123456789_123456789_123456789_123456789_123456789_

Class: Range

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Instance Chain:
self, ::Enumerable
Inherits: Object
Defined in: range.c

Overview

A Range object represents a collection of values that are between given begin and end values.

You can create an Range object explicitly with:

  • A range literal:

    # Ranges that use '..' to include the given end value.
    (1..4).to_a      # => [1, 2, 3, 4]
    ('a'..'d').to_a  # => ["a", "b", "c", "d"]
    # Ranges that use '...' to exclude the given end value.
    (1...4).to_a     # => [1, 2, 3]
    ('a'...'d').to_a # => ["a", "b", "c"]
  • ::Method .new:

    # Ranges that by default include the given end value. Range.new(1, 4).to_a # => [1, 2, 3, 4] Range.new(‘a’, ‘d’).to_a # => [“a”, “b”, “c”, “d”] # Ranges that use third argument exclude_end to exclude the given end value. Range.new(1, 4, true).to_a # => [1, 2, 3] Range.new(‘a’, ‘d’, true).to_a # => [“a”, “b”, “c”]

Beginless Ranges

A beginless range has a definite end value, but a nil begin value. Such a range includes all values up to the end value.

r = (..4)               # => nil..4
r.begin                 # => nil
r.include?(-50)         # => true
r.include?(4)           # => true

r = (...4)              # => nil...4
r.include?(4)           # => false

Range.new(nil, 4)       # => nil..4
Range.new(nil, 4, true) # => nil...4

A beginless range may be used to slice an array:

a = [1, 2, 3, 4]
# Include the third array element in the slice
r = (..2)  # => nil..2
a[r]       # => [1, 2, 3]
# Exclude the third array element from the slice
r = (...2) # => nil...2
a[r]       # => [1, 2]

Method #each for a beginless range raises an exception.

Endless Ranges

An endless range has a definite begin value, but a nil end value. Such a range includes all values from the begin value.

r = (1..)         # => 1..
r.end             # => nil
r.include?(50)    # => true

Range.new(1, nil) # => 1..

The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:

r0 = (1..)           # => 1..
r1 = (1...)          # => 1...
r0.begin == r1.begin # => true
r0.end == r1.end     # => true
r0 == r1             # => false

An endless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (2..) # => 2..
a[r]      # => [3, 4]

Method #each for an endless range calls the given block indefinitely:

a = []
r = (1..)
r.each do |i|
  a.push(i) if i.even?
  break if i > 10
end
a # => [2, 4, 6, 8, 10]

A range can be both beginless and endless. For literal beginless, endless ranges, at least the beginning or end of the range must be given as an explicit nil value. It is recommended to use an explicit nil beginning and implicit nil end, since that is what Ruby uses for #inspect:

(nil..)    # => (nil..)
(..nil)    # => (nil..)
(nil..nil) # => (nil..)

Ranges and Other Classes

An object may be put into a range if its class implements instance method #<=>. Ruby core classes that do so include ::Array, ::Complex, ::File::Stat, ::Float, ::Integer, ::Kernel, ::Module, ::Numeric, ::Rational, ::String, ::Symbol, and ::Time.

Example:

t0 = Time.now         # => 2021-09-19 09:22:48.4854986 -0500
t1 = Time.now         # => 2021-09-19 09:22:56.0365079 -0500
t2 = Time.now         # => 2021-09-19 09:23:08.5263283 -0500
(t0..t2).include?(t1) # => true
(t0..t1).include?(t2) # => false

A range can be iterated over only if its elements implement instance method succ. Ruby core classes that do so include ::Integer, ::String, and ::Symbol (but not the other classes mentioned above).

Iterator methods include:

  • In Range itself: #each, #step, and #%

  • Included from module Enumerable: #each_entry, #each_with_index, #each_with_object, #each_slice, #each_cons, and #reverse_each.

Example:

a = []
(1..4).each {|i| a.push(i) }
a # => [1, 2, 3, 4]

Ranges and User-Defined Classes

A user-defined class that is to be used in a range must implement instance method #<=>; see Integer#<=>. To make iteration available, it must also implement instance method succ; see Integer#succ.

The class below implements both #<=> and succ, and so can be used both to construct ranges and to iterate over them. Note that the ::Comparable module is included so the #== method is defined in terms of #<=>.

# Represent a string of 'X' characters.
class Xs
  include Comparable
  attr_accessor :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'X' * @length
  end
end

r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
r.to_a                   #=> [XXX, XXXX, XXXXX, XXXXXX]
r.include?(Xs.new(5))    #=> true
r.include?(Xs.new(7))    #=> false

What’s Here

First, what’s elsewhere. Class Range:

  • Inherits from class Object.

  • Includes module Enumerable, which provides dozens of additional methods.

Here, class Range provides methods that are useful for:

  • {Range@Methods+for+Creating+a+Range Creating a }

  • Querying

  • Comparing

  • Iterating

  • Converting

  • Methods for Working with JSON

Methods for Creating a Range

  • .new: Returns a new range.

Methods for Querying

  • #begin: Returns the begin value given for self.

  • #bsearch: Returns an element from self selected by a binary search.

  • #count: Returns a count of elements in self.

  • #end: Returns the end value given for self.

  • #exclude_end?: Returns whether the end object is excluded.

  • #first: Returns the first elements of self.

  • #hash: Returns the integer hash code.

  • #last: Returns the last elements of self.

  • #max: Returns the maximum values in self.

  • #min: Returns the minimum values in self.

  • #minmax: Returns the minimum and maximum values in self.

  • #size: Returns the count of elements in self.

Methods for Comparing

  • #==: Returns whether a given object is equal to self (uses #==).

  • #===: Returns whether the given object is between the begin and end values.

  • #cover?: Returns whether a given object is within self.

  • #eql?: Returns whether a given object is equal to self (uses #eql?).

  • #include? (aliased as #member?): Returns whether a given object is an element of self.

Methods for Iterating

  • #%: Requires argument n; calls the block with each n-th element of self.

  • #each: Calls the block with each element of self.

  • #step: Takes optional argument n (defaults to 1); calls the block with each n-th element of self.

Methods for Converting

  • #inspect: Returns a string representation of self (uses #inspect).

  • #to_a (aliased as #entries): Returns elements of self in an array.

  • #to_s: Returns a string representation of self (uses #to_s).

Methods for Working with JSON

  • .json_create: Returns a new Range object constructed from the given object.

  • #as_json: Returns a 2-element hash representing self.

  • #to_json: Returns a JSON string representing self.

To make these methods available:

require 'json/add/range'

Class Method Summary

Instance Attribute Summary

Instance Method Summary

::Enumerable - Included

#all?

Returns whether every element meets a given criterion.

#any?

Returns whether any element meets a given criterion.

#chain

Returns an enumerator object generated from this enumerator and given enumerables.

#chunk

Each element in the returned enumerator is a 2-element array consisting of:

#chunk_while

Creates an enumerator for each chunked elements.

#collect

Alias for Enumerable#map.

#collect_concat
#compact

Returns an array of all non-nil elements:

#count

Returns the count of elements, based on an argument or block criterion, if given.

#cycle

When called with positive integer argument n and a block, calls the block with each element, then does so again, until it has done so n times; returns nil:

#detect

Alias for Enumerable#find.

#drop

For positive integer n, returns an array containing all but the first n elements:

#drop_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements after that point:

#each_cons

Calls the block with each successive overlapped n-tuple of elements; returns self:

#each_entry

Calls the given block with each element, converting multiple values from yield to an array; returns self:

#each_slice

Calls the block with each successive disjoint n-tuple of elements; returns self:

#each_with_index

Invoke self.each with *args.

#each_with_object

Calls the block once for each element, passing both the element and the given object:

#entries

Alias for Enumerable#to_a.

#filter

Returns an array containing elements selected by the block.

#filter_map

Returns an array containing truthy elements returned by the block.

#find

Returns the first element for which the block returns a truthy value.

#find_all
#find_index

Returns the index of the first element that meets a specified criterion, or nil if no such element is found.

#first

Returns the first element or elements.

#flat_map

Returns an array of flattened objects returned by the block.

#grep

Returns an array of objects based elements of self that match the given pattern.

#grep_v

Returns an array of objects based on elements of self that don’t match the given pattern.

#group_by

With a block given returns a hash:

#include?
#inject

Returns the result of applying a reducer to an initial value and the first element of the ::Enumerable.

#lazy

Returns an ::Enumerator::Lazy, which redefines most ::Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.

#map

Returns an array of objects returned by the block.

#max

Returns the element with the maximum element according to a given criterion.

#max_by

Returns the elements for which the block returns the maximum values.

#member?

Returns whether for any element object == element:

#min

Returns the element with the minimum element according to a given criterion.

#min_by

Returns the elements for which the block returns the minimum values.

#minmax

Returns a 2-element array containing the minimum and maximum elements according to a given criterion.

#minmax_by

Returns a 2-element array containing the elements for which the block returns minimum and maximum values:

#none?

Returns whether no element meets a given criterion.

#one?

Returns whether exactly one element meets a given criterion.

#partition

With a block given, returns an array of two arrays:

#reduce
#reject

Returns an array of objects rejected by the block.

#reverse_each

With a block given, calls the block with each element, but in reverse order; returns self:

#select
#slice_after

Creates an enumerator for each chunked elements.

#slice_before

With argument pattern, returns an enumerator that uses the pattern to partition elements into arrays (“slices”).

#slice_when

Creates an enumerator for each chunked elements.

#sort

Returns an array containing the sorted elements of self.

#sort_by

With a block given, returns an array of elements of self, sorted according to the value returned by the block for each element.

#sum

With no block given, returns the sum of initial_value and the elements:

#take

For non-negative integer n, returns the first n elements:

#take_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements up to that point:

#tally

When argument #hash is not given, returns a new hash whose keys are the distinct elements in self; each integer value is the count of occurrences of each element:

#to_a

Returns an array containing the items in self:

#to_h

When self consists of 2-element arrays, returns a hash each of whose entries is the key-value pair formed from one of those arrays:

#to_set

Makes a set from the enumerable object with given arguments.

#uniq

With no block, returns a new array containing only unique elements; the array has no two elements e0 and e1 such that e0.eql?(e1):

#zip

With no block given, returns a new array new_array of size self.size whose elements are arrays.

Constructor Details

.new(begin, end, exclude_end = false) ⇒ Range

Returns a new range based on the given objects #begin and #end. Optional argument exclude_end determines whether object #end is included as the last object in the range:

Range.new(2, 5).to_a            # => [2, 3, 4, 5]
Range.new(2, 5, true).to_a      # => [2, 3, 4]
Range.new('a', 'd').to_a        # => ["a", "b", "c", "d"]
Range.new('a', 'd', true).to_a  # => ["a", "b", "c"]
[ GitHub ]

  
# File 'range.c', line 101

static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Instance Attribute Details

#exclude_end?Boolean (readonly)

Returns true if self excludes its end value; false otherwise:

Range.new(2, 5).exclude_end?       # => false
Range.new(2, 5, true).exclude_end? # => true
(2..5).exclude_end?                # => false
(2...5).exclude_end?               # => true
[ GitHub ]

  
# File 'range.c', line 133

static VALUE
range_exclude_end_p(VALUE range)
{
    return RBOOL(EXCL(range));
}

Instance Method Details

#%(n) {|element| ... } ⇒ self #%(n) ⇒ Enumerator, arithmetic_sequence

Same as #step (but doesn’t provide default value for n). The method is convenient for experssive producing of ::Enumerator::ArithmeticSequence.

array = [0, 1, 2, 3, 4, 5, 6]

# slice each second element:
seq = (0..) % 2 #=> ((0..).%(2))
array[seq] #=> [0, 2, 4, 6]
# or just
array[(0..) % 2] #=> [0, 2, 4, 6]

Note that due to operator precedence in Ruby, parentheses are mandatory around range in this case:

(0..7) % 2 #=> ((0..7).%(2)) -- as expected
0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2)
[ GitHub ]

  
# File 'range.c', line 664

static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}

#==(other) ⇒ Boolean

Returns true if and only if:

  • other is a range.

  • other.begin == self.begin.

  • other.end == self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r == (1..5)                # => true
r = Range.new(1, 5)
r == 'foo'                 # => false
r == (2..5)                # => false
r == (1..4)                # => false
r == (1...5)               # => false
r == Range.new(1, 5, true) # => false

Note that even with the same argument, the return values of #== and #eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: #eql?.

[ GitHub ]

  
# File 'range.c', line 183

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}

#===(object) ⇒ Boolean

Returns true if object is between self.begin and self.end. false otherwise:

(1..4) === 2       # => true
(1..4) === 5       # => false
(1..4) === 'a'     # => false
(1..4) === 4       # => true
(1...4) === 4      # => false
('a'..'d') === 'c' # => true
('a'..'d') === 'e' # => false

A case statement uses method ===, and so:

case 79
when (1..50)
  "low"
when (51..75)
  "medium"
when (76..100)
  "high"
end # => "high"

case "2.6.5"
when ..."2.4"
  "EOL"
when "2.4"..."2.5"
  "maintenance"
when "2.5"..."3.0"
  "stable"
when "3.1"..
  "upcoming"
end # => "stable"
[ GitHub ]

  
# File 'range.c', line 2031

static VALUE
range_eqq(VALUE range, VALUE val)
{
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}

#beginObject

Returns the object that defines the beginning of self.

(1..4).begin # => 1
(..2).begin  # => nil

Related: #first, #end.

[ GitHub ]

  
# File 'range.c', line 1320

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}

#bsearch {|obj| ... } ⇒ value

Returns an element from self selected by a binary search.

See Binary Searching.

[ GitHub ]

  
# File 'range.c', line 785

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits).
     *
     * The half-open interval (low, high] indicates where the target is located.
     * The loop continues until low and high are adjacent.
     *
     * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
     * the rounding direction of mid = (low + high) / 2 does not affect the result of
     * the binary search.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv, excl) \
    do { \
        RETURN_ENUMERATOR(range, 0, 0); \
        if (!(excl)) high++; \
        low--; \
        while (low + 1 < high) { \
            mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
                : (low + high) / 2; \
            BSEARCH_CHECK(conv(mid)); \
            if (smaller) { \
                high = mid; \
            } \
            else { \
                low = mid; \
            } \
        } \
        return satisfied; \
    } while (0)

#define BSEARCH_FIXNUM(beg, end, excl) \
    do { \
        long low = FIX2LONG(beg); \
        long high = FIX2LONG(end); \
        long mid; \
        BSEARCH(INT2FIX, (excl)); \
    } while (0)

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        BSEARCH_FIXNUM(beg, end, EXCL(range));
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
        int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
        int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
        int64_t mid;
        BSEARCH(int64_as_double_to_num, EXCL(range));
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
        RETURN_ENUMERATOR(range, 0, 0);
        return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
        VALUE diff = LONG2FIX(1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(beg, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (smaller) {
                if (FIXNUM_P(beg) && FIXNUM_P(mid)) {
                    BSEARCH_FIXNUM(beg, mid, false);
                }
                else {
                    return bsearch_integer_range(beg, mid, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            beg = mid;
        }
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
        VALUE diff = LONG2FIX(-1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(end, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (!smaller) {
                if (FIXNUM_P(mid) && FIXNUM_P(end)) {
                    BSEARCH_FIXNUM(mid, end, false);
                }
                else {
                    return bsearch_integer_range(mid, end, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            end = mid;
        }
    }
    else {
        rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
    }
    return range;
}

#countInteger #count(object) ⇒ Integer #count {|element| ... } ⇒ Integer

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: #size.

[ GitHub ]

  
# File 'range.c', line 2390

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }

    VALUE beg = RANGE_BEG(range), end = RANGE_END(range);

    if (NIL_P(beg) || NIL_P(end)) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }

    if (is_integer_p(beg)) {
        VALUE size = range_size(range);
        if (!NIL_P(size)) {
            return size;
        }
    }

    return rb_call_super(argc, argv);
}

#cover?(object) ⇒ Boolean #cover?(range) ⇒ Boolean

Returns true if the given argument is within self, false otherwise.

With non-range argument object, evaluates with <= and <.

For range self with included end value (#exclude_end? == false), evaluates thus:

self.begin <= object <= self.end

Examples:

r = (1..4)
r.cover?(1)     # => true
r.cover?(4)     # => true
r.cover?(0)     # => false
r.cover?(5)     # => false
r.cover?('foo') # => false

r = ('a'..'d')
r.cover?('a')     # => true
r.cover?('d')     # => true
r.cover?(' ')     # => false
r.cover?('e')     # => false
r.cover?(0)       # => false

For range r with excluded end value (#exclude_end? == true), evaluates thus:

r.begin <= object < r.end

Examples:

r = (1...4)
r.cover?(1)     # => true
r.cover?(3)     # => true
r.cover?(0)     # => false
r.cover?(4)     # => false
r.cover?('foo') # => false

r = ('a'...'d')
r.cover?('a')     # => true
r.cover?('c')     # => true
r.cover?(' ')     # => false
r.cover?('d')     # => false
r.cover?(0)       # => false

With range argument range, compares the first and last elements of self and range:

r = (1..4)
r.cover?(1..4)     # => true
r.cover?(0..4)     # => false
r.cover?(1..5)     # => false
r.cover?('a'..'d') # => false

r = (1...4)
r.cover?(1..3)     # => true
r.cover?(1..4)     # => false

If begin and end are numeric, #cover? behaves like #include?

(1..3).cover?(1.5) # => true
(1..3).include?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').cover?('cc')   # => true
('a'..'d').include?('cc') # => false

Returns false if either:

  • The begin value of self is larger than its end value.

  • An internal call to #<=> returns nil; that is, the operands are not comparable.

Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.

(..2).cover?(1)     # => true
(..2).cover?(2)     # => true
(..2).cover?(3)     # => false
(...2).cover?(2)    # => false
(..2).cover?("2")   # => false
(..2).cover?(..2)   # => true
(..2).cover?(...2)  # => true
(..2).cover?(.."2") # => false
(...2).cover?(..2)  # => false

Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.

(2..).cover?(1)     # => false
(2..).cover?(3)     # => true
(2...).cover?(3)    # => true
(2..).cover?(2)     # => true
(2..).cover?("2")   # => false
(2..).cover?(2..)   # => true
(2..).cover?(2...)  # => true
(2..).cover?("2"..) # => false
(2...).cover?(2..)  # => false
(2...).cover?(3...) # => true
(2...).cover?(3..)  # => false
(3..).cover?(2..)   # => false

Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.

(nil...).cover?(Object.new) # => true
(nil...).cover?(nil...)     # => true
(nil..).cover?(nil...)      # => true
(nil...).cover?(nil..)      # => false
(nil...).cover?(1..)        # => false

Related: #include?.

[ GitHub ]

  
# File 'range.c', line 2249

static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}

#each {|element| ... } ⇒ self #eachEnumerator

With a block given, passes each element of self to the block:

a = []
(1..4).each {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

Raises an exception unless self.first.respond_to?(:succ).

With no block given, returns an enumerator.

[ GitHub ]

  
# File 'range.c', line 1076

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
        range_each_fixnum_endless(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
        return range_each_fixnum_loop(beg, end, range);
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
        if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
            if (!FIXNUM_P(beg)) {
                if (RBIGNUM_NEGATIVE_P(beg)) {
                    do {
                        rb_yield(beg);
                    } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                    if (NIL_P(end)) range_each_fixnum_endless(beg);
                    if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
                }
                else {
                    if (NIL_P(end)) range_each_bignum_endless(beg);
                    if (FIXNUM_P(end)) return range;
                }
            }
            if (FIXNUM_P(beg)) {
                i = FIX2LONG(beg);
                do {
                    rb_yield(LONG2FIX(i));
                } while (POSFIXABLE(++i));
                beg = LONG2NUM(i);
            }
            ASSUME(!FIXNUM_P(beg));
            ASSUME(!SPECIAL_CONST_P(end));
        }
        if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
            if (EXCL(range)) {
                while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
                    rb_yield(beg);
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
            else {
                VALUE c;
                while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
                    rb_yield(beg);
                    if (c == INT2FIX(0)) break;
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
        }
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
        beg = rb_sym2str(beg);
        if (NIL_P(end)) {
            rb_str_upto_endless_each(beg, sym_each_i, 0);
        }
        else {
            rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
        }
    }
    else {
        VALUE tmp = rb_check_string_type(beg);

        if (!NIL_P(tmp)) {
            if (!NIL_P(end)) {
                rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
            }
            else {
                rb_str_upto_endless_each(tmp, each_i, 0);
            }
        }
        else {
            if (!discrete_object_p(beg)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(beg));
            }
            if (!NIL_P(end))
                range_each_func(range, each_i, 0);
            else
                for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
                    rb_yield(beg);
        }
    }
    return range;
}

#endObject

Returns the object that defines the end of self.

(1..4).end  # => 4
(1...4).end # => 4
(1..).end   # => nil

Related: #begin, #last.

[ GitHub ]

  
# File 'range.c', line 1341

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}

#to_aArray #entriesArray

Alias for #to_a.

#eql?(other) ⇒ Boolean

Returns true if and only if:

  • other is a range.

  • other.begin.eql?(self.begin).

  • other.end.eql?(self.end).

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r.eql?(1..5)                  # => true
r = Range.new(1, 5)
r.eql?('foo')                 # => false
r.eql?(2..5)                  # => false
r.eql?(1..4)                  # => false
r.eql?(1...5)                 # => false
r.eql?(Range.new(1, 5, true)) # => false

Note that even with the same argument, the return values of #== and #eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: #==.

[ GitHub ]

  
# File 'range.c', line 251

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}

#firstObject #first(n) ⇒ Array

With no argument, returns the first element of self, if it exists:

(1..4).first     # => 1
('a'..'d').first # => "a"

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) # => [1, 2, 3]
(1..10).first(0) # => []
(1..4).first(50) # => [1, 2, 3, 4]

Raises an exception if there is no first element:

(..4).first # Raises RangeError
[ GitHub ]

  
# File 'range.c', line 1385

static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}

#hashInteger

Returns the integer hash value for self. Two range objects r0 and r1 have the same hash value if and only if r0.eql?(r1).

Related: #eql?, Object#hash.

[ GitHub ]

  
# File 'range.c', line 272

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}

#include?(object) ⇒ Boolean #include?(object) ⇒ Boolean

Alias for #member?.

#initialize_copy(orig)

This method is for internal use only.
[ GitHub ]

  
# File 'range.c', line 113

static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
    range_modify(range);
    rb_struct_init_copy(range, orig);
    return range;
}

#inspectString

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from #to_s and #inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: #to_s.

[ GitHub ]

  
# File 'range.c', line 1983

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}

#lastObject #last(n) ⇒ Array

With no argument, returns the last element of self, if it exists:

(1..4).last     # => 4
('a'..'d').last # => "d"

Note that last with no argument returns the end element of self even if #exclude_end? is true:

(1...4).last     # => 4
('a'...'d').last # => "d"

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) # => [8, 9, 10]
(1..10).last(0) # => []
(1..4).last(50) # => [1, 2, 3, 4]

Note that last with argument does not return the end element of self if #exclude_end? it true:

(1...4).last(3)     # => [1, 2, 3]
('a'...'d').last(3) # => ["a", "b", "c"]

Raises an exception if there is no last element:

(1..).last # Raises RangeError
[ GitHub ]

  
# File 'range.c', line 1491

static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}

#maxObject #max(n) ⇒ Array #max {|a, b| ... } ⇒ Object #max(n) {|a, b| ... } ⇒ Array

Returns the maximum value in self, using method #<=> or a given block for comparison.

With no argument and no block given, returns the maximum-valued element of self.

(1..4).max     # => 4
('a'..'d').max # => "d"
(-4..-1).max   # => -1

With non-negative integer argument n given, and no block given, returns the n maximum-valued elements of self in an array:

(1..4).max(2)     # => [4, 3]
('a'..'d').max(2) # => ["d", "c"]
(-4..-1).max(2)   # => [-1, -2]
(1..4).max(50)    # => [4, 3, 2, 1]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far maximum value and the next element of self.

To illustrate:

(1..4).max {|a, b| p [a, b]; a <=> b } # => 4

Output:

[2, 1]
[3, 2]
[4, 3]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).max {|a, b| -(a <=> b) } # => 1

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).max(2) {|a, b| -(a <=> b) }  # => [1, 2]
(1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]

Returns an empty array if n is zero:

(1..4).max(0)                      # => []
(1..4).max(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).max                         # => nil
    (4..1).max(2)                      # => []
    (4..1).max {|a, b| -(a <=> b) }    # => nil
    (4..1).max(2) {|a, b| -(a <=> b) } # => []
  • The begin value of an exclusive range is equal to the end value:

    (1...1).max                          # => nil
    (1...1).max(2)                       # => []
    (1...1).max  {|a, b| -(a <=> b) }    # => nil
    (1...1).max(2)  {|a, b| -(a <=> b) } # => []

Raises an exception if either:

  • self is a endless range: (1..).

  • A block is given and self is a beginless range.

Related: #min, #minmax.

[ GitHub ]

  
# File 'range.c', line 1700

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    VALUE b = RANGE_BEG(range);

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(b)) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}

#include?(object) ⇒ Boolean Also known as: #include?

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: #cover?.

[ GitHub ]

  
# File 'range.c', line 2067

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val);
    if (!UNDEF_P(ret)) return ret;
    return rb_call_super(1, &val);
}

#minObject #min(n) ⇒ Array #min {|a, b| ... } ⇒ Object #min(n) {|a, b| ... } ⇒ Array

Returns the minimum value in self, using method #<=> or a given block for comparison.

With no argument and no block given, returns the minimum-valued element of self.

(1..4).min     # => 1
('a'..'d').min # => "a"
(-4..-1).min   # => -4

With non-negative integer argument n given, and no block given, returns the n minimum-valued elements of self in an array:

(1..4).min(2)     # => [1, 2]
('a'..'d').min(2) # => ["a", "b"]
(-4..-1).min(2)   # => [-4, -3]
(1..4).min(50)    # => [1, 2, 3, 4]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far minimum value and the next element of self.

To illustrate:

(1..4).min {|a, b| p [a, b]; a <=> b } # => 1

Output:

[2, 1]
[3, 1]
[4, 1]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).min {|a, b| -(a <=> b) } # => 4

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).min(2) {|a, b| -(a <=> b) }  # => [4, 3]
(1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]

Returns an empty array if n is zero:

(1..4).min(0)                      # => []
(1..4).min(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).min                         # => nil
    (4..1).min(2)                      # => []
    (4..1).min {|a, b| -(a <=> b) }    # => nil
    (4..1).min(2) {|a, b| -(a <=> b) } # => []
  • The begin value of an exclusive range is equal to the end value:

    (1...1).min                          # => nil
    (1...1).min(2)                       # => []
    (1...1).min  {|a, b| -(a <=> b) }    # => nil
    (1...1).min(2)  {|a, b| -(a <=> b) } # => []

Raises an exception if either:

  • self is a beginless range: (..4).

  • A block is given and self is an endless range.

Related: #max, #minmax.

[ GitHub ]

  
# File 'range.c', line 1592

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
        return range_first(argc, argv, range);
    }
    else {
        VALUE b = RANGE_BEG(range);
        VALUE e = RANGE_END(range);
        int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0 || (c == 0 && EXCL(range)))
            return Qnil;
        return b;
    }
}

#minmaxArray, Object #minmax {|a, b| ... } ⇒ Array, Object

Returns a 2-element array containing the minimum and maximum value in self, either according to comparison method #<=> or a given block.

With no block given, returns the minimum and maximum values, using #<=> for comparison:

(1..4).minmax     # => [1, 4]
(1...4).minmax    # => [1, 3]
('a'..'d').minmax # => ["a", "d"]
(-4..-1).minmax   # => [-4, -1]

With a block given, the block must return an integer:

  • Negative if a is smaller than b.

  • Zero if a and b are equal.

  • Positive if a is larger than b.

The block is called self.size times to compare elements; returns a 2-element ::Array containing the minimum and maximum values from self, per the block:

(1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]

Returns [nil, nil] if:

  • The begin value of the range is larger than the end value:

    (4..1).minmax                      # => [nil, nil]
    (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
  • The begin value of an exclusive range is equal to the end value:

    (1...1).minmax                          # => [nil, nil]
    (1...1).minmax  {|a, b| -(a <=> b) }    # => [nil, nil]

Raises an exception if self is a beginless or an endless range.

Related: #min, #max.

[ GitHub ]

  
# File 'range.c', line 1786

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(
        rb_funcall(range, id_min, 0),
        rb_funcall(range, id_max, 0)
    );
}

#overlap?(range) ⇒ Boolean

Returns true if range overlaps with self, false otherwise:

(0..2).overlap?(1..3) #=> true
(0..2).overlap?(3..4) #=> false
(0..).overlap?(..0)   #=> true

With non-range argument, raises ::TypeError.

(1..3).overlap?(1)         # TypeError

Returns false if an internal call to #<=> returns nil; that is, the operands are not comparable.

(1..3).overlap?('a'..'d')  # => false

Returns false if self or range is empty. “Empty range” means that its begin value is larger than, or equal for an exclusive range, its end value.

(4..1).overlap?(2..3)      # => false
(4..1).overlap?(..3)       # => false
(4..1).overlap?(2..)       # => false
(2...2).overlap?(1..2)     # => false

(1..4).overlap?(3..2)      # => false
(..4).overlap?(3..2)       # => false
(1..).overlap?(3..2)       # => false
(1..2).overlap?(2...2)     # => false

Returns false if the begin value one of self and range is larger than, or equal if the other is an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Returns false if the end value one of self and range is larger than, or equal for an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Note that the method wouldn’t make any assumptions about the beginless range being actually empty, even if its upper bound is the minimum possible value of its type, so all this would return true:

(...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true
(..."").overlap?(..."") # => true
(...[]).overlap?(...[]) # => true

Even if those ranges are effectively empty (no number can be smaller than -Float::INFINITY), they are still considered overlapping with themselves.

Related: #cover?.

[ GitHub ]

  
# File 'range.c', line 2501

static VALUE
range_overlap(VALUE range, VALUE other)
{
    if (!rb_obj_is_kind_of(other, rb_cRange)) {
        rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)",
                 rb_class_name(rb_obj_class(other)));
    }

    VALUE self_beg = RANGE_BEG(range);
    VALUE self_end = RANGE_END(range);
    int self_excl = EXCL(range);
    VALUE other_beg = RANGE_BEG(other);
    VALUE other_end = RANGE_END(other);
    int other_excl = EXCL(other);

    if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
    if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;

    if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
        if (NIL_P(cmp)) return Qfalse;
        /* if both begin values are equal, no more comparisons needed */
        if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
    }
    else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
        return RBOOL(!NIL_P(cmp));
    }

    if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
    if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;

    return Qtrue;
}

#reverse_each {|element| ... } ⇒ self #reverse_eachEnumerator

With a block given, passes each element of self to the block in reverse order:

a = []
(1..4).reverse_each {|element| a.push(element) } # => 1..4
a # => [4, 3, 2, 1]

a = []
(1...4).reverse_each {|element| a.push(element) } # => 1...4
a # => [3, 2, 1]

With no block given, returns an enumerator.

[ GitHub ]

  
# File 'range.c', line 1270

static VALUE
range_reverse_each(VALUE range)
{
    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size);

    VALUE beg = RANGE_BEG(range);
    VALUE end = RANGE_END(range);
    int excl = EXCL(range);

    if (NIL_P(end)) {
        rb_raise(rb_eTypeError, "can't iterate from %s",
                 rb_obj_classname(end));
    }

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        if (excl) {
            if (end == LONG2FIX(FIXNUM_MIN)) return range;

            end = rb_int_minus(end, INT2FIX(1));
        }

        range_reverse_each_fixnum_section(beg, end);
    }
    else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
        if (excl) {
            end = rb_int_minus(end, INT2FIX(1));
        }
        range_reverse_each_positive_bignum_section(beg, end);
        range_reverse_each_fixnum_section(beg, end);
        range_reverse_each_negative_bignum_section(beg, end);
    }
    else {
        return rb_call_super(0, NULL);
    }

    return range;
}

#sizenon_negative_integer, ...

Returns the count of elements in self if both begin and end values are numeric; otherwise, returns nil:

(1..4).size      # => 4
(1...4).size     # => 3
(1..).size       # => Infinity
('a'..'z').size  # => nil

If self is not iterable, raises an exception:

(0.5..2.5).size  # TypeError
(..1).size       # TypeError

Related: #count.

[ GitHub ]

  
# File 'range.c', line 936

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);

    if (RB_INTEGER_TYPE_P(b)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
            return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }

    if (!discrete_object_p(b)) {
        CANT_ITERATE_FROM(b);
    }

    return Qnil;
}

#step(s = 1) {|element| ... } ⇒ self #step(s = 1) ⇒ enumerator/arithmetic_sequence

Iterates over the elements of range in steps of s. The iteration is performed by + operator:

(0..6).step(2) { puts _1 } #=> 1..5
# Prints: 0, 2, 4, 6

# Iterate between two dates in step of 1 day (24 hours)
(Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 }
# Prints:
#   2022-02-24 00:00:00 UTC
#   2022-02-25 00:00:00 UTC
#   2022-02-26 00:00:00 UTC
#   2022-02-27 00:00:00 UTC
#   2022-02-28 00:00:00 UTC
#   2022-03-01 00:00:00 UTC

If + step decreases the value, iteration is still performed when step #begin is higher than the #end:

(0..6).step(-2) { puts _1 }
# Prints nothing

(6..0).step(-2) { puts _1 }
# Prints: 6, 4, 2, 0

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 }
# Prints:
#   2022-03-01 00:00:00 UTC
#   2022-02-28 00:00:00 UTC
#   2022-02-27 00:00:00 UTC
#   2022-02-26 00:00:00 UTC
#   2022-02-25 00:00:00 UTC
#   2022-02-24 00:00:00 UTC

When the block is not provided, and range boundaries and step are ::Numeric, the method returns ::Enumerator::ArithmeticSequence.

(1..5).step(2) # => ((1..5).step(2))
(1.0..).step(1.5) #=> ((1.0..).step(1.5))
(..3r).step(1/3r) #=> ((..3/1).step((1/3)))

::Enumerator::ArithmeticSequence can be further used as a value object for iteration or slicing of collections (see Array#[]). There is a convenience method #% with behavior similar to step to produce arithmetic sequences more expressively:

# Same as (1..5).step(2)
(1..5) % 2 # => ((1..5).%(2))

In a generic case, when the block is not provided, ::Enumerator is returned:

('a'..).step('b')         #=> #<Enumerator: "a"..:step("b")>
('a'..).step('b').take(3) #=> ["a", "ab", "abb"]

If s is not provided, it is considered 1 for ranges with numeric #begin:

(1..5).step { p _1 }
# Prints: 1, 2, 3, 4, 5

For non-Numeric ranges, step absence is an error:

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 }
# raises: step is required for non-numeric ranges (ArgumentError)

For backward compatibility reasons, ::String ranges support the iteration both with string step and with integer step. In the latter case, the iteration is performed by calculating the next values with String#succ:

('a'..'e').step(2) { p _1 }
# Prints: a, c, e
('a'..'e').step { p _1 }
# Default step 1; prints: a, b, c, d, e
[ GitHub ]

  
# File 'range.c', line 483

static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, v, step;
    int c, dir;

    b = RANGE_BEG(range);
    e = RANGE_END(range);

    const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
    const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
    // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol
    // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a')
    // Hence the additional conversion/additional checks.
    const VALUE str_b = rb_check_string_type(b);
    const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil;

    if (rb_check_arity(argc, 0, 1))
        step = argv[0];
    else {
        if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p))
            step = INT2FIX(1);
        else
            rb_raise(rb_eArgError, "step is required for non-numeric ranges");
    }

    const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric);

    if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) {
        rb_raise(rb_eArgError, "step can't be 0");
    }

    if (!rb_block_given_p()) {
        // This code is allowed to create even beginless ArithmeticSequence, which can be useful,
        // e.g., for array slicing:
        //   ary[(..-1) % 3]
        if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        // ...but generic Enumerator from beginless range is useless and probably an error.
        if (NIL_P(b)) {
            rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless");
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, 0);
    }

    if (NIL_P(b)) {
        rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless");
    }

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
        /* perform summation of numbers in C until their reach Fixnum limit */
        long i = FIX2LONG(b), unit = FIX2LONG(step);
        do {
            rb_yield(LONG2FIX(i));
            i += unit;          /* FIXABLE+FIXABLE never overflow */
        } while (FIXABLE(i));
        b = LONG2NUM(i);

        /* then switch to Bignum API */
        for (;; b = rb_big_plus(b, step))
            rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) {
        /* fixnums are special: summation is performed in C for performance */
        long end = FIX2LONG(e);
        long i, unit = FIX2LONG(step);

        if (unit < 0) {
            if (!EXCL(range))
                end -= 1;
            i = FIX2LONG(b);
            while (i > end) {
                rb_yield(LONG2NUM(i));
                i += unit;
            }
        } else {
            if (!EXCL(range))
                end += 1;
            i = FIX2LONG(b);
            while (i < end) {
                rb_yield(LONG2NUM(i));
                i += unit;
            }
        }
    }
    else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) {
        /* done */
    } else if (!NIL_P(str_b) && FIXNUM_P(step)) {
        // backwards compatibility behavior for String only, when no step/Integer step is passed
        // See discussion in https://bugs.ruby-lang.org/issues/18368

        VALUE iter[2] = {INT2FIX(1), step};

        if (NIL_P(e)) {
            rb_str_upto_endless_each(str_b, step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter);
        }
    } else if (!NIL_P(sym_b) && FIXNUM_P(step)) {
        // same as above: backward compatibility for symbols

        VALUE iter[2] = {INT2FIX(1), step};

        if (NIL_P(e)) {
            rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
        }
    } else {
        v = b;
        if (!NIL_P(e)) {
            if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) {
                // iterate backwards, for consistency with ArithmeticSequence
                if (EXCL(range)) {
                    for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step))
                        rb_yield(v);
                }
                else {
                    for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) {
                        rb_yield(v);
                        if (!c) break;
                    }
                }

            } else {
                // Direction of the comparison. We use it as a comparison operator in cycle:
                // if begin < end, the cycle performs while value < end (iterating forward)
                // if begin > end, the cycle performs while value > end (iterating backward with
                // a negative step)
                dir = r_less(b, e);
                // One preliminary addition to check the step moves iteration in the same direction as
                // from begin to end; otherwise, the iteration should be empty.
                if (r_less(b, rb_funcall(b, id_plus, 1, step)) == dir) {
                    if (EXCL(range)) {
                        for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step))
                            rb_yield(v);
                    }
                    else {
                        for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) {
                            rb_yield(v);
                            if (!c) break;
                        }
                    }
                }
            }
        }
        else
            for (;; v = rb_funcall(v, id_plus, 1, step))
                rb_yield(v);
    }
    return range;
}

#to_aArray Also known as: #entries

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]
[ GitHub ]

  
# File 'range.c', line 1006

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#to_sString

Returns a string representation of self, including begin.to_s and end.to_s:

(1..4).to_s  # => "1..4"
(1...4).to_s # => "1...4"
(1..).to_s   # => "1.."
(..4).to_s   # => "..4"

Note that returns from #to_s and #inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: #inspect.

[ GitHub ]

  
# File 'range.c', line 1924

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}