123456789_123456789_123456789_123456789_123456789_

Class: IO

Relationships & Source Files
Namespace Children
Modules:
Classes:
Exceptions:
Extension / Inclusion / Inheritance Descendants
Subclasses:
Super Chains via Extension / Inclusion / Inheritance
Instance Chain:
Inherits: Object
Defined in: io.c,
file.c,
io.rb

Overview

An instance of class IO (commonly called a stream) represents an input/output stream in the underlying operating system. Class IO is the basis for input and output in Ruby.

Class ::File is the only class in the Ruby core that is a subclass of IO. Some classes in the Ruby standard library are also subclasses of IO; these include TCPSocket and UDPSocket.

The global constant ::ARGF (also accessible as $<) provides an IO-like stream that allows access to all file paths found in ARGV (or found in STDIN if ARGV is empty). ::ARGF is not itself a subclass of IO.

Class StringIO provides an IO-like stream that handles a ::String. StringIO is not itself a subclass of IO.

Important objects based on IO include:

  • $stdin.

  • $stdout.

  • $stderr.

  • Instances of class ::File.

An instance of IO may be created using:

  • .new: returns a new IO object for the given integer file descriptor.

  • .open: passes a new IO object to the given block.

  • .popen: returns a new IO object that is connected to the $stdin and $stdout of a newly-launched subprocess.

  • Kernel.open: Returns a new IO object connected to a given source: stream, file, or subprocess.

Like a ::File stream, an IO stream has:

  • A read/write mode, which may be read-only, write-only, or read/write; see Read/Write Mode.

  • A data mode, which may be text-only or binary; see Data Mode.

  • Internal and external encodings; see Encodings.

And like other IO streams, it has:

  • A position, which determines where in the stream the next read or write is to occur; see Position.

  • A line number, which is a special, line-oriented, “position” (different from the position mentioned above); see Line Number.

Extension io/console

Extension io/console provides numerous methods for interacting with the console; requiring it adds numerous methods to class IO.

Example Files

Many examples here use these variables:

English text with newlines.

text = <<~EOT

First line
Second line

Fourth line
Fifth line

EOT

Russian text.

russian = “u435 441 442” # => “тест”

Binary data.

data = “u9990u9991u9992u9993u9994”

Text file.

File.write(‘t.txt’, text)

File with Russian text.

File.write(‘t.rus’, russian)

File with binary data.

f = File.new(‘t.dat’, ‘wb:UTF-16’) f.write(data) f.close

Open Options

A number of IO methods accept optional keyword arguments that determine how a new stream is to be opened:

  • :mode: Stream mode.

  • :flags: ::Integer file open flags; If mode is also given, the two are bitwise-ORed.

  • :external_encoding: External encoding for the stream.

  • :internal_encoding: Internal encoding for the stream. '-' is a synonym for the default internal encoding. If the value is nil no conversion occurs.

  • :encoding: Specifies external and internal encodings as 'extern:intern'.

  • :textmode: If a truthy value, specifies the mode as text-only, binary otherwise.

  • :binmode: If a truthy value, specifies the mode as binary, text-only otherwise.

  • :autoclose: If a truthy value, specifies that the fd will close when the stream closes; otherwise it remains open.

  • :path: If a string value is provided, it is used in #inspect and is available as #path method.

Also available are the options offered in String#encode, which may control conversion between external and internal encoding.

Basic IO

You can perform basic stream IO with these methods, which typically operate on multi-byte strings:

  • #read: Reads and returns some or all of the remaining bytes from the stream.

  • #write: Writes zero or more strings to the stream; each given object that is not already a string is converted via to_s.

Position

An IO stream has a nonnegative integer position, which is the byte offset at which the next read or write is to occur. A new stream has position zero (and line number zero); method #rewind resets the position (and line number) to zero.

These methods discard buffers and the ::Encoding::Converter instances used for that IO.

The relevant methods:

  • #tell (aliased as #pos): Returns the current position (in bytes) in the stream.

  • #pos=: Sets the position of the stream to a given integer new_position (in bytes).

  • #seek: Sets the position of the stream to a given integer offset (in bytes), relative to a given position whence (indicating the beginning, end, or current position).

  • #rewind: Positions the stream at the beginning (also resetting the line number).

Open and Closed Streams

A new IO stream may be open for reading, open for writing, or both.

A stream is automatically closed when claimed by the garbage collector.

Attempted reading or writing on a closed stream raises an exception.

The relevant methods:

  • #close: Closes the stream for both reading and writing.

  • #close_read: Closes the stream for reading.

  • #close_write: Closes the stream for writing.

  • #closed?: Returns whether the stream is closed.

End-of-Stream

You can query whether a stream is positioned at its end:

  • #eof? (also aliased as #eof): Returns whether the stream is at end-of-stream.

You can reposition to end-of-stream by using method #seek:

f = File.new('t.txt')
f.eof? # => false
f.seek(0, :END)
f.eof? # => true
f.close

Or by reading all stream content (which is slower than using #seek):

f.rewind
f.eof? # => false
f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.eof? # => true

Line IO

Class IO supports line-oriented input and output

Line Input

Class IO supports line-oriented input for files and streams

File Line Input

You can read lines from a file using these methods:

  • .foreach: Reads each line and passes it to the given block.

  • .readlines: Reads and returns all lines in an array.

For each of these methods:

  • You can specify open options.

  • Line parsing depends on the effective line separator; see Line Separator.

  • The length of each returned line depends on the effective line limit; see Line Limit.

Stream Line Input

You can read lines from an IO stream using these methods:

  • #each_line: Reads each remaining line, passing it to the given block.

  • #gets: Returns the next line.

  • #readline: Like #gets, but raises an exception at end-of-stream.

  • #readlines: Returns all remaining lines in an array.

For each of these methods:

  • Reading may begin mid-line, depending on the stream’s position; see Position.

  • Line parsing depends on the effective line separator; see Line Separator.

  • The length of each returned line depends on the effective line limit; see Line Limit.

Line Separator

Each of the line input methods uses a line separator: the string that determines what is considered a line; it is sometimes called the input record separator.

The default line separator is taken from global variable $/, whose initial value is "\n".

Generally, the line to be read next is all data from the current position to the next line separator (but see Special Line Separator Values):

f = File.new('t.txt')
# Method gets with no sep argument returns the next line, according to $/.
f.gets # => "First line\n"
f.gets # => "Second line\n"
f.gets # => "\n"
f.gets # => "Fourth line\n"
f.gets # => "Fifth line\n"
f.close

You can use a different line separator by passing argument sep:

f = File.new('t.txt')
f.gets('l')   # => "First l"
f.gets('li')  # => "ine\nSecond li"
f.gets('lin') # => "ne\n\nFourth lin"
f.gets        # => "e\n"
f.close

Or by setting global variable $/:

f = File.new('t.txt')
$/ = 'l'
f.gets # => "First l"
f.gets # => "ine\nSecond l"
f.gets # => "ine\n\nFourth l"
f.close
Special Line Separator Values

Each of the line input methods accepts two special values for parameter sep:

  • nil: The entire stream is to be read (“slurped”) into a single string:

    f = File.new('t.txt')
    f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
    f.close
  • '' (the empty string): The next “paragraph” is to be read (paragraphs being separated by two consecutive line separators):

    f = File.new('t.txt')
    f.gets('') # => "First line\nSecond line\n\n"
    f.gets('') # => "Fourth line\nFifth line\n"
    f.close
Line Limit

Each of the line input methods uses an integer line limit, which restricts the number of bytes that may be returned. (A multi-byte character will not be split, and so a returned line may be slightly longer than the limit).

The default limit value is -1; any negative limit value means that there is no limit.

If there is no limit, the line is determined only by sep.

# Text with 1-byte characters.
File.open('t.txt') {|f| f.gets(1) }  # => "F"
File.open('t.txt') {|f| f.gets(2) }  # => "Fi"
File.open('t.txt') {|f| f.gets(3) }  # => "Fir"
File.open('t.txt') {|f| f.gets(4) }  # => "Firs"
# No more than one line.
File.open('t.txt') {|f| f.gets(10) } # => "First line"
File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
File.open('t.txt') {|f| f.gets(12) } # => "First line\n"

# Text with 2-byte characters, which will not be split.
File.open('t.rus') {|f| f.gets(1).size } # => 1
File.open('t.rus') {|f| f.gets(2).size } # => 1
File.open('t.rus') {|f| f.gets(3).size } # => 2
File.open('t.rus') {|f| f.gets(4).size } # => 2
Line Separator and Line Limit

With arguments sep and limit given, combines the two behaviors:

  • Returns the next line as determined by line separator sep.

  • But returns no more bytes than are allowed by the limit limit.

Example:

File.open('t.txt') {|f| f.gets('li', 20) } # => "First li"
File.open('t.txt') {|f| f.gets('li', 2) }  # => "Fi"
Line Number

A readable IO stream has a non-negative integer line number:

  • #lineno: Returns the line number.

  • #lineno=: Resets and returns the line number.

Unless modified by a call to method #lineno=, the line number is the number of lines read by certain line-oriented methods, according to the effective line separator:

  • .foreach: Increments the line number on each call to the block.

  • #each_line: Increments the line number on each call to the block.

  • #gets: Increments the line number.

  • #readline: Increments the line number.

  • #readlines: Increments the line number for each line read.

A new stream is initially has line number zero (and position zero); method #rewind resets the line number (and position) to zero:

f = File.new('t.txt')
f.lineno # => 0
f.gets   # => "First line\n"
f.lineno # => 1
f.rewind
f.lineno # => 0
f.close

Reading lines from a stream usually changes its line number:

f = File.new('t.txt', 'r')
f.lineno   # => 0
f.readline # => "This is line one.\n"
f.lineno   # => 1
f.readline # => "This is the second line.\n"
f.lineno   # => 2
f.readline # => "Here's the third line.\n"
f.lineno   # => 3
f.eof?     # => true
f.close

Iterating over lines in a stream usually changes its line number:

File.open('t.txt') do |f|
  f.each_line do |line|
    p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}"
  end
end

Output:

"position=11 eof?=false lineno=1"
"position=23 eof?=false lineno=2"
"position=24 eof?=false lineno=3"
"position=36 eof?=false lineno=4"
"position=47 eof?=true lineno=5"

Unlike the stream’s position, the line number does not affect where the next read or write will occur:

f = File.new('t.txt')
f.lineno = 1000
f.lineno # => 1000
f.gets   # => "First line\n"
f.lineno # => 1001
f.close

Associated with the line number is the global variable $.:

  • When a stream is opened, $. is not set; its value is left over from previous activity in the process:

    $. = 41
    f = File.new('t.txt')
    $. = 41
    # => 41
    f.close
  • When a stream is read, $. is set to the line number for that stream:

    f0 = File.new('t.txt')
    f1 = File.new('t.dat')
    f0.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
    $.           # => 5
    f1.readlines # => ["\xFE\xFF\x99\x90\x99\x91\x99\x92\x99\x93\x99\x94"]
    $.           # => 1
    f0.close
    f1.close
  • Methods #rewind and #seek do not affect $.:

    f = File.new('t.txt')
    f.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
    $.          # => 5
    f.rewind
    f.seek(0, :SET)
    $.          # => 5
    f.close

Line Output

You can write to an IO stream line-by-line using this method:

  • #puts: Writes objects to the stream.

Character IO

You can process an IO stream character-by-character using these methods:

  • #getc: Reads and returns the next character from the stream.

  • #readchar: Like #getc, but raises an exception at end-of-stream.

  • #ungetc: Pushes back (“unshifts”) a character or integer onto the stream.

  • #putc: Writes a character to the stream.

  • #each_char: Reads each remaining character in the stream, passing the character to the given block.

Byte IO

You can process an IO stream byte-by-byte using these methods:

  • #getbyte: Returns the next 8-bit byte as an integer in range 0..255.

  • #readbyte: Like #getbyte, but raises an exception if at end-of-stream.

  • #ungetbyte: Pushes back (“unshifts”) a byte back onto the stream.

  • #each_byte: Reads each remaining byte in the stream, passing the byte to the given block.

Codepoint IO

You can process an IO stream codepoint-by-codepoint:

  • #each_codepoint: Reads each remaining codepoint, passing it to the given block.

What’s Here

First, what’s elsewhere. Class IO:

  • Inherits from class Object.

  • Includes module Enumerable, which provides dozens of additional methods.

Here, class IO provides methods that are useful for:

  • Creating

  • Reading

  • Writing

  • Positioning

  • Iterating

  • Settings

  • Querying

  • Buffering

  • Low-Level Access

  • Other

Creating

  • .new (aliased as .for_fd): Creates and returns a new IO object for the given integer file descriptor.

  • .open: Creates a new IO object.

  • .pipe: Creates a connected pair of reader and writer IO objects.

  • .popen: Creates an IO object to interact with a subprocess.

  • .select: Selects which given IO instances are ready for reading, writing, or have pending exceptions.

Reading

  • .binread: Returns a binary string with all or a subset of bytes from the given file.

  • .read: Returns a string with all or a subset of bytes from the given file.

  • .readlines: Returns an array of strings, which are the lines from the given file.

  • #getbyte: Returns the next 8-bit byte read from self as an integer.

  • #getc: Returns the next character read from self as a string.

  • #gets: Returns the line read from self.

  • #pread: Returns all or the next n bytes read from self, not updating the receiver’s offset.

  • #read: Returns all remaining or the next n bytes read from self for a given n.

  • #read_nonblock: the next n bytes read from self for a given n, in non-block mode.

  • #readbyte: Returns the next byte read from self; same as #getbyte, but raises an exception on end-of-stream.

  • #readchar: Returns the next character read from self; same as #getc, but raises an exception on end-of-stream.

  • #readline: Returns the next line read from self; same as #getline, but raises an exception of end-of-stream.

  • #readlines: Returns an array of all lines read read from self.

  • #readpartial: Returns up to the given number of bytes from self.

Writing

  • .binwrite: Writes the given string to the file at the given filepath, in binary mode.

  • .write: Writes the given string to self.

  • #<<: Appends the given string to self.

  • #print: Prints last read line or given objects to self.

  • #printf: Writes to self based on the given format string and objects.

  • #putc: Writes a character to self.

  • #puts: Writes lines to self, making sure line ends with a newline.

  • #pwrite: Writes the given string at the given offset, not updating the receiver’s offset.

  • #write: Writes one or more given strings to self.

  • #write_nonblock: Writes one or more given strings to self in non-blocking mode.

Positioning

  • #lineno: Returns the current line number in self.

  • #lineno=: Sets the line number is self.

  • #pos (aliased as #tell): Returns the current byte offset in self.

  • #pos=: Sets the byte offset in self.

  • #reopen: Reassociates self with a new or existing IO stream.

  • #rewind: Positions self to the beginning of input.

  • #seek: Sets the offset for self relative to given position.

Iterating

  • .foreach: Yields each line of given file to the block.

  • #each (aliased as #each_line): Calls the given block with each successive line in self.

  • #each_byte: Calls the given block with each successive byte in self as an integer.

  • #each_char: Calls the given block with each successive character in self as a string.

  • #each_codepoint: Calls the given block with each successive codepoint in self as an integer.

Settings

Querying

  • #autoclose?: Returns whether self auto-closes.

  • #binmode?: Returns whether self is in binary mode.

  • #close_on_exec?: Returns the close-on-exec flag for self.

  • #closed?: Returns whether self is closed.

  • #eof? (aliased as #eof): Returns whether self is at end-of-stream.

  • #external_encoding: Returns the external encoding object for self.

  • #fileno (aliased as #to_i): Returns the integer file descriptor for self

  • #internal_encoding: Returns the internal encoding object for self.

  • #pid: Returns the process ID of a child process associated with self, if self was created by ::popen.

  • #stat: Returns the ::File::Stat object containing status information for self.

  • #sync: Returns whether self is in sync-mode.

  • #tty? (aliased as #isatty): Returns whether self is a terminal.

Buffering

  • #fdatasync: Immediately writes all buffered data in self to disk.

  • #flush: Flushes any buffered data within self to the underlying operating system.

  • #fsync: Immediately writes all buffered data and attributes in self to disk.

  • #ungetbyte: Prepends buffer for self with given integer byte or string.

  • #ungetc: Prepends buffer for self with given string.

Low-Level Access

  • .sysopen: Opens the file given by its path, returning the integer file descriptor.

  • #advise: Announces the intention to access data from self in a specific way.

  • #fcntl: Passes a low-level command to the file specified by the given file descriptor.

  • #ioctl: Passes a low-level command to the device specified by the given file descriptor.

  • #sysread: Returns up to the next n bytes read from self using a low-level read.

  • #sysseek: Sets the offset for self.

  • #syswrite: Writes the given string to self using a low-level write.

Other

  • .copy_stream: Copies data from a source to a destination, each of which is a filepath or an IO-like object.

  • .try_convert: Returns a new IO object resulting from converting the given object.

  • #inspect: Returns the string representation of self.

Constant Summary

::File::Constants - Included

APPEND, BINARY, CREAT, DIRECT, DSYNC, EXCL, LOCK_EX, LOCK_NB, LOCK_SH, LOCK_UN, NOATIME, NOCTTY, NOFOLLOW, NONBLOCK, NULL, RDONLY, RDWR, RSYNC, SHARE_DELETE, SYNC, TMPFILE, TRUNC, WRONLY

Class Method Summary

Instance Attribute Summary

Instance Method Summary

::Enumerable - Included

#all?

Returns whether every element meets a given criterion.

#any?

Returns whether any element meets a given criterion.

#chain

Returns an enumerator object generated from this enumerator and given enumerables.

#chunk

Each element in the returned enumerator is a 2-element array consisting of:

#chunk_while

Creates an enumerator for each chunked elements.

#collect

Alias for Enumerable#map.

#collect_concat
#compact

Returns an array of all non-nil elements:

#count

Returns the count of elements, based on an argument or block criterion, if given.

#cycle

When called with positive integer argument n and a block, calls the block with each element, then does so again, until it has done so n times; returns nil:

#detect

Alias for Enumerable#find.

#drop

For positive integer n, returns an array containing all but the first n elements:

#drop_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements after that point:

#each_cons

Calls the block with each successive overlapped n-tuple of elements; returns self:

#each_entry

Calls the given block with each element, converting multiple values from yield to an array; returns self:

#each_slice

Calls the block with each successive disjoint n-tuple of elements; returns self:

#each_with_index

Invoke self.each with *args.

#each_with_object

Calls the block once for each element, passing both the element and the given object:

#entries

Alias for Enumerable#to_a.

#filter

Returns an array containing elements selected by the block.

#filter_map

Returns an array containing truthy elements returned by the block.

#find

Returns the first element for which the block returns a truthy value.

#find_all
#find_index

Returns the index of the first element that meets a specified criterion, or nil if no such element is found.

#first

Returns the first element or elements.

#flat_map

Returns an array of flattened objects returned by the block.

#grep

Returns an array of objects based elements of self that match the given pattern.

#grep_v

Returns an array of objects based on elements of self that don’t match the given pattern.

#group_by

With a block given returns a hash:

#include?
#inject

Returns the result of applying a reducer to an initial value and the first element of the ::Enumerable.

#lazy

Returns an ::Enumerator::Lazy, which redefines most ::Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.

#map

Returns an array of objects returned by the block.

#max

Returns the element with the maximum element according to a given criterion.

#max_by

Returns the elements for which the block returns the maximum values.

#member?

Returns whether for any element object == element:

#min

Returns the element with the minimum element according to a given criterion.

#min_by

Returns the elements for which the block returns the minimum values.

#minmax

Returns a 2-element array containing the minimum and maximum elements according to a given criterion.

#minmax_by

Returns a 2-element array containing the elements for which the block returns minimum and maximum values:

#none?

Returns whether no element meets a given criterion.

#one?

Returns whether exactly one element meets a given criterion.

#partition

With a block given, returns an array of two arrays:

#reduce
#reject

Returns an array of objects rejected by the block.

#reverse_each

With a block given, calls the block with each element, but in reverse order; returns self:

#select
#slice_after

Creates an enumerator for each chunked elements.

#slice_before

With argument pattern, returns an enumerator that uses the pattern to partition elements into arrays (“slices”).

#slice_when

Creates an enumerator for each chunked elements.

#sort

Returns an array containing the sorted elements of self.

#sort_by

With a block given, returns an array of elements of self, sorted according to the value returned by the block for each element.

#sum

With no block given, returns the sum of initial_value and the elements:

#take

For non-negative integer n, returns the first n elements:

#take_while

Calls the block with successive elements as long as the block returns a truthy value; returns an array of all elements up to that point:

#tally

When argument hash is not given, returns a new hash whose keys are the distinct elements in self; each integer value is the count of occurrences of each element:

#to_a

Returns an array containing the items in self:

#to_h

When self consists of 2-element arrays, returns a hash each of whose entries is the key-value pair formed from one of those arrays:

#to_set

Makes a set from the enumerable object with given arguments.

#uniq

With no block, returns a new array containing only unique elements; the array has no two elements e0 and e1 such that e0.eql?(e1):

#zip

With no block given, returns a new array new_array of size self.size whose elements are arrays.

Constructor Details

.new(*args)

This method is for internal use only.
[ GitHub ]

  
# File 'io.c', line 9670

static VALUE
rb_io_s_new(int argc, VALUE *argv, VALUE klass)
{
    if (rb_block_given_p()) {
        VALUE cname = rb_obj_as_string(klass);

        rb_warn("%"PRIsVALUE"::new() does not take block; use %"PRIsVALUE"::open() instead",
                cname, cname);
    }
    return rb_class_new_instance_kw(argc, argv, klass, RB_PASS_CALLED_KEYWORDS);
}

#new(fd, mode = 'r', **opts) ⇒ IO

Creates and returns a new IO object (file stream) from a file descriptor.

IO.new may be useful for interaction with low-level libraries. For higher-level interactions, it may be simpler to create the file stream using File.open.

Argument fd must be a valid file descriptor (integer):

path = 't.tmp'
fd = IO.sysopen(path) # => 3
IO.new(fd)            # => #<IO:fd 3>

The new IO object does not inherit encoding (because the integer file descriptor does not have an encoding):

fd = IO.sysopen('t.rus', 'rb')
io = IO.new(fd)
io.external_encoding # => #<Encoding:UTF-8> # Not ASCII-8BIT.

Optional argument mode (defaults to ‘r’) must specify a valid mode; see Access Modes:

IO.new(fd, 'w')         # => #<IO:fd 3>
IO.new(fd, File::WRONLY) # => #<IO:fd 3>

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

Examples:

IO.new(fd, internal_encoding: nil) # => #<IO:fd 3>
IO.new(fd, autoclose: true)        # => #<IO:fd 3>
[ GitHub ]

  
# File 'io.c', line 9487

static VALUE
rb_io_initialize(int argc, VALUE *argv, VALUE io)
{
    VALUE fnum, vmode;
    VALUE opt;

    rb_scan_args(argc, argv, "11:", &fnum, &vmode, &opt);
    return io_initialize(io, fnum, vmode, opt);
}

Class Method Details

.binread(path, length = nil, offset = 0) ⇒ String?

Behaves like .read, except that the stream is opened in binary mode with ASCII-8BIT encoding.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

[ GitHub ]

  
# File 'io.c', line 12276

static VALUE
rb_io_s_binread(int argc, VALUE *argv, VALUE io)
{
    VALUE offset;
    struct foreach_arg arg;
    enum {
        fmode = FMODE_READABLE|FMODE_BINMODE,
        oflags = O_RDONLY
#ifdef O_BINARY
                |O_BINARY
#endif
    };
    struct rb_io_encoding convconfig = {NULL, NULL, 0, Qnil};

    rb_scan_args(argc, argv, "12", NULL, NULL, &offset);
    FilePathValue(argv[0]);
    convconfig.enc = rb_ascii8bit_encoding();
    arg.io = rb_io_open_generic(io, argv[0], oflags, fmode, &convconfig, 0);
    if (NIL_P(arg.io)) return Qnil;
    arg.argv = argv+1;
    arg.argc = (argc > 1) ? 1 : 0;
    if (!NIL_P(offset)) {
        struct seek_arg sarg;
        int state = 0;
        sarg.io = arg.io;
        sarg.offset = offset;
        sarg.mode = SEEK_SET;
        rb_protect(seek_before_access, (VALUE)&sarg, &state);
        if (state) {
            rb_io_close(arg.io);
            rb_jump_tag(state);
        }
    }
    return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io);
}

.binwrite(path, string, offset = 0) ⇒ Integer

Behaves like .write, except that the stream is opened in binary mode with ASCII-8BIT encoding.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

[ GitHub ]

  
# File 'io.c', line 12430

static VALUE
rb_io_s_binwrite(int argc, VALUE *argv, VALUE io)
{
    return io_s_write(argc, argv, io, 1);
}

.copy_stream(src, dst, src_length = nil, src_offset = 0) ⇒ Integer

Copies from the given src to the given dst, returning the number of bytes copied.

  • The given src must be one of the following:

    • The path to a readable file, from which source data is to be read.

    • An IO-like object, opened for reading and capable of responding to method :readpartial or method :read.

  • The given dst must be one of the following:

    • The path to a writable file, to which data is to be written.

    • An IO-like object, opened for writing and capable of responding to method :write.

The examples here use file t.txt as source:

File.read('t.txt')
# => "First line\nSecond line\n\nThird line\nFourth line\n"
File.read('t.txt').size # => 47

If only arguments src and dst are given, the entire source stream is copied:

# Paths.
IO.copy_stream('t.txt', 't.tmp')  # => 47

# IOs (recall that a File is also an IO).
src_io = File.open('t.txt', 'r') # => #<File:t.txt>
dst_io = File.open('t.tmp', 'w') # => #<File:t.tmp>
IO.copy_stream(src_io, dst_io)   # => 47
src_io.close
dst_io.close

With argument src_length a non-negative integer, no more than that many bytes are copied:

IO.copy_stream('t.txt', 't.tmp', 10) # => 10
File.read('t.tmp')                   # => "First line"

With argument src_offset also given, the source stream is read beginning at that offset:

IO.copy_stream('t.txt', 't.tmp', 11, 11) # => 11
IO.read('t.tmp')                         # => "Second line"
[ GitHub ]

  
# File 'io.c', line 13398

static VALUE
rb_io_s_copy_stream(int argc, VALUE *argv, VALUE io)
{
    VALUE src, dst, length, src_offset;
    struct copy_stream_struct st;

    MEMZERO(&st, struct copy_stream_struct, 1);

    rb_scan_args(argc, argv, "22", &src, &dst, &length, &src_offset);

    st.src = src;
    st.dst = dst;

    st.src_fptr = NULL;
    st.dst_fptr = NULL;

    if (NIL_P(length))
        st.copy_length = (rb_off_t)-1;
    else
        st.copy_length = NUM2OFFT(length);

    if (NIL_P(src_offset))
        st.src_offset = (rb_off_t)-1;
    else
        st.src_offset = NUM2OFFT(src_offset);

    rb_ensure(copy_stream_body, (VALUE)&st, copy_stream_finalize, (VALUE)&st);

    return OFFT2NUM(st.total);
}

.for_fd(fd, mode = 'r', **opts) ⇒ IO

Synonym for .new.

[ GitHub ]

  
# File 'io.c', line 9691

static VALUE
rb_io_s_for_fd(int argc, VALUE *argv, VALUE klass)
{
    VALUE io = rb_obj_alloc(klass);
    rb_io_initialize(argc, argv, io);
    return io;
}

.foreach(path, sep = $/, **opts) {|line| ... } ⇒ nil .foreach(path, limit, **opts) {|line| ... } ⇒ nil .foreach(path, sep, limit, **opts) {|line| ... } ⇒ nil .foreach(...) ⇒ Enumerator

Calls the block with each successive line read from the stream.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

The first argument must be a string that is the path to a file.

With only argument #path given, parses lines from the file at the given #path, as determined by the default line separator, and calls the block with each successive line:

File.foreach('t.txt') {|line| p line }

Output: the same as above.

For both forms, command and path, the remaining arguments are the same.

With argument sep given, parses lines as determined by that line separator (see Line Separator):

File.foreach('t.txt', 'li') {|line| p line }

Output:

"First li"
"ne\nSecond li"
"ne\n\nThird li"
"ne\nFourth li"
"ne\n"

Each paragraph:

File.foreach('t.txt', '') {|paragraph| p paragraph }

Output:

"First line\nSecond line\n\n"
"Third line\nFourth line\n"

With argument limit given, parses lines as determined by the default line separator and the given line-length limit (see Line Separator and Line Limit):

File.foreach('t.txt', 7) {|line| p line }

Output:

"First l"
"ine\n"
"Second "
"line\n"
"\n"
"Third l"
"ine\n"
"Fourth l"
"line\n"

With arguments sep and limit given, combines the two behaviors (see Line Separator and Line Limit).

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

  • Line Options.

Returns an ::Enumerator if no block is given.

[ GitHub ]

  
# File 'io.c', line 12077

static VALUE
rb_io_s_foreach(int argc, VALUE *argv, VALUE self)
{
    VALUE opt;
    int orig_argc = argc;
    struct foreach_arg arg;
    struct getline_arg garg;

    argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt);
    RETURN_ENUMERATOR(self, orig_argc, argv);
    extract_getline_args(argc-1, argv+1, &garg);
    open_key_args(self, argc, argv, opt, &arg);
    if (NIL_P(arg.io)) return Qnil;
    extract_getline_opts(opt, &garg);
    check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io);
    return rb_ensure(io_s_foreach, (VALUE)&garg, rb_io_close, arg.io);
}

.open(path, mode = 'r', perm = 0666, **opts) ⇒ File .open(path, mode = 'r', perm = 0666, **opts) {|f| ... } ⇒ Object

Alias for File.open. Creates a new IO object, via .new with the given arguments.

With no block given, returns the IO object.

With a block given, calls the block with the IO object and returns the block’s value.

[ GitHub ]

.pipe(**opts) ⇒ IO .pipe(enc, **opts) ⇒ IO .pipe(ext_enc, int_enc, **opts) ⇒ IO .pipe(**opts) {|read_io, write_io| ... } ⇒ Object .pipe(enc, **opts) {|read_io, write_io| ... } ⇒ Object .pipe(ext_enc, int_enc, **opts) {|read_io, write_io| ... } ⇒ Object

Creates a pair of pipe endpoints, read_io and write_io, connected to each other.

If argument enc_string is given, it must be a string containing one of:

  • The name of the encoding to be used as the external encoding.

  • The colon-separated names of two encodings to be used as the external and internal encodings.

If argument int_enc is given, it must be an ::Encoding object or encoding name string that specifies the internal encoding to be used; if argument ext_enc is also given, it must be an ::Encoding object or encoding name string that specifies the external encoding to be used.

The string read from read_io is tagged with the external encoding; if an internal encoding is also specified, the string is converted to, and tagged with, that encoding.

If any encoding is specified, optional hash arguments specify the conversion option.

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding Options}.

With no block given, returns the two endpoints in an array:

IO.pipe # => [#<IO:fd 4>, #<IO:fd 5>]

With a block given, calls the block with the two endpoints; closes both endpoints and returns the value of the block:

IO.pipe {|read_io, write_io| p read_io; p write_io }

Output:

#<IO:fd 6>
#<IO:fd 7>

Not available on all platforms.

In the example below, the two processes close the ends of the pipe that they are not using. This is not just a cosmetic nicety. The read end of a pipe will not generate an end of file condition if there are any writers with the pipe still open. In the case of the parent process, the rd.read will never return if it does not first issue a wr.close:

rd, wr = IO.pipe

if fork
  wr.close
  puts "Parent got: <#{rd.read}>"
  rd.close
  Process.wait
else
  rd.close
  puts 'Sending message to parent'
  wr.write "Hi Dad"
  wr.close
end

produces:

Sending message to parent
Parent got: <Hi Dad>
[ GitHub ]

  
# File 'io.c', line 11864

static VALUE
rb_io_s_pipe(int argc, VALUE *argv, VALUE klass)
{
    int pipes[2], state;
    VALUE r, w, args[3], v1, v2;
    VALUE opt;
    rb_io_t *fptr, *fptr2;
    struct io_encoding_set_args ies_args;
    int fmode = 0;
    VALUE ret;

    argc = rb_scan_args(argc, argv, "02:", &v1, &v2, &opt);
    if (rb_pipe(pipes) < 0)
        rb_sys_fail(0);

    args[0] = klass;
    args[1] = INT2NUM(pipes[0]);
    args[2] = INT2FIX(O_RDONLY);
    r = rb_protect(io_new_instance, (VALUE)args, &state);
    if (state) {
        close(pipes[0]);
        close(pipes[1]);
        rb_jump_tag(state);
    }
    GetOpenFile(r, fptr);

    ies_args.fptr = fptr;
    ies_args.v1 = v1;
    ies_args.v2 = v2;
    ies_args.opt = opt;
    rb_protect(io_encoding_set_v, (VALUE)&ies_args, &state);
    if (state) {
        close(pipes[1]);
        io_close(r);
        rb_jump_tag(state);
    }

    args[1] = INT2NUM(pipes[1]);
    args[2] = INT2FIX(O_WRONLY);
    w = rb_protect(io_new_instance, (VALUE)args, &state);
    if (state) {
        close(pipes[1]);
        if (!NIL_P(r)) rb_io_close(r);
        rb_jump_tag(state);
    }
    GetOpenFile(w, fptr2);
    rb_io_synchronized(fptr2);

    extract_binmode(opt, &fmode);

    if ((fmode & FMODE_BINMODE) && NIL_P(v1)) {
        rb_io_ascii8bit_binmode(r);
        rb_io_ascii8bit_binmode(w);
    }

#if DEFAULT_TEXTMODE
    if ((fptr->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) {
        fptr->mode &= ~FMODE_TEXTMODE;
        setmode(fptr->fd, O_BINARY);
    }
#if RUBY_CRLF_ENVIRONMENT
    if (fptr->encs.ecflags & ECONV_DEFAULT_NEWLINE_DECORATOR) {
        fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
    }
#endif
#endif
    fptr->mode |= fmode;
#if DEFAULT_TEXTMODE
    if ((fptr2->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) {
        fptr2->mode &= ~FMODE_TEXTMODE;
        setmode(fptr2->fd, O_BINARY);
    }
#endif
    fptr2->mode |= fmode;

    ret = rb_assoc_new(r, w);
    if (rb_block_given_p()) {
        VALUE rw[2];
        rw[0] = r;
        rw[1] = w;
        return rb_ensure(rb_yield, ret, pipe_pair_close, (VALUE)rw);
    }
    return ret;
}

.popen(env = {}, cmd, mode = 'r', **opts) ⇒ IO .popen(env =) ⇒ Object

Executes the given command cmd as a subprocess whose $stdin and $stdout are connected to a new stream io.

This method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If no block is given, returns the new stream, which depending on given mode may be open for reading, writing, or both. The stream should be explicitly closed (eventually) to avoid resource leaks.

If a block is given, the stream is passed to the block (again, open for reading, writing, or both); when the block exits, the stream is closed, and the block’s value is assigned to global variable $? and returned.

Optional argument mode may be any valid IO mode. See Access Modes.

Required argument cmd determines which of the following occurs:

  • The process forks.

  • A specified program runs in a shell.

  • A specified program runs with specified arguments.

  • A specified program runs with specified arguments and a specified argv0.

Each of these is detailed below.

The optional hash argument env specifies name/value pairs that are to be added to the environment variables for the subprocess:

IO.popen({'FOO' => 'bar'}, 'ruby', 'r+') do |pipe|
  pipe.puts 'puts ENV["FOO"]'
  pipe.close_write
  pipe.gets
end => "bar\n"

Optional keyword arguments opts specify:

  • Open options.

  • {Encoding options}.

  • Options for Kernel.spawn.

Forked Process

When argument cmd is the 1-character string '-', causes the process to fork:

IO.popen('-') do |pipe|
  if pipe
    $stderr.puts "In parent, child pid is #{pipe.pid}\n"
  else
    $stderr.puts "In child, pid is #{$$}\n"
  end
end

Output:

In parent, child pid is 26253
In child, pid is 26253

Note that this is not supported on all platforms.

Shell Subprocess

When argument cmd is a single string (but not '-'), the program named cmd is run as a shell command:

IO.popen('uname') do |pipe|
  pipe.readlines
end

Output:

["Linux\n"]

Another example:

IO.popen('/bin/sh', 'r+') do |pipe|
  pipe.puts('ls')
  pipe.close_write
  $stderr.puts pipe.readlines.size
end

Output:

213

Program Subprocess

When argument cmd is an array of strings, the program named cmd[0] is run with all elements of cmd as its arguments:

IO.popen(['du', '..', '.']) do |pipe|
  $stderr.puts pipe.readlines.size
end

Output:

1111

Program Subprocess with argv0

When argument cmd is an array whose first element is a 2-element string array and whose remaining elements (if any) are strings:

  • cmd[0][0] (the first string in the nested array) is the name of a program that is run.

  • cmd[0][1] (the second string in the nested array) is set as the program’s argv[0].

  • cmd[1..-1] (the strings in the outer array) are the program’s arguments.

Example (sets $0 to ‘foo’):

IO.popen([['/bin/sh', 'foo'], '-c', 'echo $0']).read # => "foo\n"

Some Special Examples

# Set IO encoding.
IO.popen("nkf -e filename", :external_encoding=>"EUC-JP") {|nkf_io|
  euc_jp_string = nkf_io.read
}

# Merge standard output and standard error using Kernel#spawn option. See Kernel#spawn.
IO.popen(["ls", "/", :err=>[:child, :out]]) do |io|
  ls_result_with_error = io.read
end

# Use mixture of spawn options and IO options.
IO.popen(["ls", "/"], :err=>[:child, :out]) do |io|
  ls_result_with_error = io.read
end

 f = IO.popen("uname")
 p f.readlines
 f.close
 puts "Parent is #{Process.pid}"
 IO.popen("date") {|f| puts f.gets }
 IO.popen("-") {|f| $stderr.puts "#{Process.pid} is here, f is #{f.inspect}"}
 p $?
 IO.popen(%w"sed -e s|^|<foo>| -e s&$&;zot;&", "r+") {|f|
   f.puts "bar"; f.close_write; puts f.gets
 }

Output (from last section):

["Linux\n"]
Parent is 21346
Thu Jan 15 22:41:19 JST 2009
21346 is here, f is #<IO:fd 3>
21352 is here, f is nil
#<Process::Status: pid 21352 exit 0>
<foo>bar;zot;

Raises exceptions that .pipe and Kernel.spawn raise.

[ GitHub ]

  
# File 'io.c', line 7976

static VALUE
rb_io_s_popen(int argc, VALUE *argv, VALUE klass)
{
    VALUE pname, pmode = Qnil, opt = Qnil, env = Qnil;

    if (argc > 1 && !NIL_P(opt = rb_check_hash_type(argv[argc-1]))) --argc;
    if (argc > 1 && !NIL_P(env = rb_check_hash_type(argv[0]))) --argc, ++argv;
    switch (argc) {
      case 2:
        pmode = argv[1];
      case 1:
        pname = argv[0];
        break;
      default:
        {
            int ex = !NIL_P(opt);
            rb_error_arity(argc + ex, 1 + ex, 2 + ex);
        }
    }
    return popen_finish(rb_io_popen(pname, pmode, env, opt), klass);
}

.read(path, length = nil, offset = 0, **opts) ⇒ String?

Opens the stream, reads and returns some or all of its content, and closes the stream; returns nil if no bytes were read.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

The first argument must be a string that is the path to a file.

With only argument #path given, reads in text mode and returns the entire content of the file at the given path:

IO.read('t.txt')
# => "First line\nSecond line\n\nThird line\nFourth line\n"

On Windows, text mode can terminate reading and leave bytes in the file unread when encountering certain special bytes. Consider using .binread if all bytes in the file should be read.

With argument length, returns length bytes if available:

IO.read('t.txt', 7) # => "First l"
IO.read('t.txt', 700)
# => "First line\r\nSecond line\r\n\r\nFourth line\r\nFifth line\r\n"

With arguments length and offset, returns length bytes if available, beginning at the given offset:

IO.read('t.txt', 10, 2)   # => "rst line\nS"
IO.read('t.txt', 10, 200) # => nil

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

[ GitHub ]

  
# File 'io.c', line 12234

static VALUE
rb_io_s_read(int argc, VALUE *argv, VALUE io)
{
    VALUE opt, offset;
    long off;
    struct foreach_arg arg;

    argc = rb_scan_args(argc, argv, "13:", NULL, NULL, &offset, NULL, &opt);
    if (!NIL_P(offset) && (off = NUM2LONG(offset)) < 0) {
        rb_raise(rb_eArgError, "negative offset %ld given", off);
    }
    open_key_args(io, argc, argv, opt, &arg);
    if (NIL_P(arg.io)) return Qnil;
    if (!NIL_P(offset)) {
        struct seek_arg sarg;
        int state = 0;
        sarg.io = arg.io;
        sarg.offset = offset;
        sarg.mode = SEEK_SET;
        rb_protect(seek_before_access, (VALUE)&sarg, &state);
        if (state) {
            rb_io_close(arg.io);
            rb_jump_tag(state);
        }
        if (arg.argc == 2) arg.argc = 1;
    }
    return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io);
}

.readlines(path, sep = $/, **opts) ⇒ Array .readlines(path, limit, **opts) ⇒ Array .readlines(path, sep, limit, **opts) ⇒ Array

Returns an array of all lines read from the stream.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

The first argument must be a string that is the path to a file.

With only argument #path given, parses lines from the file at the given #path, as determined by the default line separator, and returns those lines in an array:

IO.readlines('t.txt')
# => ["First line\n", "Second line\n", "\n", "Third line\n", "Fourth line\n"]

With argument sep given, parses lines as determined by that line separator (see Line Separator):

# Ordinary separator.
IO.readlines('t.txt', 'li')
# =>["First li", "ne\nSecond li", "ne\n\nThird li", "ne\nFourth li", "ne\n"]
# Get-paragraphs separator.
IO.readlines('t.txt', '')
# => ["First line\nSecond line\n\n", "Third line\nFourth line\n"]
# Get-all separator.
IO.readlines('t.txt', nil)
# => ["First line\nSecond line\n\nThird line\nFourth line\n"]

With argument limit given, parses lines as determined by the default line separator and the given line-length limit (see Line Separator and Line Limit:

IO.readlines('t.txt', 7)
# => ["First l", "ine\n", "Second ", "line\n", "\n", "Third l", "ine\n", "Fourth ", "line\n"]

With arguments sep and limit given, combines the two behaviors (see Line Separator and Line Limit).

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

  • Line Options.

[ GitHub ]

  
# File 'io.c', line 12155

static VALUE
rb_io_s_readlines(int argc, VALUE *argv, VALUE io)
{
    VALUE opt;
    struct foreach_arg arg;
    struct getline_arg garg;

    argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt);
    extract_getline_args(argc-1, argv+1, &garg);
    open_key_args(io, argc, argv, opt, &arg);
    if (NIL_P(arg.io)) return Qnil;
    extract_getline_opts(opt, &garg);
    check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io);
    return rb_ensure(io_s_readlines, (VALUE)&garg, rb_io_close, arg.io);
}

.select(read_ios, write_ios = [], error_ios = [], timeout = nil) ⇒ Array?

Alias for Kernel.select. Invokes system call select(2), which monitors multiple file descriptors, waiting until one or more of the file descriptors becomes ready for some class of I/O operation.

Not implemented on all platforms.

Each of the arguments read_ios, write_ios, and error_ios is an array of IO objects.

Argument #timeout is a numeric value (such as integer or float) timeout interval in seconds.

The method monitors the IO objects given in all three arrays, waiting for some to be ready; returns a 3-element array whose elements are:

  • An array of the objects in read_ios that are ready for reading.

  • An array of the objects in write_ios that are ready for writing.

  • An array of the objects in error_ios have pending exceptions.

If no object becomes ready within the given #timeout, nil is returned.

IO.select peeks the buffer of IO objects for testing readability. If the IO buffer is not empty, IO.select immediately notifies readability. This “peek” only happens for IO objects. It does not happen for IO-like objects such as OpenSSL::SSL::SSLSocket.

The best way to use IO.select is invoking it after non-blocking methods such as #read_nonblock, #write_nonblock, etc. The methods raise an exception which is extended by ::IO::WaitReadable or ::IO::WaitWritable. The modules notify how the caller should wait with IO.select. If ::IO::WaitReadable is raised, the caller should wait for reading. If ::IO::WaitWritable is raised, the caller should wait for writing.

So, blocking read (#readpartial) can be emulated using #read_nonblock and IO.select as follows:

begin
  result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io_like])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io_like])
  retry
end

Especially, the combination of non-blocking methods and IO.select is preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It has #to_io method to return underlying IO object. select calls #to_io to obtain the file descriptor to wait.

This means that readability notified by IO.select doesn’t mean readability from OpenSSL::SSL::SSLSocket object.

The most likely situation is that OpenSSL::SSL::SSLSocket buffers some data. IO.select doesn’t see the buffer. So IO.select can block when OpenSSL::SSL::SSLSocket#readpartial doesn’t block.

However, several more complicated situations exist.

SSL is a protocol which is sequence of records. The record consists of multiple bytes. So, the remote side of SSL sends a partial record, select notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial will block.

Also, the remote side can request SSL renegotiation which forces the local SSL engine to write some data. This means OpenSSL::SSL::SSLSocket#readpartial may invoke #write system call and it can block. In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock raises ::IO::WaitWritable instead of blocking. So, the caller should wait for ready for writability as above example.

The combination of non-blocking methods and IO.select is also useful for streams such as tty, pipe socket socket when multiple processes read from a stream.

Finally, Linux kernel developers don’t guarantee that readability of select(2) means readability of following read(2) even for a single process; see select(2)

Invoking IO.select before #readpartial works well as usual. However it is not the best way to use IO.select.

The writability notified by select(2) doesn’t show how many bytes are writable. #write method blocks until given whole string is written. So, IO#write(two or more bytes) can block after writability is notified by IO.select. #write_nonblock is required to avoid the blocking.

Blocking write (#write) can be emulated using #write_nonblock and select as follows: ::IO::WaitReadable should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket.

while 0 < string.bytesize
  begin
    written = io_like.write_nonblock(string)
  rescue IO::WaitReadable
    IO.select([io_like])
    retry
  rescue IO::WaitWritable
    IO.select(nil, [io_like])
    retry
  end
  string = string.byteslice(written..-1)
end

Example:

rp, wp = IO.pipe
mesg = "ping "
100.times {
  # IO.select follows IO#read.  Not the best way to use IO.select.
  rs, ws, = IO.select([rp], [wp])
  if r = rs[0]
    ret = r.read(5)
    print ret
    case ret
    when /ping/
      mesg = "pong\n"
    when /pong/
      mesg = "ping "
    end
  end
  if w = ws[0]
    w.write(mesg)
  end
}

Output:

ping pong
ping pong
ping pong
(snipped)
ping

.sysopen(path, mode = 'r', perm = 0666) ⇒ Integer

Opens the file at the given path with the given mode and permissions; returns the integer file descriptor.

If the file is to be readable, it must exist; if the file is to be writable and does not exist, it is created with the given permissions:

File.write('t.tmp', '')  # => 0
IO.sysopen('t.tmp')      # => 8
IO.sysopen('t.tmp', 'w') # => 9
[ GitHub ]

  
# File 'io.c', line 8188

static VALUE
rb_io_s_sysopen(int argc, VALUE *argv, VALUE _)
{
    VALUE fname, vmode, vperm;
    VALUE intmode;
    int oflags, fd;
    mode_t perm;

    rb_scan_args(argc, argv, "12", &fname, &vmode, &vperm);
    FilePathValue(fname);

    if (NIL_P(vmode))
        oflags = O_RDONLY;
    else if (!NIL_P(intmode = rb_check_to_integer(vmode, "to_int")))
        oflags = NUM2INT(intmode);
    else {
        StringValue(vmode);
        oflags = rb_io_modestr_oflags(StringValueCStr(vmode));
    }
    if (NIL_P(vperm)) perm = 0666;
    else              perm = NUM2MODET(vperm);

    RB_GC_GUARD(fname) = rb_str_new4(fname);
    fd = rb_sysopen(fname, oflags, perm);
    return INT2NUM(fd);
}

.try_convert(object) ⇒ IO?

Attempts to convert object into an IO object via method #to_io; returns the new IO object if successful, or nil otherwise:

IO.try_convert(STDOUT)   # => #<IO:<STDOUT>>
IO.try_convert(ARGF)     # => #<IO:<STDIN>>
IO.try_convert('STDOUT') # => nil
[ GitHub ]

  
# File 'io.c', line 912

static VALUE
rb_io_s_try_convert(VALUE dummy, VALUE io)
{
    return rb_io_check_io(io);
}

.write(path, data, offset = 0, **opts) ⇒ Integer

Opens the stream, writes the given data to it, and closes the stream; returns the number of bytes written.

When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

The first argument must be a string that is the path to a file.

With only argument #path given, writes the given data to the file at that path:

IO.write('t.tmp', 'abc')    # => 3
File.read('t.tmp')          # => "abc"

If offset is zero (the default), the file is overwritten:

IO.write('t.tmp', 'A')      # => 1
File.read('t.tmp')          # => "A"

If offset in within the file content, the file is partly overwritten:

IO.write('t.tmp', 'abcdef') # => 3
File.read('t.tmp')          # => "abcdef"
# Offset within content.
IO.write('t.tmp', '012', 2) # => 3
File.read('t.tmp')          # => "ab012f"

If offset is outside the file content, the file is padded with null characters "\u0000":

IO.write('t.tmp', 'xyz', 10) # => 3
File.read('t.tmp')           # => "ab012f\u0000\u0000\u0000\u0000xyz"

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

[ GitHub ]

  
# File 'io.c', line 12411

static VALUE
rb_io_s_write(int argc, VALUE *argv, VALUE io)
{
    return io_s_write(argc, argv, io, 0);
}

Instance Attribute Details

#autoclose=(bool) ⇒ Boolean (rw)

Sets auto-close flag.

f = File.open(File::NULL)
IO.for_fd(f.fileno).close
f.gets # raises Errno::EBADF

f = File.open(File::NULL)
g = IO.for_fd(f.fileno)
g.autoclose = false
g.close
f.gets # won't cause Errno::EBADF
[ GitHub ]

  
# File 'io.c', line 9732

static VALUE
rb_io_set_autoclose(VALUE io, VALUE autoclose)
{
    rb_io_t *fptr;
    GetOpenFile(io, fptr);
    if (!RTEST(autoclose))
        fptr->mode |= FMODE_EXTERNAL;
    else
        fptr->mode &= ~FMODE_EXTERNAL;
    return autoclose;
}

#autoclose?Boolean (rw)

Returns true if the underlying file descriptor of ios will be closed at its finalization or at calling #close, otherwise false.

[ GitHub ]

  
# File 'io.c', line 9707

static VALUE
rb_io_autoclose_p(VALUE io)
{
    rb_io_t *fptr = RFILE(io)->fptr;
    rb_io_check_closed(fptr);
    return RBOOL(!(fptr->mode & FMODE_EXTERNAL));
}

#binmodeself (readonly)

Sets the stream’s data mode as binary (see {Data Mode}).

A stream’s data mode may not be changed from binary to text.

[ GitHub ]

  
# File 'io.c', line 6399

static VALUE
rb_io_binmode_m(VALUE io)
{
    VALUE write_io;

    rb_io_ascii8bit_binmode(io);

    write_io = GetWriteIO(io);
    if (write_io != io)
        rb_io_ascii8bit_binmode(write_io);
    return io;
}

#binmode?Boolean (readonly)

Returns true if the stream is on binary mode, false otherwise. See {Data Mode}.

[ GitHub ]

  
# File 'io.c', line 6420

static VALUE
rb_io_binmode_p(VALUE io)
{
    rb_io_t *fptr;
    GetOpenFile(io, fptr);
    return RBOOL(fptr->mode & FMODE_BINMODE);
}

#close_on_exec=(bool) ⇒ Boolean (rw)

Sets a close-on-exec flag.

f = File.open(File::NULL)
f.close_on_exec = true
system("cat", "/proc/self/fd/#{f.fileno}") # cat: /proc/self/fd/3: No such file or directory
f.closed?                #=> false

Ruby sets close-on-exec flags of all file descriptors by default since Ruby 2.0.0. So you don’t need to set by yourself. Also, unsetting a close-on-exec flag can cause file descriptor leak if another thread use fork() and exec() (via system() method for example). If you really needs file descriptor inheritance to child process, use spawn()‘s argument such as fd=>fd.

[ GitHub ]

  
# File 'io.c', line 5359

static VALUE
rb_io_set_close_on_exec(VALUE io, VALUE arg)
{
    int flag = RTEST(arg) ? FD_CLOEXEC : 0;
    rb_io_t *fptr;
    VALUE write_io;
    int fd, ret;

    write_io = GetWriteIO(io);
    if (io != write_io) {
        GetOpenFile(write_io, fptr);
        if (fptr && 0 <= (fd = fptr->fd)) {
            if ((ret = fcntl(fptr->fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
            if ((ret & FD_CLOEXEC) != flag) {
                ret = (ret & ~FD_CLOEXEC) | flag;
                ret = fcntl(fd, F_SETFD, ret);
                if (ret != 0) rb_sys_fail_path(fptr->pathv);
            }
        }

    }

    GetOpenFile(io, fptr);
    if (fptr && 0 <= (fd = fptr->fd)) {
        if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
        if ((ret & FD_CLOEXEC) != flag) {
            ret = (ret & ~FD_CLOEXEC) | flag;
            ret = fcntl(fd, F_SETFD, ret);
            if (ret != 0) rb_sys_fail_path(fptr->pathv);
        }
    }
    return Qnil;
}

#close_on_exec?Boolean (rw)

Returns true if the stream will be closed on exec, false otherwise:

f = File.open('t.txt')
f.close_on_exec? # => true
f.close_on_exec = false
f.close_on_exec? # => false
f.close
[ GitHub ]

  
# File 'io.c', line 5311

static VALUE
rb_io_close_on_exec_p(VALUE io)
{
    rb_io_t *fptr;
    VALUE write_io;
    int fd, ret;

    write_io = GetWriteIO(io);
    if (io != write_io) {
        GetOpenFile(write_io, fptr);
        if (fptr && 0 <= (fd = fptr->fd)) {
            if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
            if (!(ret & FD_CLOEXEC)) return Qfalse;
        }
    }

    GetOpenFile(io, fptr);
    if (fptr && 0 <= (fd = fptr->fd)) {
        if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
        if (!(ret & FD_CLOEXEC)) return Qfalse;
    }
    return Qtrue;
}

#closed?Boolean (readonly)

Returns true if the stream is closed for both reading and writing, false otherwise. See Open and Closed Streams.

IO.popen('ruby', 'r+') do |pipe|
  puts pipe.closed?
  pipe.close_read
  puts pipe.closed?
  pipe.close_write
  puts pipe.closed?
end

Output:

false
false
true

Related: #close_read, #close_write, #close.

[ GitHub ]

  
# File 'io.c', line 5859

VALUE
rb_io_closed_p(VALUE io)
{
    rb_io_t *fptr;
    VALUE write_io;
    rb_io_t *write_fptr;

    write_io = GetWriteIO(io);
    if (io != write_io) {
        write_fptr = RFILE(write_io)->fptr;
        if (write_fptr && 0 <= write_fptr->fd) {
            return Qfalse;
        }
    }

    fptr = rb_io_get_fptr(io);
    return RBOOL(0 > fptr->fd);
}

#eofBoolean (readonly) Also known as: #eof?

Returns true if the stream is positioned at its end, false otherwise; see Position:

f = File.open('t.txt')
f.eof           # => false
f.seek(0, :END) # => 0
f.eof           # => true
f.close

Raises an exception unless the stream is opened for reading; see Mode.

If self is a stream such as pipe or socket, this method blocks until the other end sends some data or closes it:

r, w = IO.pipe
Thread.new { sleep 1; w.close }
r.eof? # => true # After 1-second wait.

r, w = IO.pipe
Thread.new { sleep 1; w.puts "a" }
r.eof?  # => false # After 1-second wait.

r, w = IO.pipe
r.eof?  # blocks forever

Note that this method reads data to the input byte buffer. So #sysread may not behave as you intend with #eof?, unless you call #rewind first (which is not available for some streams).

[ GitHub ]

  
# File 'io.c', line 2688

VALUE
rb_io_eof(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);

    if (READ_CHAR_PENDING(fptr)) return Qfalse;
    if (READ_DATA_PENDING(fptr)) return Qfalse;
    READ_CHECK(fptr);
#if RUBY_CRLF_ENVIRONMENT
    if (!NEED_READCONV(fptr) && NEED_NEWLINE_DECORATOR_ON_READ(fptr)) {
        return RBOOL(eof(fptr->fd));
    }
#endif
    return RBOOL(io_fillbuf(fptr) < 0);
}

#eofBoolean (readonly) #eof?Boolean

Alias for #eof.

#tty?Boolean (readonly) #isattyBoolean

Alias for #tty?.

#linenoInteger (rw)

Returns the current line number for the stream; see Line Number.

[ GitHub ]

  
# File 'io.c', line 4402

static VALUE
rb_io_lineno(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);
    return INT2NUM(fptr->lineno);
}

#lineno=(integer) ⇒ Integer (rw)

Sets and returns the line number for the stream; see Line Number.

[ GitHub ]

  
# File 'io.c', line 4421

static VALUE
rb_io_set_lineno(VALUE io, VALUE lineno)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);
    fptr->lineno = NUM2INT(lineno);
    return lineno;
}

#posInteger (rw) Also known as: #tell

Returns the current position (in bytes) in self (see Position):

f = File.open('t.txt')
f.tell # => 0
f.gets # => "First line\n"
f.tell # => 12
f.close

Related: #pos=, #seek.

[ GitHub ]

  
# File 'io.c', line 2421

static VALUE
rb_io_tell(VALUE io)
{
    rb_io_t *fptr;
    rb_off_t pos;

    GetOpenFile(io, fptr);
    pos = io_tell(fptr);
    if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);
    pos -= fptr->rbuf.len;
    return OFFT2NUM(pos);
}

#pos=(new_position) ⇒ IO (rw)

Seeks to the given new_position (in bytes); see Position:

f = File.open('t.txt')
f.tell     # => 0
f.pos = 20 # => 20
f.tell     # => 20
f.close

Related: #seek, #tell.

[ GitHub ]

  
# File 'io.c', line 2545

static VALUE
rb_io_set_pos(VALUE io, VALUE offset)
{
    rb_io_t *fptr;
    rb_off_t pos;

    pos = NUM2OFFT(offset);
    GetOpenFile(io, fptr);
    pos = io_seek(fptr, pos, SEEK_SET);
    if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);

    return OFFT2NUM(pos);
}

#syncBoolean (rw)

Returns the current sync mode of the stream. When sync mode is true, all output is immediately flushed to the underlying operating system and is not buffered by Ruby internally. See also #fsync.

f = File.open('t.tmp', 'w')
f.sync # => false
f.sync = true
f.sync # => true
f.close
[ GitHub ]

  
# File 'io.c', line 2723

static VALUE
rb_io_sync(VALUE io)
{
    rb_io_t *fptr;

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);
    return RBOOL(fptr->mode & FMODE_SYNC);
}

#sync=(boolean) ⇒ Boolean (rw)

Sets the sync mode for the stream to the given value; returns the given value.

Values for the sync mode:

  • true: All output is immediately flushed to the underlying operating system and is not buffered internally.

  • false: Output may be buffered internally.

Example;

f = File.open('t.tmp', 'w')
f.sync # => false
f.sync = true
f.sync # => true
f.close

Related: #fsync.

[ GitHub ]

  
# File 'io.c', line 2760

static VALUE
rb_io_set_sync(VALUE io, VALUE sync)
{
    rb_io_t *fptr;

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);
    if (RTEST(sync)) {
        fptr->mode |= FMODE_SYNC;
    }
    else {
        fptr->mode &= ~FMODE_SYNC;
    }
    return sync;
}

#posInteger (readonly) #tellInteger

Alias for #pos.

#timeoutIO? (rw)

Get the internal timeout duration or nil if it was not set.

[ GitHub ]

  
# File 'io.c', line 856

VALUE
rb_io_timeout(VALUE self)
{
    rb_io_t *fptr = rb_io_get_fptr(self);

    return fptr->timeout;
}

#timeout=(duration) ⇒ IO (rw) #timeout=(nil) ⇒ nil

Sets the internal timeout to the specified duration or nil. The timeout applies to all blocking operations where possible.

When the operation performs longer than the timeout set, ::IO::TimeoutError is raised.

This affects the following methods (but is not limited to): #gets, #puts, #read, #write, #wait_readable and #wait_writable. This also affects blocking socket operations like Socket#accept and Socket#connect.

Some operations like File#open and #close are not affected by the timeout. A timeout during a write operation may leave the IO in an inconsistent state, e.g. data was partially written. Generally speaking, a timeout is a last ditch effort to prevent an application from hanging on slow I/O operations, such as those that occur during a slowloris attack.

[ GitHub ]

  
# File 'io.c', line 885

VALUE
rb_io_set_timeout(VALUE self, VALUE timeout)
{
    // Validate it:
    if (RTEST(timeout)) {
        rb_time_interval(timeout);
    }

    rb_io_t *fptr = rb_io_get_fptr(self);

    fptr->timeout = timeout;

    return self;
}

#tty?Boolean (readonly) Also known as: #isatty

Returns true if the stream is associated with a terminal device (tty), false otherwise:

f = File.new('t.txt').isatty    #=> false
f.close
f = File.new('/dev/tty').isatty #=> true
f.close
[ GitHub ]

  
# File 'io.c', line 5287

static VALUE
rb_io_isatty(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    return RBOOL(isatty(fptr->fd) != 0);
}

Instance Method Details

#<<(object) ⇒ self

Writes the given object to self, which must be opened for writing (see Access Modes); returns self; if object is not a string, it is converted via method to_s:

$stdout << 'Hello' << ', ' << 'World!' << "\n"
$stdout << 'foo' << :bar << 2 << "\n"

Output:

Hello, World!
foobar2
[ GitHub ]

  
# File 'io.c', line 2343

VALUE
rb_io_addstr(VALUE io, VALUE str)
{
    rb_io_write(io, str);
    return io;
}

#advise(advice, offset = 0, len = 0) ⇒ nil

Invokes Posix system call posix_fadvise(2), which announces an intention to access data from the current file in a particular manner.

The arguments and results are platform-dependent.

The relevant data is specified by:

  • offset: The offset of the first byte of data.

  • len: The number of bytes to be accessed; if len is zero, or is larger than the number of bytes remaining, all remaining bytes will be accessed.

Argument advice is one of the following symbols:

  • :normal: The application has no advice to give about its access pattern for the specified data. If no advice is given for an open file, this is the default assumption.

  • :sequential: The application expects to access the specified data sequentially (with lower offsets read before higher ones).

  • :random: The specified data will be accessed in random order.

  • :noreuse: The specified data will be accessed only once.

  • :willneed: The specified data will be accessed in the near future.

  • :dontneed: The specified data will not be accessed in the near future.

Not implemented on all platforms.

[ GitHub ]

  
# File 'io.c', line 10936

static VALUE
rb_io_advise(int argc, VALUE *argv, VALUE io)
{
    VALUE advice, offset, len;
    rb_off_t off, l;
    rb_io_t *fptr;

    rb_scan_args(argc, argv, "12", &advice, &offset, &len);
    advice_arg_check(advice);

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);

    off = NIL_P(offset) ? 0 : NUM2OFFT(offset);
    l   = NIL_P(len)    ? 0 : NUM2OFFT(len);

#ifdef HAVE_POSIX_FADVISE
    return do_io_advise(fptr, advice, off, l);
#else
    ((void)off, (void)l);	/* Ignore all hint */
    return Qnil;
#endif
}

#closenil

Closes the stream for both reading and writing if open for either or both; returns nil. See Open and Closed Streams.

If the stream is open for writing, flushes any buffered writes to the operating system before closing.

If the stream was opened by .popen, sets global variable $? (child exit status).

It is not an error to close an IO object that has already been closed. It just returns nil.

Example:

IO.popen('ruby', 'r+') do |pipe|
  puts pipe.closed?
  pipe.close
  puts $?
  puts pipe.closed?
end

Output:

false
pid 13760 exit 0
true

Related: #close_read, #close_write, #closed?.

[ GitHub ]

  
# File 'io.c', line 5794

static VALUE
rb_io_close_m(VALUE io)
{
    rb_io_t *fptr = rb_io_get_fptr(io);
    if (fptr->fd < 0) {
        return Qnil;
    }
    rb_io_close(io);
    return Qnil;
}

#close_readnil

Closes the stream for reading if open for reading; returns nil. See Open and Closed Streams.

If the stream was opened by .popen and is also closed for writing, sets global variable $? (child exit status).

Example:

IO.popen('ruby', 'r+') do |pipe|
  puts pipe.closed?
  pipe.close_write
  puts pipe.closed?
  pipe.close_read
  puts $?
  puts pipe.closed?
end

Output:

false
false
pid 14748 exit 0
true

Related: #close, #close_write, #closed?.

[ GitHub ]

  
# File 'io.c', line 5910

static VALUE
rb_io_close_read(VALUE io)
{
    rb_io_t *fptr;
    VALUE write_io;

    fptr = rb_io_get_fptr(rb_io_taint_check(io));
    if (fptr->fd < 0) return Qnil;
    if (is_socket(fptr->fd, fptr->pathv)) {
#ifndef SHUT_RD
# define SHUT_RD 0
#endif
        if (shutdown(fptr->fd, SHUT_RD) < 0)
            rb_sys_fail_path(fptr->pathv);
        fptr->mode &= ~FMODE_READABLE;
        if (!(fptr->mode & FMODE_WRITABLE))
            return rb_io_close(io);
        return Qnil;
    }

    write_io = GetWriteIO(io);
    if (io != write_io) {
        rb_io_t *wfptr;
        wfptr = rb_io_get_fptr(rb_io_taint_check(write_io));
        wfptr->pid = fptr->pid;
        fptr->pid = 0;
        RFILE(io)->fptr = wfptr;
        /* bind to write_io temporarily to get rid of memory/fd leak */
        fptr->tied_io_for_writing = 0;
        RFILE(write_io)->fptr = fptr;
        rb_io_fptr_cleanup(fptr, FALSE);
        /* should not finalize fptr because another thread may be reading it */
        return Qnil;
    }

    if ((fptr->mode & (FMODE_DUPLEX|FMODE_WRITABLE)) == FMODE_WRITABLE) {
        rb_raise(rb_eIOError, "closing non-duplex IO for reading");
    }
    return rb_io_close(io);
}

#close_writenil

Closes the stream for writing if open for writing; returns nil. See Open and Closed Streams.

Flushes any buffered writes to the operating system before closing.

If the stream was opened by .popen and is also closed for reading, sets global variable $? (child exit status).

IO.popen('ruby', 'r+') do |pipe|
  puts pipe.closed?
  pipe.close_read
  puts pipe.closed?
  pipe.close_write
  puts $?
  puts pipe.closed?
end

Output:

false
false
pid 15044 exit 0
true

Related: #close, #close_read, #closed?.

[ GitHub ]

  
# File 'io.c', line 5983

static VALUE
rb_io_close_write(VALUE io)
{
    rb_io_t *fptr;
    VALUE write_io;

    write_io = GetWriteIO(io);
    fptr = rb_io_get_fptr(rb_io_taint_check(write_io));
    if (fptr->fd < 0) return Qnil;
    if (is_socket(fptr->fd, fptr->pathv)) {
#ifndef SHUT_WR
# define SHUT_WR 1
#endif
        if (shutdown(fptr->fd, SHUT_WR) < 0)
            rb_sys_fail_path(fptr->pathv);
        fptr->mode &= ~FMODE_WRITABLE;
        if (!(fptr->mode & FMODE_READABLE))
            return rb_io_close(write_io);
        return Qnil;
    }

    if ((fptr->mode & (FMODE_DUPLEX|FMODE_READABLE)) == FMODE_READABLE) {
        rb_raise(rb_eIOError, "closing non-duplex IO for writing");
    }

    if (io != write_io) {
        fptr = rb_io_get_fptr(rb_io_taint_check(io));
        fptr->tied_io_for_writing = 0;
    }
    rb_io_close(write_io);
    return Qnil;
}

#each_line(sep = $/, chomp: false) {|line| ... } ⇒ self #each_line(limit, chomp: false) {|line| ... } ⇒ self #each_line(sep, limit, chomp: false) {|line| ... } ⇒ self #each_lineEnumerator
Also known as: #each_line

Calls the block with each remaining line read from the stream; returns self. Does nothing if already at end-of-stream; See Line IO.

With no arguments given, reads lines as determined by line separator $/:

f = File.new('t.txt')
f.each_line {|line| p line }
f.each_line {|line| fail 'Cannot happen' }
f.close

Output:

"First line\n"
"Second line\n"
"\n"
"Fourth line\n"
"Fifth line\n"

With only string argument sep given, reads lines as determined by line separator sep; see Line Separator:

f = File.new('t.txt')
f.each_line('li') {|line| p line }
f.close

Output:

"First li"
"ne\nSecond li"
"ne\n\nFourth li"
"ne\nFifth li"
"ne\n"

The two special values for sep are honored:

f = File.new('t.txt')
# Get all into one string.
f.each_line(nil) {|line| p line }
f.close

Output:

"First line\nSecond line\n\nFourth line\nFifth line\n"

f.rewind
# Get paragraphs (up to two line separators).
f.each_line('') {|line| p line }

Output:

"First line\nSecond line\n\n"
"Fourth line\nFifth line\n"

With only integer argument limit given, limits the number of bytes in each line; see Line Limit:

f = File.new('t.txt')
f.each_line(8) {|line| p line }
f.close

Output:

"First li"
"ne\n"
"Second l"
"ine\n"
"\n"
"Fourth l"
"ine\n"
"Fifth li"
"ne\n"

With arguments sep and limit given, combines the two behaviors (see Line Separator and Line Limit).

Optional keyword argument chomp specifies whether line separators are to be omitted:

f = File.new('t.txt')
f.each_line(chomp: true) {|line| p line }
f.close

Output:

"First line"
"Second line"
""
"Fourth line"
"Fifth line"

Returns an ::Enumerator if no block is given.

[ GitHub ]

  
# File 'io.c', line 4664

static VALUE
rb_io_each_line(int argc, VALUE *argv, VALUE io)
{
    VALUE str;
    struct getline_arg args;

    RETURN_ENUMERATOR(io, argc, argv);
    prepare_getline_args(argc, argv, &args, io);
    if (args.limit == 0)
        rb_raise(rb_eArgError, "invalid limit: 0 for each_line");
    while (!NIL_P(str = rb_io_getline_1(args.rs, args.limit, args.chomp, io))) {
        rb_yield(str);
    }
    return io;
}

#each_byte {|byte| ... } ⇒ self #each_byteEnumerator

Calls the given block with each byte (0..255) in the stream; returns self. See Byte IO.

f = File.new('t.rus')
a = []
f.each_byte {|b| a << b }
a # => [209, 130, 208, 181, 209, 129, 209, 130]
f.close

Returns an ::Enumerator if no block is given.

Related: #each_char, #each_codepoint.

[ GitHub ]

  
# File 'io.c', line 4700

static VALUE
rb_io_each_byte(VALUE io)
{
    rb_io_t *fptr;

    RETURN_ENUMERATOR(io, 0, 0);
    GetOpenFile(io, fptr);

    do {
        while (fptr->rbuf.len > 0) {
            char *p = fptr->rbuf.ptr + fptr->rbuf.off++;
            fptr->rbuf.len--;
            rb_yield(INT2FIX(*p & 0xff));
            rb_io_check_byte_readable(fptr);
            errno = 0;
        }
        READ_CHECK(fptr);
    } while (io_fillbuf(fptr) >= 0);
    return io;
}

#each_char {|c| ... } ⇒ self #each_charEnumerator

Calls the given block with each character in the stream; returns self. See Character IO.

f = File.new('t.rus')
a = []
f.each_char {|c| a << c.ord }
a # => [1090, 1077, 1089, 1090]
f.close

Returns an ::Enumerator if no block is given.

Related: #each_byte, #each_codepoint.

[ GitHub ]

  
# File 'io.c', line 4848

static VALUE
rb_io_each_char(VALUE io)
{
    rb_io_t *fptr;
    rb_encoding *enc;
    VALUE c;

    RETURN_ENUMERATOR(io, 0, 0);
    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);

    enc = io_input_encoding(fptr);
    READ_CHECK(fptr);
    while (!NIL_P(c = io_getc(fptr, enc))) {
        rb_yield(c);
    }
    return io;
}

#each_codepoint {|c| ... } ⇒ self #each_codepointEnumerator

Calls the given block with each codepoint in the stream; returns self:

f = File.new('t.rus')
a = []
f.each_codepoint {|c| a << c }
a # => [1090, 1077, 1089, 1090]
f.close

Returns an ::Enumerator if no block is given.

Related: #each_byte, #each_char.

[ GitHub ]

  
# File 'io.c', line 4886

static VALUE
rb_io_each_codepoint(VALUE io)
{
    rb_io_t *fptr;
    rb_encoding *enc;
    unsigned int c;
    int r, n;

    RETURN_ENUMERATOR(io, 0, 0);
    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);

    READ_CHECK(fptr);
    if (NEED_READCONV(fptr)) {
        SET_BINARY_MODE(fptr);
        r = 1;		/* no invalid char yet */
        for (;;) {
            make_readconv(fptr, 0);
            for (;;) {
                if (fptr->cbuf.len) {
                    if (fptr->encs.enc)
                        r = rb_enc_precise_mbclen(fptr->cbuf.ptr+fptr->cbuf.off,
                                                  fptr->cbuf.ptrfptr->cbuf.offfptr->cbuf.len,
                                                  fptr->encs.enc);
                    else
                        r = ONIGENC_CONSTRUCT_MBCLEN_CHARFOUND(1);
                    if (!MBCLEN_NEEDMORE_P(r))
                        break;
                    if (fptr->cbuf.len == fptr->cbuf.capa) {
                        rb_raise(rb_eIOError, "too long character");
                    }
                }
                if (more_char(fptr) == MORE_CHAR_FINISHED) {
                    clear_readconv(fptr);
                    if (!MBCLEN_CHARFOUND_P(r)) {
                        enc = fptr->encs.enc;
                        goto invalid;
                    }
                    return io;
                }
            }
            if (MBCLEN_INVALID_P(r)) {
                enc = fptr->encs.enc;
                goto invalid;
            }
            n = MBCLEN_CHARFOUND_LEN(r);
            if (fptr->encs.enc) {
                c = rb_enc_codepoint(fptr->cbuf.ptr+fptr->cbuf.off,
                                     fptr->cbuf.ptrfptr->cbuf.offfptr->cbuf.len,
                                     fptr->encs.enc);
            }
            else {
                c = (unsigned char)fptr->cbuf.ptr[fptr->cbuf.off];
            }
            fptr->cbuf.off += n;
            fptr->cbuf.len -= n;
            rb_yield(UINT2NUM(c));
            rb_io_check_byte_readable(fptr);
        }
    }
    NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
    enc = io_input_encoding(fptr);
    while (io_fillbuf(fptr) >= 0) {
        r = rb_enc_precise_mbclen(fptr->rbuf.ptr+fptr->rbuf.off,
                                  fptr->rbuf.ptrfptr->rbuf.offfptr->rbuf.len, enc);
        if (MBCLEN_CHARFOUND_P(r) &&
            (n = MBCLEN_CHARFOUND_LEN(r)) <= fptr->rbuf.len) {
            c = rb_enc_codepoint(fptr->rbuf.ptr+fptr->rbuf.off,
                                 fptr->rbuf.ptrfptr->rbuf.offfptr->rbuf.len, enc);
            fptr->rbuf.off += n;
            fptr->rbuf.len -= n;
            rb_yield(UINT2NUM(c));
        }
        else if (MBCLEN_INVALID_P(r)) {
            goto invalid;
        }
        else if (MBCLEN_NEEDMORE_P(r)) {
            char cbuf[8], *p = cbuf;
            int more = MBCLEN_NEEDMORE_LEN(r);
            if (more > numberof(cbuf)) goto invalid;
            more += n = fptr->rbuf.len;
            if (more > numberof(cbuf)) goto invalid;
            while ((n = (int)read_buffered_data(p, more, fptr)) > 0 &&
                   (p += n, (more -= n) > 0)) {
                if (io_fillbuf(fptr) < 0) goto invalid;
                if ((n = fptr->rbuf.len) > more) n = more;
            }
            r = rb_enc_precise_mbclen(cbuf, p, enc);
            if (!MBCLEN_CHARFOUND_P(r)) goto invalid;
            c = rb_enc_codepoint(cbuf, p, enc);
            rb_yield(UINT2NUM(c));
        }
        else {
            continue;
        }
        rb_io_check_byte_readable(fptr);
    }
    return io;

  invalid:
    rb_raise(rb_eArgError, "invalid byte sequence in %s", rb_enc_name(enc));
    UNREACHABLE_RETURN(Qundef);
}

#each_line(sep = $/, chomp: false) {|line| ... } ⇒ self #each_line(limit, chomp: false) {|line| ... } ⇒ self #each_line(sep, limit, chomp: false) {|line| ... } ⇒ self #each_lineEnumerator

Alias for #each.

#external_encodingEncoding?

Returns the ::Encoding object that represents the encoding of the stream, or nil if the stream is in write mode and no encoding is specified.

See Encodings.

[ GitHub ]

  
# File 'io.c', line 13440

static VALUE
rb_io_external_encoding(VALUE io)
{
    rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr;

    if (fptr->encs.enc2) {
        return rb_enc_from_encoding(fptr->encs.enc2);
    }
    if (fptr->mode & FMODE_WRITABLE) {
        if (fptr->encs.enc)
            return rb_enc_from_encoding(fptr->encs.enc);
        return Qnil;
    }
    return rb_enc_from_encoding(io_read_encoding(fptr));
}

#fcntl(integer_cmd, argument) ⇒ Integer

Invokes Posix system call fcntl(2), which provides a mechanism for issuing low-level commands to control or query a file-oriented I/O stream. Arguments and results are platform dependent.

If argument is a number, its value is passed directly; if it is a string, it is interpreted as a binary sequence of bytes. (Array#pack might be a useful way to build this string.)

Not implemented on all platforms.

[ GitHub ]

  
# File 'io.c', line 11545

static VALUE
rb_io_fcntl(int argc, VALUE *argv, VALUE io)
{
    VALUE req, arg;

    rb_scan_args(argc, argv, "11", &req, &arg);
    return rb_fcntl(io, req, arg);
}

#fdatasync0

Immediately writes to disk all data buffered in the stream, via the operating system’s: fdatasync(2), if supported, otherwise via fsync(2), if supported; otherwise raises an exception.

[ GitHub ]

  
# File 'io.c', line 2845

static VALUE
rb_io_fdatasync(VALUE io)
{
    rb_io_t *fptr;

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);

    if (io_fflush(fptr) < 0)
        rb_sys_fail_on_write(fptr);

    if ((int)rb_io_blocking_region(fptr, nogvl_fdatasync, fptr) == 0)
        return INT2FIX(0);

    /* fall back */
    return rb_io_fsync(io);
}

#to_iInteger #filenoInteger

Alias for #to_i.

#flushself

Flushes data buffered in self to the operating system (but does not necessarily flush data buffered in the operating system):

$stdout.print 'no newline' # Not necessarily flushed.
$stdout.flush              # Flushed.
[ GitHub ]

  
# File 'io.c', line 2399

VALUE
rb_io_flush(VALUE io)
{
    return rb_io_flush_raw(io, 1);
}

#fsync0

Immediately writes to disk all data buffered in the stream, via the operating system’s fsync(2).

Note this difference:

  • #sync=: Ensures that data is flushed from the stream’s internal buffers, but does not guarantee that the operating system actually writes the data to disk.

  • fsync: Ensures both that data is flushed from internal buffers, and that data is written to disk.

Raises an exception if the operating system does not support fsync(2).

[ GitHub ]

  
# File 'io.c', line 2794

static VALUE
rb_io_fsync(VALUE io)
{
    rb_io_t *fptr;

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);

    if (io_fflush(fptr) < 0)
        rb_sys_fail_on_write(fptr);

    if ((int)rb_io_blocking_region(fptr, nogvl_fsync, fptr))
        rb_sys_fail_path(fptr->pathv);

    return INT2FIX(0);
}

#getbyteInteger?

Reads and returns the next byte (in range 0..255) from the stream; returns nil if already at end-of-stream. See Byte IO.

f = File.open('t.txt')
f.getbyte # => 70
f.close
f = File.open('t.rus')
f.getbyte # => 209
f.close

Related: #readbyte (may raise ::EOFError).

[ GitHub ]

  
# File 'io.c', line 5071

VALUE
rb_io_getbyte(VALUE io)
{
    rb_io_t *fptr;
    int c;

    GetOpenFile(io, fptr);
    rb_io_check_byte_readable(fptr);
    READ_CHECK(fptr);
    VALUE r_stdout = rb_ractor_stdout();
    if (fptr->fd == 0 && (fptr->mode & FMODE_TTY) && RB_TYPE_P(r_stdout, T_FILE)) {
        rb_io_t *ofp;
        GetOpenFile(r_stdout, ofp);
        if (ofp->mode & FMODE_TTY) {
            rb_io_flush(r_stdout);
        }
    }
    if (io_fillbuf(fptr) < 0) {
        return Qnil;
    }
    fptr->rbuf.off++;
    fptr->rbuf.len--;
    c = (unsigned char)fptr->rbuf.ptr[fptr->rbuf.off-1];
    return INT2FIX(c & 0xff);
}

#getccharacter?

Reads and returns the next 1-character string from the stream; returns nil if already at end-of-stream. See Character IO.

f = File.open('t.txt')
f.getc     # => "F"
f.close
f = File.open('t.rus')
f.getc.ord # => 1090
f.close

Related: #readchar (may raise ::EOFError).

[ GitHub ]

  
# File 'io.c', line 5009

static VALUE
rb_io_getc(VALUE io)
{
    rb_io_t *fptr;
    rb_encoding *enc;

    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);

    enc = io_input_encoding(fptr);
    READ_CHECK(fptr);
    return io_getc(fptr, enc);
}

#gets(sep = $/, chomp: false) ⇒ String? #gets(limit, chomp: false) ⇒ String? #gets(sep, limit, chomp: false) ⇒ String?

Reads and returns a line from the stream; assigns the return value to $_. See Line IO.

With no arguments given, returns the next line as determined by line separator $/, or nil if none:

f = File.open('t.txt')
f.gets # => "First line\n"
$_     # => "First line\n"
f.gets # => "\n"
f.gets # => "Fourth line\n"
f.gets # => "Fifth line\n"
f.gets # => nil
f.close

With only string argument sep given, returns the next line as determined by line separator sep, or nil if none; see Line Separator:

f = File.new('t.txt')
f.gets('l')   # => "First l"
f.gets('li')  # => "ine\nSecond li"
f.gets('lin') # => "ne\n\nFourth lin"
f.gets        # => "e\n"
f.close

The two special values for sep are honored:

f = File.new('t.txt')
# Get all.
f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.rewind
# Get paragraph (up to two line separators).
f.gets('')  # => "First line\nSecond line\n\n"
f.close

With only integer argument limit given, limits the number of bytes in the line; see Line Limit:

# No more than one line.
File.open('t.txt') {|f| f.gets(10) } # => "First line"
File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
File.open('t.txt') {|f| f.gets(12) } # => "First line\n"

With arguments sep and limit given, combines the two behaviors (see Line Separator and Line Limit).

Optional keyword argument chomp specifies whether line separators are to be omitted:

f = File.open('t.txt')
# Chomp the lines.
f.gets(chomp: true) # => "First line"
f.gets(chomp: true) # => "Second line"
f.gets(chomp: true) # => ""
f.gets(chomp: true) # => "Fourth line"
f.gets(chomp: true) # => "Fifth line"
f.gets(chomp: true) # => nil
f.close
[ GitHub ]

  
# File 'io.c', line 4382

static VALUE
rb_io_gets_m(int argc, VALUE *argv, VALUE io)
{
    VALUE str;

    str = rb_io_getline(argc, argv, io);
    rb_lastline_set(str);

    return str;
}

#initialize_copy(io)

This method is for internal use only.
[ GitHub ]

  
# File 'io.c', line 8546

static VALUE
rb_io_init_copy(VALUE dest, VALUE io)
{
    rb_io_t *fptr, *orig;
    int fd;
    VALUE write_io;
    rb_off_t pos;

    io = rb_io_get_io(io);
    if (!OBJ_INIT_COPY(dest, io)) return dest;
    GetOpenFile(io, orig);
    MakeOpenFile(dest, fptr);

    rb_io_flush(io);

    /* copy rb_io_t structure */
    fptr->mode = orig->mode & ~FMODE_EXTERNAL;
    fptr->encs = orig->encs;
    fptr->pid = orig->pid;
    fptr->lineno = orig->lineno;
    fptr->timeout = orig->timeout;
    if (!NIL_P(orig->pathv)) fptr->pathv = orig->pathv;
    fptr_copy_finalizer(fptr, orig);

    fd = ruby_dup(orig->fd);
    fptr->fd = fd;
    pos = io_tell(orig);
    if (0 <= pos)
        io_seek(fptr, pos, SEEK_SET);
    if (fptr->mode & FMODE_BINMODE) {
        rb_io_binmode(dest);
    }

    write_io = GetWriteIO(io);
    if (io != write_io) {
        write_io = rb_obj_dup(write_io);
        fptr->tied_io_for_writing = write_io;
        rb_ivar_set(dest, rb_intern("@tied_io_for_writing"), write_io);
    }

    return dest;
}

#inspectString

Returns a string representation of self:

f = File.open('t.txt')
f.inspect # => "#<File:t.txt>"
f.close
[ GitHub ]

  
# File 'io.c', line 2988

static VALUE
rb_io_inspect(VALUE obj)
{
    rb_io_t *fptr;
    VALUE result;
    static const char closed[] = " (closed)";

    fptr = RFILE(obj)->fptr;
    if (!fptr) return rb_any_to_s(obj);
    result = rb_str_new_cstr("#<");
    rb_str_append(result, rb_class_name(CLASS_OF(obj)));
    rb_str_cat2(result, ":");
    if (NIL_P(fptr->pathv)) {
        if (fptr->fd < 0) {
            rb_str_cat(result, closed+1, strlen(closed)-1);
        }
        else {
            rb_str_catf(result, "fd %d", fptr->fd);
        }
    }
    else {
        rb_str_append(result, fptr->pathv);
        if (fptr->fd < 0) {
            rb_str_cat(result, closed, strlen(closed));
        }
    }
    return rb_str_cat2(result, ">");
}

#internal_encodingEncoding?

Returns the ::Encoding object that represents the encoding of the internal string, if conversion is specified, or nil otherwise.

See Encodings.

[ GitHub ]

  
# File 'io.c', line 13468

static VALUE
rb_io_internal_encoding(VALUE io)
{
    rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr;

    if (!fptr->encs.enc2) return Qnil;
    return rb_enc_from_encoding(io_read_encoding(fptr));
}

#ioctl(integer_cmd, argument) ⇒ Integer

Invokes Posix system call ioctl(2), which issues a low-level command to an I/O device.

Issues a low-level command to an I/O device. The arguments and returned value are platform-dependent. The effect of the call is platform-dependent.

If argument argument is an integer, it is passed directly; if it is a string, it is interpreted as a binary sequence of bytes.

Not implemented on all platforms.

[ GitHub ]

  
# File 'io.c', line 11457

static VALUE
rb_io_ioctl(int argc, VALUE *argv, VALUE io)
{
    VALUE req, arg;

    rb_scan_args(argc, argv, "11", &req, &arg);
    return rb_ioctl(io, req, arg);
}

#pathString? Also known as: #to_path

Returns the path associated with the IO, or nil if there is no path associated with the IO. It is not guaranteed that the path exists on the filesystem.

$stdin.path # => "<STDIN>"

File.open("testfile") {|f| f.path} # => "testfile"
[ GitHub ]

  
# File 'io.c', line 2965

VALUE
rb_io_path(VALUE io)
{
    rb_io_t *fptr = RFILE(io)->fptr;

    if (!fptr)
        return Qnil;

    return rb_obj_dup(fptr->pathv);
}

#pidInteger?

Returns the process ID of a child process associated with the stream, which will have been set by IO#popen, or nil if the stream was not created by IO#popen:

pipe = IO.popen("-")
if pipe
  $stderr.puts "In parent, child pid is #{pipe.pid}"
else
  $stderr.puts "In child, pid is #{$$}"
end

Output:

In child, pid is 26209
In parent, child pid is 26209
[ GitHub ]

  
# File 'io.c', line 2941

static VALUE
rb_io_pid(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    if (!fptr->pid)
        return Qnil;
    return PIDT2NUM(fptr->pid);
}

#pread(maxlen, offset) ⇒ String #pread(maxlen, offset, out_string) ⇒ String

Behaves like #readpartial, except that it:

  • Reads at the given offset (in bytes).

  • Disregards, and does not modify, the stream’s position (see Position).

  • Bypasses any user space buffering in the stream.

Because this method does not disturb the stream’s state (its position, in particular), pread allows multiple threads and processes to use the same IO object for reading at various offsets.

f = File.open('t.txt')
f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.pos  # => 52
# Read 12 bytes at offset 0.
f.pread(12, 0) # => "First line\n"
# Read 9 bytes at offset 8.
f.pread(9, 8)  # => "ne\nSecon"
f.close

Not available on some platforms.

[ GitHub ]

  
# File 'io.c', line 6219

static VALUE
rb_io_pread(int argc, VALUE *argv, VALUE io)
{
    VALUE len, offset, str;
    rb_io_t *fptr;
    ssize_t n;
    struct prdwr_internal_arg arg;
    int shrinkable;

    rb_scan_args(argc, argv, "21", &len, &offset, &str);
    arg.count = NUM2SIZET(len);
    arg.offset = NUM2OFFT(offset);

    shrinkable = io_setstrbuf(&str, (long)arg.count);
    if (arg.count == 0) return str;
    arg.buf = RSTRING_PTR(str);

    GetOpenFile(io, fptr);
    rb_io_check_byte_readable(fptr);

    arg.io = fptr;
    arg.fd = fptr->fd;
    rb_io_check_closed(fptr);

    rb_str_locktmp(str);
    n = (ssize_t)rb_ensure(pread_internal_call, (VALUE)&arg, rb_str_unlocktmp, str);

    if (n < 0) {
        rb_sys_fail_path(fptr->pathv);
    }
    io_set_read_length(str, n, shrinkable);
    if (n == 0 && arg.count > 0) {
        rb_eof_error();
    }

    return str;
}

#printf(format_string, *objects) ⇒ nil

Formats and writes objects to the stream.

For details on format_string, see Format Specifications.

[ GitHub ]

  
# File 'io.c', line 8600

VALUE
rb_io_printf(int argc, const VALUE *argv, VALUE out)
{
    rb_io_write(out, rb_f_sprintf(argc, argv));
    return Qnil;
}

#putc(object) ⇒ Object

Writes a character to the stream. See Character IO.

If object is numeric, converts to integer if necessary, then writes the character whose code is the least significant byte; if object is a string, writes the first character:

$stdout.putc "A"
$stdout.putc 65

Output:

AA
[ GitHub ]

  
# File 'io.c', line 8831

static VALUE
rb_io_putc(VALUE io, VALUE ch)
{
    VALUE str;
    if (RB_TYPE_P(ch, T_STRING)) {
        str = rb_str_substr(ch, 0, 1);
    }
    else {
        char c = NUM2CHR(ch);
        str = rb_str_new(&c, 1);
    }
    rb_io_write(io, str);
    return ch;
}

#puts(*objects) ⇒ nil

Writes the given objects to the stream, which must be open for writing; returns nil.\ Writes a newline after each that does not already end with a newline sequence. If called without arguments, writes a newline. See Line IO.

Note that each added newline is the character "\n"<//tt>, not the output record separator (<tt>$\).

Treatment for each object:

  • String: writes the string.

  • Neither string nor array: writes object.to_s.

  • Array: writes each element of the array; arrays may be nested.

To keep these examples brief, we define this helper method:

def show(*objects)
  # Puts objects to file.
  f = File.new('t.tmp', 'w+')
  f.puts(objects)
  # Return file content.
  f.rewind
  p f.read
  f.close
end

# Strings without newlines.
show('foo', 'bar', 'baz')     # => "foo\nbar\nbaz\n"
# Strings, some with newlines.
show("foo\n", 'bar', "baz\n") # => "foo\nbar\nbaz\n"

# Neither strings nor arrays:
show(0, 0.0, Rational(0, 1), Complex(9, 0), :zero)
# => "0\n0.0\n0/1\n9+0i\nzero\n"

# Array of strings.
show(['foo', "bar\n", 'baz']) # => "foo\nbar\nbaz\n"
# Nested arrays.
show([[[0, 1], 2, 3], 4, 5])  # => "0\n1\n2\n3\n4\n5\n"
[ GitHub ]

  
# File 'io.c', line 8958

VALUE
rb_io_puts(int argc, const VALUE *argv, VALUE out)
{
    VALUE line, args[2];

    /* if no argument given, print newline. */
    if (argc == 0) {
        rb_io_write(out, rb_default_rs);
        return Qnil;
    }
    for (int i = 0; i < argc; i++) {
        // Convert the argument to a string:
        if (RB_TYPE_P(argv[i], T_STRING)) {
            line = argv[i];
        }
        else if (rb_exec_recursive(io_puts_ary, argv[i], out)) {
            continue;
        }
        else {
            line = rb_obj_as_string(argv[i]);
        }

        // Write the line:
        int n = 0;
        if (RSTRING_LEN(line) == 0) {
            args[n++] = rb_default_rs;
        }
        else {
            args[n++] = line;
            if (!rb_str_end_with_asciichar(line, '\n')) {
                args[n++] = rb_default_rs;
            }
        }

        rb_io_writev(out, n, args);
    }

    return Qnil;
}

#pwrite(object, offset) ⇒ Integer

Behaves like #write, except that it:

  • Writes at the given offset (in bytes).

  • Disregards, and does not modify, the stream’s position (see Position).

  • Bypasses any user space buffering in the stream.

Because this method does not disturb the stream’s state (its position, in particular), pwrite allows multiple threads and processes to use the same IO object for writing at various offsets.

f = File.open('t.tmp', 'w+')
# Write 6 bytes at offset 3.
f.pwrite('ABCDEF', 3) # => 6
f.rewind
f.read # => "\u0000\u0000\u0000ABCDEF"
f.close

Not available on some platforms.

[ GitHub ]

  
# File 'io.c', line 6300

static VALUE
rb_io_pwrite(VALUE io, VALUE str, VALUE offset)
{
    rb_io_t *fptr;
    ssize_t n;
    struct prdwr_internal_arg arg;
    VALUE tmp;

    if (!RB_TYPE_P(str, T_STRING))
        str = rb_obj_as_string(str);

    arg.offset = NUM2OFFT(offset);

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);
    rb_io_check_writable(fptr);

    arg.io = fptr;
    arg.fd = fptr->fd;

    tmp = rb_str_tmp_frozen_acquire(str);
    arg.buf = RSTRING_PTR(tmp);
    arg.count = (size_t)RSTRING_LEN(tmp);

    n = (ssize_t)rb_io_blocking_region_wait(fptr, internal_pwrite_func, &arg, RUBY_IO_WRITABLE);
    if (n < 0) rb_sys_fail_path(fptr->pathv);
    rb_str_tmp_frozen_release(str, tmp);

    return SSIZET2NUM(n);
}

#read(maxlen = nil, out_string = nil) ⇒ String, ...

Reads bytes from the stream; the stream must be opened for reading (see Access Modes):

  • If maxlen is nil, reads all bytes using the stream’s data mode.

  • Otherwise reads up to maxlen bytes in binary mode.

Returns a string (either a new string or the given out_string) containing the bytes read. The encoding of the string depends on both maxLen and out_string:

  • maxlen is nil: uses internal encoding of self (regardless of whether out_string was given).

  • maxlen not nil:

    • out_string given: encoding of out_string not modified.

    • out_string not given: ASCII-8BIT is used.

Without Argument out_string

When argument out_string is omitted, the returned value is a new string:

f = File.new('t.txt')
f.read
# => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.rewind
f.read(30) # => "First line\r\nSecond line\r\n\r\nFou"
f.read(30) # => "rth line\r\nFifth line\r\n"
f.read(30) # => nil
f.close

If maxlen is zero, returns an empty string.

With Argument out_string

When argument out_string is given, the returned value is out_string, whose content is replaced:

f = File.new('t.txt')
s = 'foo'      # => "foo"
f.read(nil, s) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
s              # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.rewind
s = 'bar'
f.read(30, s)  # => "First line\r\nSecond line\r\n\r\nFou"
s              # => "First line\r\nSecond line\r\n\r\nFou"
s = 'baz'
f.read(30, s)  # => "rth line\r\nFifth line\r\n"
s              # => "rth line\r\nFifth line\r\n"
s = 'bat'
f.read(30, s)  # => nil
s              # => ""
f.close

Note that this method behaves like the fread() function in C. This means it retries to invoke read(2) system calls to read data with the specified maxlen (or until EOF).

This behavior is preserved even if the stream is in non-blocking mode. (This method is non-blocking-flag insensitive as other methods.)

If you need the behavior like a single read(2) system call, consider #readpartial, #read_nonblock, and #sysread.

Related: #write.

[ GitHub ]

  
# File 'io.c', line 3796

static VALUE
io_read(int argc, VALUE *argv, VALUE io)
{
    rb_io_t *fptr;
    long n, len;
    VALUE length, str;
    int shrinkable;
#if RUBY_CRLF_ENVIRONMENT
    int previous_mode;
#endif

    rb_scan_args(argc, argv, "02", &length, &str);

    if (NIL_P(length)) {
        GetOpenFile(io, fptr);
        rb_io_check_char_readable(fptr);
        return read_all(fptr, remain_size(fptr), str);
    }
    len = NUM2LONG(length);
    if (len < 0) {
        rb_raise(rb_eArgError, "negative length %ld given", len);
    }

    shrinkable = io_setstrbuf(&str,len);

    GetOpenFile(io, fptr);
    rb_io_check_byte_readable(fptr);
    if (len == 0) {
        io_set_read_length(str, 0, shrinkable);
        return str;
    }

    READ_CHECK(fptr);
#if RUBY_CRLF_ENVIRONMENT
    previous_mode = set_binary_mode_with_seek_cur(fptr);
#endif
    n = io_fread(str, 0, len, fptr);
    io_set_read_length(str, n, shrinkable);
#if RUBY_CRLF_ENVIRONMENT
    if (previous_mode == O_TEXT) {
        setmode(fptr->fd, O_TEXT);
    }
#endif
    if (n == 0) return Qnil;

    return str;
}

#read_nonblock(maxlen [, options]) ⇒ String #read_nonblock(maxlen, outbuf [, options]) ⇒ outbuf

Reads at most maxlen bytes from ios using the read(2) system call after O_NONBLOCK is set for the underlying file descriptor.

If the optional outbuf argument is present, it must reference a ::String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.

read_nonblock just calls the read(2) system call. It causes all errors the read(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The caller should care such errors.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by ::IO::WaitReadable. So ::IO::WaitReadable can be used to rescue the exceptions for retrying read_nonblock.

read_nonblock causes ::EOFError on EOF.

On some platforms, such as Windows, non-blocking mode is not supported on IO objects other than sockets. In such cases, Errno::EBADF will be raised.

If the read byte buffer is not empty, read_nonblock reads from the buffer like readpartial. In this case, the read(2) system call is not called.

When read_nonblock raises an exception kind of ::IO::WaitReadable, read_nonblock should not be called until io is readable for avoiding busy loop. This can be done as follows.

# emulates blocking read (readpartial).
begin
  result = io.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io])
  retry
end

Although read_nonblock doesn’t raise ::IO::WaitWritable. OpenSSL::Buffering#read_nonblock can raise ::IO::WaitWritable. If IO and SSL should be used polymorphically, ::IO::WaitWritable should be rescued too. See the document of OpenSSL::Buffering#read_nonblock for sample code.

Note that this method is identical to readpartial except the non-blocking flag is set.

By specifying a keyword argument exception to false, you can indicate that read_nonblock should not raise an ::IO::WaitReadable exception, but return the symbol :wait_readable instead. At EOF, it will return nil instead of raising ::EOFError.

[ GitHub ]

  
# File 'io.rb', line 62

def read_nonblock(len, buf = nil, exception: true)
  Primitive.io_read_nonblock(len, buf, exception)
end

#readbyteInteger

Reads and returns the next byte (in range 0..255) from the stream; raises ::EOFError if already at end-of-stream. See Byte IO.

f = File.open('t.txt')
f.readbyte # => 70
f.close
f = File.open('t.rus')
f.readbyte # => 209
f.close

Related: #getbyte (will not raise ::EOFError).

[ GitHub ]

  
# File 'io.c', line 5116

static VALUE
rb_io_readbyte(VALUE io)
{
    VALUE c = rb_io_getbyte(io);

    if (NIL_P(c)) {
        rb_eof_error();
    }
    return c;
}

#readcharString

Reads and returns the next 1-character string from the stream; raises ::EOFError if already at end-of-stream. See Character IO.

f = File.open('t.txt')
f.readchar     # => "F"
f.close
f = File.open('t.rus')
f.readchar.ord # => 1090
f.close

Related: #getc (will not raise ::EOFError).

[ GitHub ]

  
# File 'io.c', line 5042

static VALUE
rb_io_readchar(VALUE io)
{
    VALUE c = rb_io_getc(io);

    if (NIL_P(c)) {
        rb_eof_error();
    }
    return c;
}

#readline(sep = $/, chomp: false) ⇒ String #readline(limit, chomp: false) ⇒ String #readline(sep, limit, chomp: false) ⇒ String

Reads a line as with #gets, but raises ::EOFError if already at end-of-stream.

Optional keyword argument chomp specifies whether line separators are to be omitted.

[ GitHub ]

  
# File 'io.rb', line 133

def readline(sep = $/, limit = nil, chomp: false)
  Primitive.io_readline(sep, limit, chomp)
end

#readlines(sep = $/, chomp: false) ⇒ Array #readlines(limit, chomp: false) ⇒ Array #readlines(sep, limit, chomp: false) ⇒ Array

Reads and returns all remaining line from the stream; does not modify $_. See Line IO.

With no arguments given, returns lines as determined by line separator $/, or nil if none:

f = File.new('t.txt')
f.readlines
# => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
f.readlines # => []
f.close

With only string argument sep given, returns lines as determined by line separator sep, or nil if none; see Line Separator:

f = File.new('t.txt')
f.readlines('li')
# => ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"]
f.close

The two special values for sep are honored:

f = File.new('t.txt')
# Get all into one string.
f.readlines(nil)
# => ["First line\nSecond line\n\nFourth line\nFifth line\n"]
# Get paragraphs (up to two line separators).
f.rewind
f.readlines('')
# => ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]
f.close

With only integer argument limit given, limits the number of bytes in each line; see Line Limit:

f = File.new('t.txt')
f.readlines(8)
# => ["First li", "ne\n", "Second l", "ine\n", "\n", "Fourth l", "ine\n", "Fifth li", "ne\n"]
f.close

With arguments sep and limit given, combines the two behaviors (see Line Separator and Line Limit).

Optional keyword argument chomp specifies whether line separators are to be omitted:

f = File.new('t.txt')
f.readlines(chomp: true)
# => ["First line", "Second line", "", "Fourth line", "Fifth line"]
f.close
[ GitHub ]

  
# File 'io.c', line 4535

static VALUE
rb_io_readlines(int argc, VALUE *argv, VALUE io)
{
    struct getline_arg args;

    prepare_getline_args(argc, argv, &args, io);
    return io_readlines(&args, io);
}

#readpartial(maxlen) ⇒ String #readpartial(maxlen, out_string) ⇒ out_string

Reads up to maxlen bytes from the stream; returns a string (either a new string or the given out_string). Its encoding is:

  • The unchanged encoding of out_string, if out_string is given.

  • ASCII-8BIT, otherwise.

  • Contains maxlen bytes from the stream, if available.

  • Otherwise contains all available bytes, if any available.

  • Otherwise is an empty string.

With the single non-negative integer argument maxlen given, returns a new string:

f = File.new('t.txt')
f.readpartial(20) # => "First line\nSecond l"
f.readpartial(20) # => "ine\n\nFourth line\n"
f.readpartial(20) # => "Fifth line\n"
f.readpartial(20) # Raises EOFError.
f.close

With both argument maxlen and string argument out_string given, returns modified out_string:

f = File.new('t.txt')
s = 'foo'
f.readpartial(20, s) # => "First line\nSecond l"
s = 'bar'
f.readpartial(0, s)  # => ""
f.close

This method is useful for a stream such as a pipe, a socket, or a tty. It blocks only when no data is immediately available. This means that it blocks only when all of the following are true:

  • The byte buffer in the stream is empty.

  • The content of the stream is empty.

  • The stream is not at EOF.

When blocked, the method waits for either more data or EOF on the stream:

  • If more data is read, the method returns the data.

  • If EOF is reached, the method raises ::EOFError.

When not blocked, the method responds immediately:

  • Returns data from the buffer if there is any.

  • Otherwise returns data from the stream if there is any.

  • Otherwise raises ::EOFError if the stream has reached EOF.

Note that this method is similar to sysread. The differences are:

  • If the byte buffer is not empty, read from the byte buffer instead of “sysread for buffered IO (IOError)”.

  • It doesn’t cause Errno::EWOULDBLOCK and Errno::EINTR. When readpartial meets EWOULDBLOCK and EINTR by read system call, readpartial retries the system call.

The latter means that readpartial is non-blocking-flag insensitive. It blocks on the situation #sysread causes Errno::EWOULDBLOCK as if the fd is blocking mode.

Examples:

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << 'abc'               #               ""                "abc".
r.readpartial(4096)      # => "abc"      ""                ""
r.readpartial(4096)      # (Blocks because buffer and pipe are empty.)

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << 'abc'               #               ""                "abc"
w.close                  #               ""                "abc" EOF
r.readpartial(4096)      # => "abc"      ""                 EOF
r.readpartial(4096)      # raises EOFError

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << "abc\ndef\n"        #               ""                "abc\ndef\n"
r.gets                   # => "abc\n"    "def\n"           ""
w << "ghi\n"             #               "def\n"           "ghi\n"
r.readpartial(4096)      # => "def\n"    ""                "ghi\n"
r.readpartial(4096)      # => "ghi\n"    ""                ""
[ GitHub ]

  
# File 'io.c', line 3612

static VALUE
io_readpartial(int argc, VALUE *argv, VALUE io)
{
    VALUE ret;

    ret = io_getpartial(argc, argv, io, Qnil, 0);
    if (NIL_P(ret))
        rb_eof_error();
    return ret;
}

#reopen(other_io) ⇒ self #reopen(path, mode = 'r', **opts) ⇒ self

Reassociates the stream with another stream, which may be of a different class. This method may be used to redirect an existing stream to a new destination.

With argument other_io given, reassociates with that stream:

# Redirect $stdin from a file.
f = File.open('t.txt')
$stdin.reopen(f)
f.close

# Redirect $stdout to a file.
f = File.open('t.tmp', 'w')
$stdout.reopen(f)
f.close

With argument #path given, reassociates with a new stream to that file path:

$stdin.reopen('t.txt')
$stdout.reopen('t.tmp', 'w')

Optional keyword arguments opts specify:

  • Open Options.

  • {Encoding options}.

[ GitHub ]

  
# File 'io.c', line 8457

static VALUE
rb_io_reopen(int argc, VALUE *argv, VALUE file)
{
    VALUE fname, nmode, opt;
    int oflags;
    rb_io_t *fptr;

    if (rb_scan_args(argc, argv, "11:", &fname, &nmode, &opt) == 1) {
        VALUE tmp = rb_io_check_io(fname);
        if (!NIL_P(tmp)) {
            return io_reopen(file, tmp);
        }
    }

    FilePathValue(fname);
    rb_io_taint_check(file);
    fptr = RFILE(file)->fptr;
    if (!fptr) {
        fptr = RFILE(file)->fptr = ZALLOC(rb_io_t);
    }

    if (!NIL_P(nmode) || !NIL_P(opt)) {
        int fmode;
        struct rb_io_encoding convconfig;

        rb_io_extract_modeenc(&nmode, 0, opt, &oflags, &fmode, &convconfig);
        if (RUBY_IO_EXTERNAL_P(fptr) &&
            ((fptr->mode & FMODE_READWRITE) & (fmode & FMODE_READWRITE)) !=
            (fptr->mode & FMODE_READWRITE)) {
            rb_raise(rb_eArgError,
                     "%s can't change access mode from \"%s\" to \"%s\"",
                     PREP_STDIO_NAME(fptr), rb_io_fmode_modestr(fptr->mode),
                     rb_io_fmode_modestr(fmode));
        }
        fptr->mode = fmode;
        fptr->encs = convconfig;
    }
    else {
        oflags = rb_io_fmode_oflags(fptr->mode);
    }

    fptr->pathv = fname;
    if (fptr->fd < 0) {
        fptr->fd = rb_sysopen(fptr->pathv, oflags, 0666);
        fptr->stdio_file = 0;
        return file;
    }

    if (fptr->mode & FMODE_WRITABLE) {
        if (io_fflush(fptr) < 0)
            rb_sys_fail_on_write(fptr);
    }
    fptr->rbuf.off = fptr->rbuf.len = 0;

    if (fptr->stdio_file) {
        int e = rb_freopen(rb_str_encode_ospath(fptr->pathv),
                           rb_io_oflags_modestr(oflags),
                           fptr->stdio_file);
        if (e) rb_syserr_fail_path(e, fptr->pathv);
        fptr->fd = fileno(fptr->stdio_file);
        rb_fd_fix_cloexec(fptr->fd);
#ifdef USE_SETVBUF
        if (setvbuf(fptr->stdio_file, NULL, _IOFBF, 0) != 0)
            rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
#endif
        if (fptr->stdio_file == stderr) {
            if (setvbuf(fptr->stdio_file, NULL, _IONBF, BUFSIZ) != 0)
                rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
        }
        else if (fptr->stdio_file == stdout && isatty(fptr->fd)) {
            if (setvbuf(fptr->stdio_file, NULL, _IOLBF, BUFSIZ) != 0)
                rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
        }
    }
    else {
        int tmpfd = rb_sysopen(fptr->pathv, oflags, 0666);
        int err = 0;
        if (rb_cloexec_dup2(tmpfd, fptr->fd) < 0)
            err = errno;
        (void)close(tmpfd);
        if (err) {
            rb_syserr_fail_path(err, fptr->pathv);
        }
    }

    return file;
}

#rewind0

Repositions the stream to its beginning, setting both the position and the line number to zero; see Position and Line Number:

f = File.open('t.txt')
f.tell     # => 0
f.lineno   # => 0
f.gets     # => "First line\n"
f.tell     # => 12
f.lineno   # => 1
f.rewind   # => 0
f.tell     # => 0
f.lineno   # => 0
f.close

Note that this method cannot be used with streams such as pipes, ttys, and sockets.

[ GitHub ]

  
# File 'io.c', line 2585

static VALUE
rb_io_rewind(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    if (io_seek(fptr, 0L, 0) < 0 && errno) rb_sys_fail_path(fptr->pathv);
    if (io == ARGF.current_file) {
        ARGF.lineno -= fptr->lineno;
    }
    fptr->lineno = 0;
    if (fptr->readconv) {
        clear_readconv(fptr);
    }

    return INT2FIX(0);
}

#seek(offset, whence = IO::SEEK_SET) ⇒ 0

Seeks to the position given by integer offset (see Position) and constant whence, which is one of:

  • :CUR or SEEK_CUR: Repositions the stream to its current position plus the given offset:

    f = File.open('t.txt')
    f.tell            # => 0
    f.seek(20, :CUR)  # => 0
    f.tell            # => 20
    f.seek(-10, :CUR) # => 0
    f.tell            # => 10
    f.close
  • :END or SEEK_END: Repositions the stream to its end plus the given offset:

    f = File.open('t.txt')
    f.tell            # => 0
    f.seek(0, :END)   # => 0  # Repositions to stream end.
    f.tell            # => 52
    f.seek(-20, :END) # => 0
    f.tell            # => 32
    f.seek(-40, :END) # => 0
    f.tell            # => 12
    f.close
  • :SET or IO:SEEK_SET: Repositions the stream to the given offset:

    f = File.open('t.txt')
    f.tell            # => 0
    f.seek(20, :SET) # => 0
    f.tell           # => 20
    f.seek(40, :SET) # => 0
    f.tell           # => 40
    f.close

Related: #pos=, #tell.

[ GitHub ]

  
# File 'io.c', line 2515

static VALUE
rb_io_seek_m(int argc, VALUE *argv, VALUE io)
{
    VALUE offset, ptrname;
    int whence = SEEK_SET;

    if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) {
        whence = interpret_seek_whence(ptrname);
    }

    return rb_io_seek(io, offset, whence);
}

#set_encoding(ext_enc) ⇒ self #set_encoding(ext_enc, int_enc, **enc_opts) ⇒ self #set_encoding('ext_enc:int_enc', **enc_opts) ⇒ self

See Encodings.

Argument ext_enc, if given, must be an ::Encoding object or a ::String with the encoding name; it is assigned as the encoding for the stream.

Argument int_enc, if given, must be an ::Encoding object or a ::String with the encoding name; it is assigned as the encoding for the internal string.

Argument 'ext_enc:int_enc', if given, is a string containing two colon-separated encoding names; corresponding ::Encoding objects are assigned as the external and internal encodings for the stream.

If the external encoding of a string is binary/ASCII-8BIT, the internal encoding of the string is set to nil, since no transcoding is needed.

Optional keyword arguments enc_opts specify {Encoding options}.

[ GitHub ]

  
# File 'io.c', line 13507

static VALUE
rb_io_set_encoding(int argc, VALUE *argv, VALUE io)
{
    rb_io_t *fptr;
    VALUE v1, v2, opt;

    if (!RB_TYPE_P(io, T_FILE)) {
        return forward(io, id_set_encoding, argc, argv);
    }

    argc = rb_scan_args(argc, argv, "11:", &v1, &v2, &opt);
    GetOpenFile(io, fptr);
    io_encoding_set(fptr, v1, v2, opt);
    return io;
}

#set_encoding_by_bomEncoding?

If the stream begins with a BOM (byte order marker), consumes the BOM and sets the external encoding accordingly; returns the result encoding if found, or nil otherwise:

File.write('t.tmp', "\u{FEFF}abc")
io = File.open('t.tmp', 'rb')
io.set_encoding_by_bom # => #<Encoding:UTF-8>
io.close

File.write('t.tmp', 'abc')
io = File.open('t.tmp', 'rb')
io.set_encoding_by_bom # => nil
io.close

Raises an exception if the stream is not binmode or its encoding has already been set.

[ GitHub ]

  
# File 'io.c', line 9590

static VALUE
rb_io_set_encoding_by_bom(VALUE io)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    if (!(fptr->mode & FMODE_BINMODE)) {
        rb_raise(rb_eArgError, "ASCII incompatible encoding needs binmode");
    }
    if (fptr->encs.enc2) {
        rb_raise(rb_eArgError, "encoding conversion is set");
    }
    else if (fptr->encs.enc && fptr->encs.enc != rb_ascii8bit_encoding()) {
        rb_raise(rb_eArgError, "encoding is set to %s already",
                 rb_enc_name(fptr->encs.enc));
    }
    if (!io_set_encoding_by_bom(io)) return Qnil;
    return rb_enc_from_encoding(fptr->encs.enc);
}

#stat ⇒ stat

Returns status information for ios as an object of type ::File::Stat.

f = File.new("testfile")
s = f.stat
"%o" % s.mode   #=> "100644"
s.blksize       #=> 4096
s.atime         #=> Wed Apr 09 08:53:54 CDT 2003
[ GitHub ]

  
# File 'file.c', line 1364

static VALUE
rb_io_stat(VALUE obj)
{
    rb_io_t *fptr;
    struct stat st;

    GetOpenFile(obj, fptr);
    if (fstat(fptr->fd, &st) == -1) {
        rb_sys_fail_path(fptr->pathv);
    }
    return rb_stat_new(&st);
}

#sysread(maxlen) ⇒ String #sysread(maxlen, out_string) ⇒ String

Behaves like #readpartial, except that it uses low-level system functions.

This method should not be used with other stream-reader methods.

[ GitHub ]

  
# File 'io.c', line 6111

static VALUE
rb_io_sysread(int argc, VALUE *argv, VALUE io)
{
    VALUE len, str;
    rb_io_t *fptr;
    long n, ilen;
    struct io_internal_read_struct iis;
    int shrinkable;

    rb_scan_args(argc, argv, "11", &len, &str);
    ilen = NUM2LONG(len);

    shrinkable = io_setstrbuf(&str, ilen);
    if (ilen == 0) return str;

    GetOpenFile(io, fptr);
    rb_io_check_byte_readable(fptr);

    if (READ_DATA_BUFFERED(fptr)) {
        rb_raise(rb_eIOError, "sysread for buffered IO");
    }

    rb_io_check_closed(fptr);

    io_setstrbuf(&str, ilen);
    iis.th = rb_thread_current();
    iis.fptr = fptr;
    iis.nonblock = 0;
    iis.fd = fptr->fd;
    iis.buf = RSTRING_PTR(str);
    iis.capa = ilen;
    iis.timeout = NULL;
    n = io_read_memory_locktmp(str, &iis);

    if (n < 0) {
        rb_sys_fail_path(fptr->pathv);
    }

    io_set_read_length(str, n, shrinkable);

    if (n == 0 && ilen > 0) {
        rb_eof_error();
    }

    return str;
}

#sysseek(offset, whence = IO::SEEK_SET) ⇒ Integer

Behaves like #seek, except that it:

  • Uses low-level system functions.

  • Returns the new position.

[ GitHub ]

  
# File 'io.c', line 6027

static VALUE
rb_io_sysseek(int argc, VALUE *argv, VALUE io)
{
    VALUE offset, ptrname;
    int whence = SEEK_SET;
    rb_io_t *fptr;
    rb_off_t pos;

    if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) {
        whence = interpret_seek_whence(ptrname);
    }
    pos = NUM2OFFT(offset);
    GetOpenFile(io, fptr);
    if ((fptr->mode & FMODE_READABLE) &&
        (READ_DATA_BUFFERED(fptr) || READ_CHAR_PENDING(fptr))) {
        rb_raise(rb_eIOError, "sysseek for buffered IO");
    }
    if ((fptr->mode & FMODE_WRITABLE) && fptr->wbuf.len) {
        rb_warn("sysseek for buffered IO");
    }
    errno = 0;
    pos = lseek(fptr->fd, pos, whence);
    if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);

    return OFFT2NUM(pos);
}

#syswrite(object) ⇒ Integer

Writes the given object to self, which must be opened for writing (see Modes); returns the number bytes written. If object is not a string is converted via method to_s:

f = File.new('t.tmp', 'w')
f.syswrite('foo') # => 3
f.syswrite(30)    # => 2
f.syswrite(:foo)  # => 3
f.close

This methods should not be used with other stream-writer methods.

[ GitHub ]

  
# File 'io.c', line 6072

static VALUE
rb_io_syswrite(VALUE io, VALUE str)
{
    VALUE tmp;
    rb_io_t *fptr;
    long n, len;
    const char *ptr;

    if (!RB_TYPE_P(str, T_STRING))
        str = rb_obj_as_string(str);

    io = GetWriteIO(io);
    GetOpenFile(io, fptr);
    rb_io_check_writable(fptr);

    if (fptr->wbuf.len) {
        rb_warn("syswrite for buffered IO");
    }

    tmp = rb_str_tmp_frozen_acquire(str);
    RSTRING_GETMEM(tmp, ptr, len);
    n = rb_io_write_memory(fptr, ptr, len);
    if (n < 0) rb_sys_fail_path(fptr->pathv);
    rb_str_tmp_frozen_release(str, tmp);

    return LONG2FIX(n);
}

#to_iInteger Also known as: #fileno

Returns the integer file descriptor for the stream:

$stdin.fileno             # => 0
$stdout.fileno            # => 1
$stderr.fileno            # => 2
File.open('t.txt').fileno # => 10
f.close
[ GitHub ]

  
# File 'io.c', line 2880

static VALUE
rb_io_fileno(VALUE io)
{
    rb_io_t *fptr = RFILE(io)->fptr;
    int fd;

    rb_io_check_closed(fptr);
    fd = fptr->fd;
    return INT2FIX(fd);
}

#to_ioself

Returns self.

[ GitHub ]

  
# File 'io.c', line 3025

static VALUE
rb_io_to_io(VALUE io)
{
    return io;
}

#pathString? #to_pathString?

Alias for #path.

#ungetbyte(integer) ⇒ nil #ungetbyte(string) ⇒ nil

Pushes back (“unshifts”) the given data onto the stream’s buffer, placing the data so that it is next to be read; returns nil. See Byte IO.

Note that:

  • Calling the method has no effect with unbuffered reads (such as #sysread).

  • Calling #rewind on the stream discards the pushed-back data.

When argument integer is given, uses only its low-order byte:

File.write('t.tmp', '012')
f = File.open('t.tmp')
f.ungetbyte(0x41)   # => nil
f.read              # => "A012"
f.rewind
f.ungetbyte(0x4243) # => nil
f.read              # => "C012"
f.close

When argument string is given, uses all bytes:

File.write('t.tmp', '012')
f = File.open('t.tmp')
f.ungetbyte('A')    # => nil
f.read              # => "A012"
f.rewind
f.ungetbyte('BCDE') # => nil
f.read              # => "BCDE012"
f.close
[ GitHub ]

  
# File 'io.c', line 5165

VALUE
rb_io_ungetbyte(VALUE io, VALUE b)
{
    rb_io_t *fptr;

    GetOpenFile(io, fptr);
    rb_io_check_byte_readable(fptr);
    switch (TYPE(b)) {
      case T_NIL:
        return Qnil;
      case T_FIXNUM:
      case T_BIGNUM: ;
        VALUE v = rb_int_modulo(b, INT2FIX(256));
        unsigned char c = NUM2INT(v) & 0xFF;
        b = rb_str_new((const char *)&c, 1);
        break;
      default:
        StringValue(b);
    }
    io_ungetbyte(b, fptr);
    return Qnil;
}

#ungetc(integer) ⇒ nil #ungetc(string) ⇒ nil

Pushes back (“unshifts”) the given data onto the stream’s buffer, placing the data so that it is next to be read; returns nil. See Character IO.

Note that:

  • Calling the method has no effect with unbuffered reads (such as #sysread).

  • Calling #rewind on the stream discards the pushed-back data.

When argument integer is given, interprets the integer as a character:

File.write('t.tmp', '012')
f = File.open('t.tmp')
f.ungetc(0x41)     # => nil
f.read             # => "A012"
f.rewind
f.ungetc(0x0442)   # => nil
f.getc.ord         # => 1090
f.close

When argument string is given, uses all characters:

File.write('t.tmp', '012')
f = File.open('t.tmp')
f.ungetc('A')      # => nil
f.read      # => "A012"
f.rewind
f.ungetc("\u0442\u0435\u0441\u0442") # => nil
f.getc.ord      # => 1090
f.getc.ord      # => 1077
f.getc.ord      # => 1089
f.getc.ord      # => 1090
f.close
[ GitHub ]

  
# File 'io.c', line 5229

VALUE
rb_io_ungetc(VALUE io, VALUE c)
{
    rb_io_t *fptr;
    long len;

    GetOpenFile(io, fptr);
    rb_io_check_char_readable(fptr);
    if (FIXNUM_P(c)) {
        c = rb_enc_uint_chr(FIX2UINT(c), io_read_encoding(fptr));
    }
    else if (RB_BIGNUM_TYPE_P(c)) {
        c = rb_enc_uint_chr(NUM2UINT(c), io_read_encoding(fptr));
    }
    else {
        StringValue(c);
    }
    if (NEED_READCONV(fptr)) {
        SET_BINARY_MODE(fptr);
        len = RSTRING_LEN(c);
#if SIZEOF_LONG > SIZEOF_INT
        if (len > INT_MAX)
            rb_raise(rb_eIOError, "ungetc failed");
#endif
        make_readconv(fptr, (int)len);
        if (fptr->cbuf.capa - fptr->cbuf.len < len)
            rb_raise(rb_eIOError, "ungetc failed");
        if (fptr->cbuf.off < len) {
            MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.capa-fptr->cbuf.len,
                    fptr->cbuf.ptr+fptr->cbuf.off,
                    char, fptr->cbuf.len);
            fptr->cbuf.off = fptr->cbuf.capa-fptr->cbuf.len;
        }
        fptr->cbuf.off -= (int)len;
        fptr->cbuf.len += (int)len;
        MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.off, RSTRING_PTR(c), char, len);
    }
    else {
        NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
        io_ungetbyte(c, fptr);
    }
    return Qnil;
}

#wait(events, timeout) ⇒ event mask, ... #wait(timeout = nil, mode = :read) ⇒ self, ...

Waits until the IO becomes ready for the specified events and returns the subset of events that become ready, or a falsy value when times out.

The events can be a bit mask of READABLE, WRITABLE or PRIORITY.

Returns an event mask (truthy value) immediately when buffered data is available.

Optional parameter mode is one of :read, :write, or :read_write.

[ GitHub ]

  
# File 'io.c', line 9900

static VALUE
io_wait(int argc, VALUE *argv, VALUE io)
{
    VALUE timeout = Qundef;
    enum rb_io_event events = 0;
    int return_io = 0;

    // The documented signature for this method is actually incorrect.
    // A single timeout is allowed in any position, and multiple symbols can be given.
    // Whether this is intentional or not, I don't know, and as such I consider this to
    // be a legacy/slow path.
    if (argc != 2 || (RB_SYMBOL_P(argv[0]) || RB_SYMBOL_P(argv[1]))) {
        // We'd prefer to return the actual mask, but this form would return the io itself:
        return_io = 1;

        // Slow/messy path:
        for (int i = 0; i < argc; i += 1) {
            if (RB_SYMBOL_P(argv[i])) {
                events |= wait_mode_sym(argv[i]);
            }
            else if (UNDEF_P(timeout)) {
                rb_time_interval(timeout = argv[i]);
            }
            else {
                rb_raise(rb_eArgError, "timeout given more than once");
            }
        }

        if (UNDEF_P(timeout)) timeout = Qnil;

        if (events == 0) {
            events = RUBY_IO_READABLE;
        }
    }
    else /* argc == 2 and neither are symbols */ {
        // This is the fast path:
        events = io_event_from_value(argv[0]);
        timeout = argv[1];
    }

    if (events & RUBY_IO_READABLE) {
        rb_io_t *fptr = NULL;
        RB_IO_POINTER(io, fptr);

        if (rb_io_read_pending(fptr)) {
            // This was the original behaviour:
            if (return_io) return Qtrue;
            // New behaviour always returns an event mask:
            else return RB_INT2NUM(RUBY_IO_READABLE);
        }
    }

    return io_wait_event(io, events, timeout, return_io);
}

#wait_prioritytruthy, falsy #wait_priority(timeout) ⇒ truthy, falsy

Waits until IO is priority and returns a truthy value or a falsy value when times out. Priority data is sent and received using the Socket::MSG_OOB flag and is typically limited to streams.

[ GitHub ]

  
# File 'io.c', line 9823

static VALUE
io_wait_priority(int argc, VALUE *argv, VALUE io)
{
    rb_io_t *fptr = NULL;

    RB_IO_POINTER(io, fptr);
    rb_io_check_readable(fptr);

    if (rb_io_read_pending(fptr)) return Qtrue;

    rb_check_arity(argc, 0, 1);
    VALUE timeout = argc == 1 ? argv[0] : Qnil;

    return io_wait_event(io, RUBY_IO_PRIORITY, timeout, 1);
}

#wait_readabletruthy, falsy #wait_readable(timeout) ⇒ truthy, falsy

Waits until IO is readable and returns a truthy value, or a falsy value when times out. Returns a truthy value immediately when buffered data is available.

[ GitHub ]

  
# File 'io.c', line 9776

static VALUE
io_wait_readable(int argc, VALUE *argv, VALUE io)
{
    rb_io_t *fptr;

    RB_IO_POINTER(io, fptr);
    rb_io_check_readable(fptr);

    if (rb_io_read_pending(fptr)) return Qtrue;

    rb_check_arity(argc, 0, 1);
    VALUE timeout = (argc == 1 ? argv[0] : Qnil);

    return io_wait_event(io, RUBY_IO_READABLE, timeout, 1);
}

#wait_writabletruthy, falsy #wait_writable(timeout) ⇒ truthy, falsy

Waits until IO is writable and returns a truthy value or a falsy value when times out.

[ GitHub ]

  
# File 'io.c', line 9800

static VALUE
io_wait_writable(int argc, VALUE *argv, VALUE io)
{
    rb_io_t *fptr;

    RB_IO_POINTER(io, fptr);
    rb_io_check_writable(fptr);

    rb_check_arity(argc, 0, 1);
    VALUE timeout = (argc == 1 ? argv[0] : Qnil);

    return io_wait_event(io, RUBY_IO_WRITABLE, timeout, 1);
}

#write(*objects) ⇒ Integer

Writes each of the given objects to self, which must be opened for writing (see Access Modes); returns the total number bytes written; each of objects that is not a string is converted via method to_s:

$stdout.write('Hello', ', ', 'World!', "\n") # => 14
$stdout.write('foo', :bar, 2, "\n")          # => 8

Output:

Hello, World!
foobar2

Related: #read.

[ GitHub ]

  
# File 'io.c', line 2283

static VALUE
io_write_m(int argc, VALUE *argv, VALUE io)
{
    if (argc != 1) {
        return io_writev(argc, argv, io);
    }
    else {
        VALUE str = argv[0];
        return io_write(io, str, 0);
    }
}

#write_nonblock(string) ⇒ Integer #write_nonblock(string [, options]) ⇒ Integer

Writes the given string to ios using the write(2) system call after O_NONBLOCK is set for the underlying file descriptor.

It returns the number of bytes written.

write_nonblock just calls the write(2) system call. It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The result may also be smaller than string.length (partial write). The caller should care such errors and partial write.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by ::IO::WaitWritable. So ::IO::WaitWritable can be used to rescue the exceptions for retrying write_nonblock.

# Creates a pipe.
r, w = IO.pipe

# write_nonblock writes only 65536 bytes and return 65536.
# (The pipe size is 65536 bytes on this environment.)
s = "a" * 100000
p w.write_nonblock(s)     #=> 65536

# write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN).
p w.write_nonblock("b")   # Resource temporarily unavailable (Errno::EAGAIN)

If the write buffer is not empty, it is flushed at first.

When write_nonblock raises an exception kind of ::IO::WaitWritable, write_nonblock should not be called until io is writable for avoiding busy loop. This can be done as follows.

begin
  result = io.write_nonblock(string)
rescue IO::WaitWritable, Errno::EINTR
  IO.select(nil, [io])
  retry
end

Note that this doesn’t guarantee to write all data in string. The length written is reported as result and it should be checked later.

On some platforms such as Windows, write_nonblock is not supported according to the kind of the IO object. In such cases, write_nonblock raises Errno::EBADF.

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an ::IO::WaitWritable exception, but return the symbol :wait_writable instead.

[ GitHub ]

  
# File 'io.rb', line 120

def write_nonblock(buf, exception: true)
  Primitive.io_write_nonblock(buf, exception)
end