Class: Numeric
| Relationships & Source Files | |
| Extension / Inclusion / Inheritance Descendants | |
| Subclasses: | |
| Super Chains via Extension / Inclusion / Inheritance | |
| Instance Chain: 
          self,
           ::Comparable | |
| Inherits: | Object | 
| Defined in: | numeric.c, complex.c, numeric.rb, rational.c | 
Overview
Numeric is the class from which all higher-level numeric classes should inherit.
Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as ::Integer are implemented as immediates, which means that each ::Integer is a single immutable object which is always passed by value.
a = 1
1.object_id == a.object_id   #=> trueThere can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
1.dup                            #=> 1
1.object_id == 1.dup.object_id   #=> trueFor this reason, Numeric should be used when defining other numeric classes.
Classes which inherit from Numeric must implement #coerce, which returns a two-member ::Array containing an object that has been coerced into an instance of the new class and self (see #coerce).
Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the #<=> operator (see ::Comparable). These methods may rely on #coerce to ensure interoperability with instances of other numeric classes.
class Tally < Numeric
  def initialize(string)
    @string = string
  end
  def to_s
    @string
  end
  def to_i
    @string.size
  end
  def coerce(other)
    [self.class.new('|' * other.to_i), self]
  end
  def <=>(other)
    to_i <=> other.to_i
  end
  def +(other)
    self.class.new('|' * (to_i + other.to_i))
  end
  def -(other)
    self.class.new('|' * (to_i - other.to_i))
  end
  def *(other)
    self.class.new('|' * (to_i * other.to_i))
  end
  def /(other)
    self.class.new('|' * (to_i / other.to_i))
  end
end
tally = Tally.new('||')
puts tally * 2            #=> "||||"
puts tally > 1            #=> trueWhat’s Here
First, what’s elsewhere. Class Numeric:
- 
Inherits from class Object. 
- 
Includes module Comparable. 
Here, class Numeric provides methods for:
Querying
- 
#finite?: Returns true unless selfis infinite or not a number.
- 
#infinite?: Returns -1, nilor 1, depending on whether {self} is-Infinity<tt>, finite, or <tt>Infinity.
- 
#integer?: Returns whether selfis an integer.
- 
#negative?: Returns whether selfis negative.
- 
#nonzero?: Returns whether selfis not zero.
- 
#positive?: Returns whether selfis positive.
- 
#real?: Returns whether selfis a real value.
- 
#zero?: Returns whether selfis zero.
Comparing
- 
#<=>: Returns: - 
-1 if selfis less than the given value.
- 
0 if selfis equal to the given value.
- 
1 if selfis greater than the given value.
- 
nilifselfand the given value are not comparable.
 
- 
- 
#eql?: Returns whether selfand the given value have the same value and type.
Converting
- 
#% (aliased as #modulo): Returns the remainder of selfdivided by the given value.
- 
#-@: Returns the value of self, negated.
- 
#abs (aliased as #magnitude): Returns the absolute value of self.
- 
#abs2: Returns the square of self.
- 
#angle (aliased as #arg and #phase): Returns 0 if selfis positive, Math::PI otherwise.
- 
#ceil: Returns the smallest number greater than or equal to self, to a given precision.
- 
#coerce: Returns array [coerced_self, coerced_other]for the given other value.
- 
#conj (aliased as #conjugate): Returns the complex conjugate of self.
- 
#denominator: Returns the denominator (always positive) of the Rational representation of self.
- 
#div: Returns the value of selfdivided by the given value and converted to an integer.
- 
#divmod: Returns array [quotient, modulus]resulting from dividingselfthe given divisor.
- 
#fdiv: Returns the ::Floatresult of dividingselfby the given divisor.
- 
#floor: Returns the largest number less than or equal to self, to a given precision.
- 
#i: Returns the ::ComplexobjectComplex(0, self). the given value.
- 
#imaginary (aliased as #imag): Returns the imaginary part of the self.
- 
#numerator: Returns the numerator of the ::Rationalrepresentation ofself; has the same sign asself.
- 
#polar: Returns the array [self.abs, self.arg].
- 
#quo: Returns the value of selfdivided by the given value.
- 
#real: Returns the real part of self.
- 
#rect (aliased as #rectangular): Returns the array [self, 0].
- 
#remainder: Returns self-arg*(self/arg).truncatefor the given #arg.
- 
#round: Returns the value of selfrounded to the nearest value for the given a precision.
- 
#to_int: Returns the ::Integerrepresentation ofself, truncating if necessary.
- 
#truncate: Returns selftruncated (toward zero) to a given precision.
Other
Instance Attribute Summary
- 
    
      #finite?  ⇒ Boolean 
    
    readonly
    Returns trueifselfis a finite number,falseotherwise.
- 
    
      #infinite?  ⇒ Boolean 
    
    readonly
    Returns nil, -1, or 1 depending on whetherselfis finite,-Infinity, or+Infinity.
- 
    
      #integer?  ⇒ Boolean 
    
    readonly
    Returns trueifselfis an::Integer.
- 
    
      #negative?  ⇒ Boolean 
    
    readonly
    Returns trueifselfis less than 0,falseotherwise.
- 
    
      #nonzero?  ⇒ Boolean 
    
    readonly
    Returns selfifselfis not a zero value,nilotherwise; uses method #zero? for the evaluation.
- 
    
      #positive?  ⇒ Boolean 
    
    readonly
    Returns trueifselfis greater than 0,falseotherwise.
- 
    
      #real?  ⇒ Boolean 
    
    readonly
    Returns trueifselfis a real number (i.e.
- 
    
      #zero?  ⇒ Boolean 
    
    readonly
    Returns trueifzerohas a zero value,falseotherwise.
Instance Method Summary
- 
    
      #%(other)  ⇒ Numeric 
      (also: #modulo)
    
    Returns selfmodulootheras a real number.
- 
    
      #+  ⇒ self 
    
    Returns self.
- 
    
      #-  ⇒ Numeric 
    
    Unary Minus—Returns the receiver, negated. 
- 
    
      #<=>(other)  ⇒ zero? 
    
    Returns zero if selfis the same asother,nilotherwise.
- 
    
      #abs  ⇒ Numeric 
      (also: #magnitude)
    
    Returns the absolute value of self.
- 
    
      #abs2  ⇒ Numeric 
    
    Returns the square of self.
- 
    
      #angle  ⇒ 0, Math::PI 
    
    Alias for #arg. 
- 
    
      #arg  ⇒ 0, Math::PI 
      (also: #angle, #phase)
    
    Returns zero if selfis positive, Math::PI otherwise.
- 
    
      #ceil(ndigits = 0)  ⇒ Float, Integer 
    
    Returns the smallest float or integer that is greater than or equal to self, as specified by the givenndigits, which must be an integer-convertible object.
- 
    
      #clone(freeze: true)  ⇒ self 
    
    Returns self.
- 
    
      #coerce(other)  ⇒ Array 
    
    Returns a 2-element array containing two numeric elements, formed from the two operands selfandother, of a common compatible type.
- 
    
      #conj  
    
    Alias for #conjugate. 
- 
    
      #conj  ⇒ self 
      (also: #conj)
    
    Returns self.
- 
    
      #denominator  ⇒ Integer 
    
    Returns the denominator (always positive). 
- 
    
      #div(other)  ⇒ Integer 
    
    Returns the quotient self/otheras an integer (via #floor), using method/in the derived class ofself.
- 
    
      #divmod(other)  ⇒ Array 
    
    Returns a 2-element array [q, r], where.
- 
    
      #dup  ⇒ self 
    
    Returns self.
- 
    
      #eql?(other)  ⇒ Boolean 
    
    Returns trueifselfandotherare the same type and have equal values.
- 
    
      #fdiv(other)  ⇒ Float 
    
    Returns the quotient self/otheras a float, using method/in the derived class ofself.
- 
    
      #floor(ndigits = 0)  ⇒ Float, Integer 
    
    Returns the largest float or integer that is less than or equal to self, as specified by the givenndigits, which must be an integer-convertible object.
- 
    
      #i  ⇒ Complex 
    
    Returns Complex(0, self):
- 
    
      #imag  
    
    Alias for #imaginary. 
- 
    
      #imag  ⇒ 0 
      (also: #imag)
    
    Returns zero. 
- 
    
      #magnitude  ⇒ Numeric 
    
    Alias for #abs. 
- 
    
      #modulo(other)  ⇒ Numeric 
    
    Alias for #%. 
- 
    
      #numerator  ⇒ Integer 
    
    Returns the numerator. 
- 
    
      #phase  ⇒ 0, Math::PI 
    
    Alias for #arg. 
- 
    
      #polar  ⇒ Array 
    
    Returns array [self.abs, self.arg].
- 
    
      #quo(int_or_rat)  ⇒ rat 
    
    Returns the most exact division (rational for integers, float for floats). 
- 
    
      #real  ⇒ self 
    
    readonly
    Returns self.
- 
    
      #rect  ⇒ Array 
      (also: #rectangular)
    
    Returns array [self, 0].
- 
    
      #rectangular  ⇒ Array 
    
    Alias for #rect. 
- 
    
      #remainder(other)  ⇒ real_number 
    
    Returns the remainder after dividing selfbyother.
- 
    
      #round(digits = 0)  ⇒ Integer, Float 
    
    Returns selfrounded to the nearest value with a precision ofdigitsdecimal digits.
- 
    
      #step(to = nil, by = 1) {|n| ... } ⇒ self 
    
    Generates a sequence of numbers; with a block given, traverses the sequence. 
- 
    
      #to_c  ⇒ Complex 
    
    Returns selfas a::Complexobject.
- 
    
      #to_int  ⇒ Integer 
    
    Returns selfas an integer; converts using methodto_iin the derived class.
- 
    
      #truncate(digits = 0)  ⇒ Integer, Float 
    
    Returns selftruncated (toward zero) to a precision ofdigitsdecimal digits.
- 
    
      #singleton_method_added(name)  
    
    Internal use only
    Trap attempts to add methods to Numericobjects.
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. | 
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. | 
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. | 
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. | 
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. | 
| #between? | |
| #clamp | 
Instance Attribute Details
    #finite?  ⇒ Boolean  (readonly)  
Returns true if self is a finite number, false otherwise.
# File 'numeric.rb', line 48
def finite? true end
    #infinite?  ⇒ Boolean  (readonly)  
Returns nil, -1, or 1 depending on whether self is finite, -Infinity, or +Infinity.
# File 'numeric.rb', line 58
def infinite? nil end
    #integer?  ⇒ Boolean  (readonly)  
Returns true if self is an ::Integer.
1.0.integer? # => false
1.integer?   # => true# File 'numeric.rb', line 39
def integer? false end
    #negative?  ⇒ Boolean  (readonly)  
Returns true if self is less than 0, false otherwise.
# File 'numeric.c', line 902
static VALUE
num_negative_p(VALUE num)
{
    return RBOOL(rb_num_negative_int_p(num));
}
  
    #nonzero?  ⇒ Boolean  (readonly)  
Returns self if self is not a zero value, nil otherwise; uses method #zero? for the evaluation.
The returned self allows the method to be chained:
a = %w[z Bb bB bb BB a aA Aa AA A]
a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]Of the Core and Standard Library classes, ::Integer, ::Float, ::Rational, and ::Complex use this implementation.
Related: #zero?
# File 'numeric.c', line 836
static VALUE
num_nonzero_p(VALUE num)
{
    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
        return Qnil;
    }
    return num;
}
  
    #positive?  ⇒ Boolean  (readonly)  
Returns true if self is greater than 0, false otherwise.
# File 'numeric.c', line 878
static VALUE
num_positive_p(VALUE num)
{
    const ID mid = '>';
    if (FIXNUM_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
    }
    return rb_num_compare_with_zero(num, mid);
}
  
    #real?  ⇒ Boolean  (readonly)  
Returns true if self is a real number (i.e. not ::Complex).
# File 'numeric.rb', line 18
def real? true end
    #zero?  ⇒ Boolean  (readonly)  
Returns true if zero has a zero value, false otherwise.
Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.
# File 'numeric.c', line 794
static VALUE
num_zero_p(VALUE num)
{
    return rb_equal(num, INT2FIX(0));
}
  Instance Method Details
    #%(other)  ⇒ Numeric     Also known as: #modulo
  
Returns self modulo other as a real number.
Of the Core and Standard Library classes, only ::Rational uses this implementation.
For Rational r and real number n, these expressions are equivalent:
r % n
r-n*(r/n).floor
r.divmod(n)[1]See #divmod.
Examples:
r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5
r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)# File 'numeric.c', line 666
static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
                      rb_funcall(y, '*', 1, q));
}
  
    #+  ⇒ self   
Returns self.
# File 'numeric.rb', line 89
def +@ self end
    #-  ⇒ Numeric   
Unary Minus—Returns the receiver, negated.
# File 'numeric.c', line 582
static VALUE
num_uminus(VALUE num)
{
    VALUE zero;
    zero = INT2FIX(0);
    do_coerce(&zero, &num, TRUE);
    return num_funcall1(zero, '-', num);
}
  
    #<=>(other)  ⇒ zero?   
Returns zero if self is the same as other, nil otherwise.
No subclass in the Ruby Core or Standard Library uses this implementation.
# File 'numeric.c', line 1551
static VALUE
num_cmp(VALUE x, VALUE y)
{
    if (x == y) return INT2FIX(0);
    return Qnil;
}
  
    #abs  ⇒ Numeric     Also known as: #magnitude
  
Returns the absolute value of self.
12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56# File 'numeric.c', line 774
static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
        return num_funcall0(num, idUMinus);
    }
    return num;
}
  
    #abs2  ⇒ Numeric   
Returns the square of self.
# File 'complex.c', line 2385
static VALUE
numeric_abs2(VALUE self)
{
    return f_mul(self, self);
}
  Alias for #arg.
    #arg  ⇒ 0, Math::PI     Also known as: #angle, #phase
  
Returns zero if self is positive, Math::PI otherwise.
# File 'complex.c', line 2397
static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}
  #ceil(ndigits = 0) ⇒ Float, Integer
Returns the smallest float or integer that is greater than or equal to self, as specified by the given ndigits, which must be an integer-convertible object.
Equivalent to self.to_f.ceil(ndigits).
Related: #floor, Float#ceil.
# File 'numeric.c', line 2740
static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
    return flo_ceil(argc, argv, rb_Float(num));
}
  
    #clone(freeze: true)  ⇒ self   
# File 'numeric.c', line 546
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
    return rb_immutable_obj_clone(argc, argv, x);
}
  #coerce(other) ⇒ Array
Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.
Of the Core and Standard Library classes, ::Integer, ::Rational, and ::Complex use this implementation.
Examples:
i = 2                    # => 2
i.coerce(3)              # => [3, 2]
i.coerce(3.0)            # => [3.0, 2.0]
i.coerce(Rational(1, 2)) # => [0.5, 2.0]
i.coerce(Complex(3, 4))  # Raises RangeError.
r = Rational(5, 2)       # => (5/2)
r.coerce(2)              # => [(2/1), (5/2)]
r.coerce(2.0)            # => [2.0, 2.5]
r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
r.coerce(Complex(3, 4))  # => [(3+4i), ((5/2)+0i)]
c = Complex(2, 3)        # => (2+3i)
c.coerce(2)              # => [(2+0i), (2+3i)]
c.coerce(2.0)            # => [(2.0+0i), (2+3i)]
c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
c.coerce(Complex(3, 4))  # => [(3+4i), (2+3i)]Raises an exception if any type conversion fails.
# File 'numeric.c', line 430
static VALUE
num_coerce(VALUE x, VALUE y)
{
    if (CLASS_OF(x) == CLASS_OF(y))
        return rb_assoc_new(y, x);
    x = rb_Float(x);
    y = rb_Float(y);
    return rb_assoc_new(y, x);
}
  #conj
Alias for #conjugate.
# File 'numeric.rb', line 82
alias conj conjugate
    #conj  ⇒ self     Also known as: #conj
  
Returns self.
# File 'numeric.rb', line 78
def conjugate self end
#denominator ⇒ Integer
Returns the denominator (always positive).
# File 'rational.c', line 2027
static VALUE
numeric_denominator(VALUE self)
{
    return f_denominator(f_to_r(self));
}
  #div(other) ⇒ Integer
Returns the quotient self/other as an integer (via #floor), using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, Only Float and ::Rational use this implementation.
# File 'numeric.c', line 625
static VALUE
num_div(VALUE x, VALUE y)
{
    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}
  #divmod(other) ⇒ Array
Returns a 2-element array [q, r], where
q = (self/other).floor                  # Quotient
r = self % other                        # RemainderOf the Core and Standard Library classes, only ::Rational uses this implementation.
Examples:
Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]
Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]
Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]# File 'numeric.c', line 756
static VALUE
num_divmod(VALUE x, VALUE y)
{
    return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
  
    #dup  ⇒ self   
Returns self.
Related: #clone.
# File 'numeric.rb', line 9
def dup self end
    #eql?(other)  ⇒ Boolean   
Returns true if self and other are the same type and have equal values.
Of the Core and Standard Library classes, only ::Integer, ::Rational, and ::Complex use this implementation.
Examples:
1.eql?(1)              # => true
1.eql?(1.0)            # => false
1.eql?(Rational(1, 1)) # => false
1.eql?(Complex(1, 0))  # => falseMethod eql? is different from == in that eql? requires matching types, while == does not.
# File 'numeric.c', line 1529
static VALUE
num_eql(VALUE x, VALUE y)
{
    if (TYPE(x) != TYPE(y)) return Qfalse;
    if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_eql(x, y);
    }
    return rb_equal(x, y);
}
  #fdiv(other) ⇒ Float
Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, only BigDecimal uses this implementation.
# File 'numeric.c', line 606
static VALUE
num_fdiv(VALUE x, VALUE y)
{
    return rb_funcall(rb_Float(x), '/', 1, y);
}
  #floor(ndigits = 0) ⇒ Float, Integer
Returns the largest float or integer that is less than or equal to self, as specified by the given ndigits, which must be an integer-convertible object.
Equivalent to self.to_f.floor(ndigits).
Related: #ceil, Float#floor.
# File 'numeric.c', line 2720
static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
    return flo_floor(argc, argv, rb_Float(num));
}
  #i ⇒ Complex
# File 'numeric.c', line 569
static VALUE
num_imaginary(VALUE num)
{
    return rb_complex_new(INT2FIX(0), num);
}
  #imag
Alias for #imaginary.
# File 'numeric.rb', line 71
alias imag imaginary
    #imag  ⇒ 0     Also known as: #imag
  
Returns zero.
# File 'numeric.rb', line 67
def imaginary 0 end
    
      #abs  ⇒ Numeric 
      #magnitude  ⇒ Numeric 
    
  
Numeric 
      #magnitude  ⇒ Numeric 
    Alias for #abs.
    
      #%(other)  ⇒ Numeric 
      #modulo(other)  ⇒ Numeric 
    
  
Numeric 
      #modulo(other)  ⇒ Numeric 
    Alias for #%.
#numerator ⇒ Integer
Returns the numerator.
# File 'rational.c', line 2015
static VALUE
numeric_numerator(VALUE self)
{
    return f_numerator(f_to_r(self));
}
  Alias for #arg.
#polar ⇒ Array
Returns array [self.abs, self.arg].
# File 'complex.c', line 2423
static VALUE
numeric_polar(VALUE self)
{
    VALUE abs, arg;
    if (RB_INTEGER_TYPE_P(self)) {
        abs = rb_int_abs(self);
        arg = numeric_arg(self);
    }
    else if (RB_FLOAT_TYPE_P(self)) {
        abs = rb_float_abs(self);
        arg = float_arg(self);
    }
    else if (RB_TYPE_P(self, T_RATIONAL)) {
        abs = rb_rational_abs(self);
        arg = numeric_arg(self);
    }
    else {
        abs = f_abs(self);
        arg = f_arg(self);
    }
    return rb_assoc_new(abs, arg);
}
  
    
      #quo(int_or_rat)  ⇒ rat 
      #quo(flo)  ⇒ flo 
    
  
rat 
      #quo(flo)  ⇒ flo 
    Returns the most exact division (rational for integers, float for floats).
# File 'rational.c', line 2042
VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
    if (RB_TYPE_P(x, T_COMPLEX)) {
        return rb_complex_div(x, y);
    }
    if (RB_FLOAT_TYPE_P(y)) {
        return rb_funcallv(x, idFdiv, 1, &y);
    }
    x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
    return rb_rational_div(x, y);
}
  
    #real  ⇒ self  (readonly)  
Returns self.
# File 'numeric.rb', line 27
def real self end
#rect ⇒ Array Also known as: #rectangular
Returns array [self, 0].
# File 'complex.c', line 2411
static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}
  Alias for #rect.
    #remainder(other)  ⇒ real_number   
Returns the remainder after dividing self by other.
Of the Core and Standard Library classes, only ::Float and ::Rational use this implementation.
Examples:
11.0.remainder(4)              # => 3.0
11.0.remainder(-4)             # => 3.0
-11.0.remainder(4)             # => -3.0
-11.0.remainder(-4)            # => -3.0
12.0.remainder(4)              # => 0.0
12.0.remainder(-4)             # => 0.0
-12.0.remainder(4)             # => -0.0
-12.0.remainder(-4)            # => -0.0
13.0.remainder(4.0)            # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0
Rational(13, 1).remainder(4)   # => (1/1)
Rational(13, 1).remainder(-4)  # => (1/1)
Rational(-13, 1).remainder(4)  # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)# File 'numeric.c', line 705
static VALUE
num_remainder(VALUE x, VALUE y)
{
    if (!rb_obj_is_kind_of(y, rb_cNumeric)) {
        do_coerce(&x, &y, TRUE);
    }
    VALUE z = num_funcall1(x, '%', y);
    if ((!rb_equal(z, INT2FIX(0))) &&
        ((rb_num_negative_int_p(x) &&
          rb_num_positive_int_p(y)) ||
         (rb_num_positive_int_p(x) &&
          rb_num_negative_int_p(y)))) {
        if (RB_FLOAT_TYPE_P(y)) {
            if (isinf(RFLOAT_VALUE(y))) {
                return x;
            }
        }
        return rb_funcall(z, '-', 1, y);
    }
    return z;
}
  #round(digits = 0) ⇒ Integer, Float
Returns self rounded to the nearest value with a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#round.
# File 'numeric.c', line 2757
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
    return flo_round(argc, argv, rb_Float(num));
}
  #singleton_method_added(name)
Trap attempts to add methods to Numeric objects. Always raises a ::TypeError.
Numerics should be values; singleton_methods should not be added to them.
# File 'numeric.c', line 520
static VALUE
num_sadded(VALUE x, VALUE name)
{
    ID mid = rb_to_id(name);
    /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
    rb_remove_method_id(rb_singleton_class(x), mid);
    rb_raise(rb_eTypeError,
             "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
             rb_id2str(mid),
             rb_obj_class(x));
    UNREACHABLE_RETURN(Qnil);
}
  
    
      #step(to = nil, by = 1) {|n| ... } ⇒ self 
      #step(to = nil, by = 1)  ⇒ Enumerator 
      #step(to = nil, by: 1) {|n| ... } ⇒ self 
      #step(to = nil, by: 1)  ⇒ Enumerator 
      #step(by: 1, to::) {|n| ... } ⇒ self 
      #step(by: 1, to::)  ⇒ Enumerator 
      #step(by::, to: nil) {|n| ... } ⇒ self 
      #step(by::, to: nil)  ⇒ Enumerator 
    
  
self 
      #step(to = nil, by = 1)  ⇒ Enumerator 
      #step(to = nil, by: 1) {|n| ... } ⇒ self 
      #step(to = nil, by: 1)  ⇒ Enumerator 
      #step(by: 1, to::) {|n| ... } ⇒ self 
      #step(by: 1, to::)  ⇒ Enumerator 
      #step(by::, to: nil) {|n| ... } ⇒ self 
      #step(by::, to: nil)  ⇒ Enumerator 
    Generates a sequence of numbers; with a block given, traverses the sequence.
Of the Core and Standard Library classes, ::Integer, ::Float, and ::Rational use this implementation.
A quick example:
squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]The generated sequence:
- 
Begins with self.
- 
Continues at intervals of by(which may not be zero).
- 
Ends with the last number that is within or equal to to; that is, less than or equal totoifbyis positive, greater than or equal totoifbyis negative. Iftoisnil, the sequence is of infinite length.
If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an ::Enumerator::ArithmeticSequence.
Keyword Arguments
With keyword arguments by and to, their values (or defaults) determine the step and limit:
# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes   # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) }           # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.
# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]
# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class                      # => Enumerator::ArithmeticSequencePositional Arguments
With optional positional arguments to and by, their values (or defaults) determine the step and limit:
squares = []
4.step(10, 2) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 }  # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]Implementation Notes
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.
# File 'numeric.c', line 3094
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
    VALUE to, step;
    int desc, inf;
    if (!rb_block_given_p()) {
        VALUE by = Qundef;
        num_step_extract_args(argc, argv, &to, &step, &by);
        if (!UNDEF_P(by)) {
            step = by;
        }
        if (NIL_P(step)) {
            step = INT2FIX(1);
        }
        else if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }
        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
            rb_obj_is_kind_of(step, rb_cNumeric)) {
            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
                                    num_step_size, from, to, step, FALSE);
        }
        return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
    }
    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
    if (rb_equal(step, INT2FIX(0))) {
        inf = 1;
    }
    else if (RB_FLOAT_TYPE_P(to)) {
        double f = RFLOAT_VALUE(to);
        inf = isinf(f) && (signbit(f) ? desc : !desc);
    }
    else inf = 0;
    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
        long i = FIX2LONG(from);
        long diff = FIX2LONG(step);
        if (inf) {
            for (;; i += diff)
                rb_yield(LONG2FIX(i));
        }
        else {
            long end = FIX2LONG(to);
            if (desc) {
                for (; i >= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
            else {
                for (; i <= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
        }
    }
    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
        VALUE i = from;
        if (inf) {
            for (;; i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
        else {
            ID cmp = desc ? '<' : '>';
            for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
    }
    return from;
}
  #to_c ⇒ Complex
Returns self as a ::Complex object.
# File 'complex.c', line 1948
static VALUE
numeric_to_c(VALUE self)
{
    return rb_complex_new1(self);
}
  #to_int ⇒ Integer
Returns self as an integer; converts using method to_i in the derived class.
Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.
Examples:
Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int  # => 2
Complex(2, 1).to_int  # Raises RangeError (non-zero imaginary part)# File 'numeric.c', line 864
static VALUE
num_to_int(VALUE num)
{
    return num_funcall0(num, id_to_i);
}
  #truncate(digits = 0) ⇒ Integer, Float
Returns self truncated (toward zero) to a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#truncate.
# File 'numeric.c', line 2774
static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
    return flo_truncate(argc, argv, rb_Float(num));
}