
{
    long i;
    VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary));
    int block_given = rb_block_given_p();

    for (i=0; i<RARRAY_LEN(ary); i++) {
        const VALUE e = rb_ary_elt(ary, i);
        const VALUE elt = block_given ? rb_yield_force_blockarg(e) : e;
        const VALUE key_value_pair = rb_check_array_type(elt);
        if (NIL_P(key_value_pair)) {
            rb_raise(rb_eTypeError, "wrong element type %"PRIsVALUE" at %ld (expected array)",
                     rb_obj_class(elt), i);
        }
        if (RARRAY_LEN(key_value_pair) != 2) {
            rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)",
                i, RARRAY_LEN(key_value_pair));
        }
        rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
    }
    return hash;
}

#inspectString #to_sString
Also known as: #inspect

Returns the new string formed by calling method #inspect on each array element:

a = [:foo, 'bar', 2]
a.inspect # => "[:foo, \"bar\", 2]"

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 2999

static VALUE
rb_ary_inspect(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
    return rb_exec_recursive(inspect_ary, ary, 0);
}

#transposeArray

Returns a new array that is self as a transposed matrix:

a = [[:a0, :a1], [:b0, :b1], [:c0, :c1]]
a.transpose # => [[:a0, :b0, :c0], [:a1, :b1, :c1]]

The elements of self must all be the same size.

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 4630

static VALUE
rb_ary_transpose(VALUE ary)
{
    long elen = -1, alen, i, j;
    VALUE tmp, result = 0;

    alen = RARRAY_LEN(ary);
    if (alen == 0) return rb_ary_dup(ary);
    for (i=0; i<alen; i++) {
        tmp = to_ary(rb_ary_elt(ary, i));
        if (elen < 0) {		/* first element */
            elen = RARRAY_LEN(tmp);
            result = rb_ary_new2(elen);
            for (j=0; j<elen; j++) {
                rb_ary_store(result, j, rb_ary_new2(alen));
            }
        }
        else if (elen != RARRAY_LEN(tmp)) {
            rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
                     RARRAY_LEN(tmp), elen);
        }
        for (j=0; j<elen; j++) {
            rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
        }
    }
    return result;
}

#union(*other_arrays) ⇒ Array

Returns a new array that is the union of the elements of self and all given arrays other_arrays; items are compared using #eql?:

[0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7]

Removes duplicates (preserving the first found):

[0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3]

Preserves order (preserving the position of the first found):

[3, 2, 1, 0].union([5, 3], [4, 2]) # => [3, 2, 1, 0, 5, 4]

With no arguments given, returns a copy of self.

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5802

static VALUE
rb_ary_union_multi(int argc, VALUE *argv, VALUE ary)
{
    int i;
    long sum;
    VALUE hash;

    sum = RARRAY_LEN(ary);
    for (i = 0; i < argc; i++) {
        argv[i] = to_ary(argv[i]);
        sum += RARRAY_LEN(argv[i]);
    }

    if (sum <= SMALL_ARRAY_LEN) {
        VALUE ary_union = rb_ary_new();

        rb_ary_union(ary_union, ary);
        for (i = 0; i < argc; i++) rb_ary_union(ary_union, argv[i]);

        return ary_union;
    }

    hash = ary_make_hash(ary);
    for (i = 0; i < argc; i++) rb_ary_union_hash(hash, argv[i]);

    return rb_hash_values(hash);
}

#uniqArray #uniq {|element| ... } ⇒ Array

Returns a new array containing those elements from self that are not duplicates, the first occurrence always being retained.

With no block given, identifies and omits duplicate elements using method #eql? to compare elements:

a = [0, 0, 1, 1, 2, 2]
a.uniq # => [0, 1, 2]

With a block given, calls the block for each element; identifies and omits “duplicate” elements using method #eql? to compare block return values; that is, an element is a duplicate if its block return value is the same as that of a previous element:

a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
a.uniq {|element| element.size } # => ["a", "aa", "aaa"]

Related: Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 6359

static VALUE
rb_ary_uniq(VALUE ary)
{
    VALUE hash, uniq;

    if (RARRAY_LEN(ary) <= 1) {
        hash = 0;
        uniq = rb_ary_dup(ary);
    }
    else if (rb_block_given_p()) {
        hash = ary_make_hash_by(ary);
        uniq = rb_hash_values(hash);
    }
    else {
        hash = ary_make_hash(ary);
        uniq = rb_hash_values(hash);
    }

    return uniq;
}

#uniq!self? #uniq! {|element| ... } ⇒ self?

Removes duplicate elements from self, the first occurrence always being retained; returns self if any elements removed, nil otherwise.

With no block given, identifies and removes elements using method #eql? to compare elements:

a = [0, 0, 1, 1, 2, 2]
a.uniq! # => [0, 1, 2]
a.uniq! # => nil

With a block given, calls the block for each element; identifies and omits “duplicate” elements using method #eql? to compare block return values; that is, an element is a duplicate if its block return value is the same as that of a previous element:

a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
a.uniq! {|element| element.size } # => ["a", "aa", "aaa"]
a.uniq! {|element| element.size } # => nil

Related: see Methods for Deleting.

[ GitHub ]

  
# File 'array.c', line 6303

static VALUE
rb_ary_uniq_bang(VALUE ary)
{
    VALUE hash;
    long hash_size;

    rb_ary_modify_check(ary);
    if (RARRAY_LEN(ary) <= 1)
        return Qnil;
    if (rb_block_given_p())
        hash = ary_make_hash_by(ary);
    else
        hash = ary_make_hash(ary);

    hash_size = RHASH_SIZE(hash);
    if (RARRAY_LEN(ary) == hash_size) {
        return Qnil;
    }
    rb_ary_modify_check(ary);
    ARY_SET_LEN(ary, 0);
    if (ARY_SHARED_P(ary)) {
        rb_ary_unshare(ary);
        FL_SET_EMBED(ary);
    }
    ary_resize_capa(ary, hash_size);
    rb_hash_foreach(hash, push_value, ary);

    return ary;
}

#unshift(*objects) ⇒ self #prepend(*objects) ⇒ self

Alias for #prepend.

#values_at(*specifiers) ⇒ Array

Returns elements from self in a new array; does not modify self.

The objects included in the returned array are the elements of self selected by the given specifiers, each of which must be a numeric index or a ::Range.

In brief:

a = ['a', 'b', 'c', 'd']

# Index specifiers.
a.values_at(2, 0, 2, 0)     # => ["c", "a", "c", "a"] # May repeat.
a.values_at(-4, -3, -2, -1) # => ["a", "b", "c", "d"] # Counts backwards if negative.
a.values_at(-50, 50)        # => [nil, nil]           # Outside of self.

# Range specifiers.
a.values_at(1..3)       # => ["b", "c", "d"] # From range.begin to range.end.
a.values_at(1...3)      # => ["b", "c"]      # End excluded.
a.values_at(3..1)       # => []              # No such elements.

a.values_at(-3..3)  # => ["b", "c", "d"]     # Negative range.begin counts backwards.
a.values_at(-50..3)                          # Raises RangeError.

a.values_at(1..-2)  # => ["b", "c"]          # Negative range.end counts backwards.
a.values_at(1..-50) # => []                  # No such elements.

# Mixture of specifiers.
a.values_at(2..3, 3, 0..1, 0) # => ["c", "d", "d", "a", "b", "a"]

With no specifiers given, returns a new empty array:

a = ['a', 'b', 'c', 'd']
a.values_at # => []

For each numeric specifier #index, includes an element:

  • For each non-negative numeric specifier #index that is in-range (less than self.size), includes the element at offset #index:

    a.values_at(0, 2)     # => ["a", "c"]
    a.values_at(0.1, 2.9) # => ["a", "c"]
  • For each negative numeric #index that is in-range (greater than or equal to - self.size), counts backwards from the end of self:

    a.values_at(-1, -4) # => ["d", "a"]

The given indexes may be in any order, and may repeat:

a.values_at(2, 0, 1, 0, 2) # => ["c", "a", "b", "a", "c"]

For each #index that is out-of-range, includes nil:

a.values_at(4, -5) # => [nil, nil]

For each ::Range specifier range, includes elements according to range.begin and range.end:

  • If both range.begin and range.end are non-negative and in-range (less than self.size), includes elements from index range.begin through range.end - 1 (if range.exclude_end?), or through range.end (otherwise):

    a.values_at(1..2)  # => ["b", "c"]
    a.values_at(1...2) # => ["b"]
  • If range.begin is negative and in-range (greater than or equal to - self.size), counts backwards from the end of self:

    a.values_at(-2..3) # => ["c", "d"]
  • If range.begin is negative and out-of-range, raises an exception:

    a.values_at(-5..3) # Raises RangeError.
  • If range.end is positive and out-of-range, extends the returned array with nil elements:

    a.values_at(1..5) # => ["b", "c", "d", nil, nil]
  • If range.end is negative and in-range, counts backwards from the end of self:

    a.values_at(1..-2) # => ["b", "c"]
  • If range.end is negative and out-of-range, returns an empty array:

    a.values_at(1..-5) # => []

The given ranges may be in any order and may repeat:

a.values_at(2..3, 0..1, 2..3) # => ["c", "d", "a", "b", "c", "d"]

The given specifiers may be any mixture of indexes and ranges:

a.values_at(3, 1..2, 0, 2..3) # => ["d", "b", "c", "a", "c", "d"]

Related: see Methods for Fetching.

[ GitHub ]

  
# File 'array.c', line 3844

static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
    long i, olen = RARRAY_LEN(ary);
    VALUE result = rb_ary_new_capa(argc);
    for (i = 0; i < argc; ++i) {
        append_values_at_single(result, ary, olen, argv[i]);
    }
    RB_GC_GUARD(ary);
    return result;
}

#zip(*other_arrays) ⇒ Array #zip(*other_arrays) {|sub_array| ... } ⇒ nil

With no block given, combines self with the collection of other_arrays; returns a new array of sub-arrays:

[0, 1].zip(['zero', 'one'], [:zero, :one])
# => [[0, "zero", :zero], [1, "one", :one]]

Returned:

  • The outer array is of size self.size.

  • Each sub-array is of size other_arrays.size + 1.

  • The nth sub-array contains (in order):

    • The nth element of self.

    • The nth element of each of the other arrays, as available.

Example:

a = [0, 1]
zipped = a.zip(['zero', 'one'], [:zero, :one])
# => [[0, "zero", :zero], [1, "one", :one]]
zipped.size       # => 2 # Same size as a.
zipped.first.size # => 3 # Size of other arrays plus 1.

When the other arrays are all the same size as self, the returned sub-arrays are a rearrangement containing exactly elements of all the arrays (including self), with no omissions or additions:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3]
c = [:c0, :c1, :c2, :c3]
d = a.zip(b, c)
pp d
# =>
[[:a0, :b0, :c0],
 [:a1, :b1, :c1],
 [:a2, :b2, :c2],
 [:a3, :b3, :c3]]

When one of the other arrays is smaller than self, pads the corresponding sub-array with nil elements:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2]
c = [:c0, :c1]
d = a.zip(b, c)
pp d
# =>
[[:a0, :b0, :c0],
 [:a1, :b1, :c1],
 [:a2, :b2, nil],
 [:a3, nil, nil]]

When one of the other arrays is larger than self, ignores its trailing elements:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3, :b4]
c = [:c0, :c1, :c2, :c3, :c4, :c5]
d = a.zip(b, c)
pp d
# =>
[[:a0, :b0, :c0],
 [:a1, :b1, :c1],
 [:a2, :b2, :c2],
 [:a3, :b3, :c3]]

With a block given, calls the block with each of the other arrays; returns nil:

d = []
a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3]
c = [:c0, :c1, :c2, :c3]
a.zip(b, c) {|sub_array| d.push(sub_array.reverse) } # => nil
pp d
# =>
[[:c0, :b0, :a0],
 [:c1, :b1, :a1],
 [:c2, :b2, :a2],
 [:c3, :b3, :a3]]

For an object in other_arrays that is not actually an array, forms the the “other array” as object.to_ary, if defined, or as object.each.to_a otherwise.

Related: see Methods for Converting.

[ GitHub ]

  
# File 'array.c', line 4557

static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
    int i, j;
    long len = RARRAY_LEN(ary);
    VALUE result = Qnil;

    for (i=0; i<argc; i++) {
        argv[i] = take_items(argv[i], len);
    }

    if (rb_block_given_p()) {
        int arity = rb_block_arity();

        if (arity > 1) {
            VALUE work, *tmp;

            tmp = ALLOCV_N(VALUE, work, argc+1);

            for (i=0; i<RARRAY_LEN(ary); i++) {
                tmp[0] = RARRAY_AREF(ary, i);
                for (j=0; j<argc; j++) {
                    tmp[j+1] = rb_ary_elt(argv[j], i);
                }
                rb_yield_values2(argc+1, tmp);
            }

            if (work) ALLOCV_END(work);
        }
        else {
            for (i=0; i<RARRAY_LEN(ary); i++) {
                VALUE tmp = rb_ary_new2(argc+1);

                rb_ary_push(tmp, RARRAY_AREF(ary, i));
                for (j=0; j<argc; j++) {
                    rb_ary_push(tmp, rb_ary_elt(argv[j], i));
                }
                rb_yield(tmp);
            }
        }
    }
    else {
        result = rb_ary_new_capa(len);

        for (i=0; i<len; i++) {
            VALUE tmp = rb_ary_new_capa(argc+1);

            rb_ary_push(tmp, RARRAY_AREF(ary, i));
            for (j=0; j<argc; j++) {
                rb_ary_push(tmp, rb_ary_elt(argv[j], i));
            }
            rb_ary_push(result, tmp);
        }
    }

    return result;
}

#|(other_array) ⇒ Array

Returns the union of self and other_array; duplicates are removed; order is preserved; items are compared using #eql?:

[0, 1] | [2, 3] # => [0, 1, 2, 3]
[0, 1, 1] | [2, 2, 3] # => [0, 1, 2, 3]
[0, 1, 2] | [3, 2, 1, 0] # => [0, 1, 2, 3]

Related: see Methods for Combining.

[ GitHub ]

  
# File 'array.c', line 5760

static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
    VALUE hash;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary1) + RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        VALUE ary3 = rb_ary_new();
        rb_ary_union(ary3, ary1);
        rb_ary_union(ary3, ary2);
        return ary3;
    }

    hash = ary_make_hash(ary1);
    rb_ary_union_hash(hash, ary2);

    return rb_hash_values(hash);
}