Class: Rational
| Relationships & Source Files | |
| Namespace Children | |
|
Classes:
| |
| Super Chains via Extension / Inclusion / Inheritance | |
|
Class Chain:
self,
::Numeric
|
|
|
Instance Chain:
self,
::Numeric,
::Comparable
|
|
| Inherits: | Numeric |
| Defined in: | rational.c |
Overview
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. ::Integer a equals rational a/1 mathematically.
You can create a Rational object explicitly with:
You can convert certain objects to Rationals with:
-
Method {Kernel.html#method-i-Rational }.
Examples
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3) # Reduced.
3.to_r #=> (3/1)
2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Instance Attribute Summary
-
#negative? ⇒ Boolean
readonly
Returns
trueifratis less than 0. -
#positive? ⇒ Boolean
readonly
Returns
trueifratis greater than 0.
::Numeric - Inherited
| #finite? | Returns |
| #infinite? | Returns |
| #integer? | Returns |
| #negative? | Returns |
| #nonzero? | Returns |
| #positive? | Returns |
| #real | Returns self. |
| #real? | Returns |
| #zero? | Returns |
Instance Method Summary
-
#*(numeric) ⇒ Numeric
Performs multiplication.
- #**
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#- ⇒ Rational
Negates
rat. -
#/(numeric) ⇒ Numeric
(also: #quo)
Performs division.
-
#<=>(numeric) ⇒ 1, ...
Returns -1, 0, or +1 depending on whether
rationalis less than, equal to, or greater thannumeric. -
#==(object) ⇒ Boolean
Returns
trueifratequalsobjectnumerically. -
#abs ⇒ Rational
(also: #magnitude)
Returns the absolute value of
rat. -
#ceil([ndigits]) ⇒ Integer, Rational
Returns the smallest number greater than or equal to
ratwith a precision ofndigitsdecimal digits (default: 0). -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a
::Float. -
#floor([ndigits]) ⇒ Integer, Rational
Returns the largest number less than or equal to
ratwith a precision ofndigitsdecimal digits (default: 0). - #hash
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Rational
Alias for #abs.
-
#numerator ⇒ Integer
Returns the numerator.
-
#quo(numeric) ⇒ Numeric
Alias for #/.
-
#rationalize ⇒ self
Returns a simpler approximation of the value if the optional argument
epsis given (rat-|eps| <= result <= rat+|eps|), self otherwise. -
#round([ndigits] [, half: mode]) ⇒ Integer, Rational
Returns
ratrounded to the nearest value with a precision ofndigitsdecimal digits (default: 0). -
#to_f ⇒ Float
Returns the value as a
::Float. -
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate([ndigits]) ⇒ Integer, Rational
Returns
rattruncated (toward zero) to a precision ofndigitsdecimal digits (default: 0). - #coerce(other) Internal use only
- #marshal_dump private Internal use only
::Numeric - Inherited
| #% | Returns |
| #+@ | Returns |
| #-@ | Unary Minus—Returns the receiver, negated. |
| #<=> | Returns zero if |
| #abs | Returns the absolute value of |
| #abs2 | Returns square of self. |
| #angle | Alias for Numeric#arg. |
| #arg | Returns 0 if the value is positive, pi otherwise. |
| #ceil | Returns the smallest number that is greater than or equal to |
| #clone | Returns |
| #coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
| #conj | Returns self. |
| #conjugate | Alias for Numeric#conj. |
| #denominator | Returns the denominator (always positive). |
| #div | |
| #divmod | Returns a 2-element array |
| #dup | Returns |
| #eql? | Returns |
| #fdiv | Returns the quotient |
| #floor | Returns the largest number that is less than or equal to |
| #i | Returns |
| #imag | Returns zero. |
| #imaginary | Alias for Numeric#imag. |
| #magnitude | Alias for Numeric#abs. |
| #modulo | Alias for Numeric#%. |
| #numerator | Returns the numerator. |
| #phase | Alias for Numeric#arg. |
| #polar | Returns an array; [num.abs, num.arg]. |
| #quo | Returns the most exact division (rational for integers, float for floats). |
| #rect | Returns an array; [num, 0]. |
| #rectangular | Alias for Numeric#rect. |
| #remainder | Returns the remainder after dividing |
| #round | Returns |
| #step | Generates a sequence of numbers; with a block given, traverses the sequence. |
| #to_c | Returns the value as a complex. |
| #to_int | Returns |
| #truncate | Returns |
| #singleton_method_added | Trap attempts to add methods to |
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
| #between? | |
| #clamp |
Instance Attribute Details
#negative? ⇒ Boolean (readonly)
Returns true if rat is less than 0.
# File 'rational.c', line 1212
static VALUE
nurat_negative_p(VALUE self)
{
get_dat1(self);
return RBOOL(INT_NEGATIVE_P(dat->num));
}
#positive? ⇒ Boolean (readonly)
Returns true if rat is greater than 0.
# File 'rational.c', line 1199
static VALUE
nurat_positive_p(VALUE self)
{
get_dat1(self);
return RBOOL(INT_POSITIVE_P(dat->num));
}
Instance Method Details
#*(numeric) ⇒ Numeric
Performs multiplication.
Rational(2, 3) * Rational(2, 3) #=> (4/9)
Rational(900) * Rational(1) #=> (900/1)
Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
Rational(9, 8) * 4 #=> (9/2)
Rational(20, 9) * 9.8 #=> 21.77777777777778
# File 'rational.c', line 853
VALUE
rb_rational_mul(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
}
else {
return rb_num_coerce_bin(self, other, '*');
}
}
#**
[ GitHub ]#+(numeric) ⇒ Numeric
Performs addition.
Rational(2, 3) + Rational(2, 3) #=> (4/3)
Rational(900) + Rational(1) #=> (901/1)
Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
Rational(9, 8) + 4 #=> (41/8)
Rational(20, 9) + 9.8 #=> 12.022222222222222
# File 'rational.c', line 716
VALUE
rb_rational_plus(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
}
else {
return rb_num_coerce_bin(self, other, '+');
}
}
#-(numeric) ⇒ Numeric
Performs subtraction.
Rational(2, 3) - Rational(2, 3) #=> (0/1)
Rational(900) - Rational(1) #=> (899/1)
Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
Rational(9, 8) - 4 #=> (-23/8)
Rational(20, 9) - 9.8 #=> -7.577777777777778
# File 'rational.c', line 757
VALUE
rb_rational_minus(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
}
else {
return rb_num_coerce_bin(self, other, '-');
}
}
#- ⇒ Rational
Negates rat.
# File 'rational.c', line 603
VALUE
rb_rational_uminus(VALUE self)
{
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
get_dat1(self);
(void)unused;
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
}
Also known as: #quo
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
# File 'rational.c', line 895
VALUE
rb_rational_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
VALUE v = nurat_to_f(self);
return rb_flo_div_flo(v, other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
#<=>(numeric) ⇒ 1, ...
Returns -1, 0, or +1 depending on whether rational is less than, equal to, or greater than numeric.
nil is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2, 3) <=> Rational(1, 3) #=> 1
Rational(1, 3) <=> 1 #=> -1
Rational(1, 3) <=> 0.3 #=> 1
Rational(1, 3) <=> "0.3" #=> nil
# File 'rational.c', line 1067
VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
{
get_dat1(self);
if (dat->den == LONG2FIX(1))
return rb_int_cmp(dat->num, other); /* c14n */
other = f_rational_new_bang1(CLASS_OF(self), other);
/* FALLTHROUGH */
}
case T_RATIONAL:
{
VALUE num1, num2;
get_dat2(self, other);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
}
else {
num1 = rb_int_mul(adat->num, bdat->den);
num2 = rb_int_mul(bdat->num, adat->den);
}
return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
}
case T_FLOAT:
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
default:
return rb_num_coerce_cmp(self, other, idCmp);
}
}
#==(object) ⇒ Boolean
Returns true if rat equals object numerically.
Rational(2, 3) == Rational(2, 3) #=> true
Rational(5) == 5 #=> true
Rational(0) == 0.0 #=> true
Rational('1/3') == 0.33 #=> false
Rational('1/2') == '1/2' #=> false
# File 'rational.c', line 1120
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
get_dat1(self);
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
return rb_int_equal(dat->num, other);
}
else {
const double d = nurat_to_double(self);
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
}
}
else if (RB_FLOAT_TYPE_P(other)) {
const double d = nurat_to_double(self);
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
return Qtrue;
return RBOOL(rb_int_equal(adat->num, bdat->num) &&
rb_int_equal(adat->den, bdat->den));
}
}
else {
return rb_equal(other, self);
}
}
#abs ⇒ Rational
#magnitude ⇒ Rational
Also known as: #magnitude
Rational
#magnitude ⇒ Rational
Returns the absolute value of rat.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
#magnitude is an alias for abs.
# File 'rational.c', line 1232
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num);
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
}
return self;
}
#ceil([ndigits]) ⇒ Integer, Rational
Returns the smallest number greater than or equal to rat with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').ceil(+1).to_f #=> -123.4
Rational('-123.456').ceil(-1) #=> -120
# File 'rational.c', line 1458
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil);
}
#coerce(other)
# File 'rational.c', line 1162
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_assoc_new(other, nurat_to_f(self));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
return rb_assoc_new(other, self);
}
else if (RB_TYPE_P(other, T_COMPLEX)) {
if (!k_exact_zero_p(RCOMPLEX(other)->imag))
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
other = RCOMPLEX(other)->real;
if (RB_FLOAT_TYPE_P(other)) {
other = float_to_r(other);
RBASIC_SET_CLASS(other, CLASS_OF(self));
}
else {
other = f_rational_new_bang1(CLASS_OF(self), other);
}
return rb_assoc_new(other, self);
}
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
rb_obj_classname(other), rb_obj_classname(self));
return Qnil;
}
#denominator ⇒ Integer
Returns the denominator (always positive).
Rational(7).denominator #=> 1
Rational(7, 1).denominator #=> 1
Rational(9, -4).denominator #=> 4
Rational(-2, -10).denominator #=> 5
# File 'rational.c', line 590
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self);
return dat->den;
}
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a ::Float.
Rational(2, 3).fdiv(1) #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
Rational(2).fdiv(3) #=> 0.6666666666666666
# File 'rational.c', line 943
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
VALUE div;
if (f_zero_p(other))
return rb_rational_div(self, rb_float_new(0.0));
if (FIXNUM_P(other) && other == LONG2FIX(1))
return nurat_to_f(self);
div = rb_rational_div(self, other);
if (RB_TYPE_P(div, T_RATIONAL))
return nurat_to_f(div);
if (RB_FLOAT_TYPE_P(div))
return div;
return rb_funcall(div, idTo_f, 0);
}
#floor([ndigits]) ⇒ Integer, Rational
Returns the largest number less than or equal to rat with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').floor(+1).to_f #=> -123.5
Rational('-123.456').floor(-1) #=> -130
# File 'rational.c', line 1428
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor);
}
#hash
[ GitHub ]# File 'rational.c', line 1765
static VALUE
nurat_hash(VALUE self)
{
return ST2FIX(rb_rational_hash(self));
}
#inspect ⇒ String
Returns the value as a string for inspection.
Rational(2).inspect #=> "(2/1)"
Rational(-8, 6).inspect #=> "(-4/3)"
Rational('1/2').inspect #=> "(1/2)"
# File 'rational.c', line 1811
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, f_inspect));
rb_str_cat2(s, ")");
return s;
}
#abs ⇒ Rational
#magnitude ⇒ Rational
Rational
#magnitude ⇒ Rational
Alias for #abs.
#marshal_dump (private)
# File 'rational.c', line 1850
static VALUE
nurat_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->num, dat->den);
rb_copy_generic_ivar(a, self);
return a;
}
#numerator ⇒ Integer
Returns the numerator.
Rational(7).numerator #=> 7
Rational(7, 1).numerator #=> 7
Rational(9, -4).numerator #=> -9
Rational(-2, -10).numerator #=> 1
# File 'rational.c', line 572
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self);
return dat->num;
}
Alias for #/.
#rationalize ⇒ self
#rationalize(eps) ⇒ Rational
self
#rationalize(eps) ⇒ Rational
Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
r = Rational(5033165, 16777216)
r.rationalize #=> (5033165/16777216)
r.rationalize(Rational('0.01')) #=> (3/10)
r.rationalize(Rational('0.1')) #=> (1/3)
# File 'rational.c', line 1718
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
VALUE rat = self;
get_dat1(self);
if (rb_check_arity(argc, 0, 1) == 0)
return self;
e = f_abs(argv[0]);
if (INT_NEGATIVE_P(dat->num)) {
rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den);
}
a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e);
b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e);
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q);
if (rat != self) {
RATIONAL_SET_NUM(rat, rb_int_uminus(p));
RATIONAL_SET_DEN(rat, q);
return rat;
}
return f_rational_new2(CLASS_OF(self), p, q);
}
#round([ndigits] [, half: mode]) ⇒ Integer, Rational
Returns rat rounded to the nearest value with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').round(+1).to_f #=> -123.5
Rational('-123.456').round(-1) #=> -120
The optional half keyword argument is available similar to Float#round.
Rational(25, 100).round(1, half: :up) #=> (3/10)
Rational(25, 100).round(1, half: :down) #=> (1/5)
Rational(25, 100).round(1, half: :even) #=> (1/5)
Rational(35, 100).round(1, half: :up) #=> (2/5)
Rational(35, 100).round(1, half: :down) #=> (3/10)
Rational(35, 100).round(1, half: :even) #=> (2/5)
Rational(-25, 100).round(1, half: :up) #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)
# File 'rational.c', line 1531
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
VALUE opt;
enum ruby_num_rounding_mode mode = (
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
rb_num_get_rounding_option(opt));
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
return f_round_common(argc, argv, self, round_func);
}
#to_f ⇒ Float
Returns the value as a ::Float.
Rational(2).to_f #=> 2.0
Rational(9, 4).to_f #=> 2.25
Rational(-3, 4).to_f #=> -0.75
Rational(20, 3).to_f #=> 6.666666666666667
# File 'rational.c', line 1569
static VALUE
nurat_to_f(VALUE self)
{
return DBL2NUM(nurat_to_double(self));
}
#to_i ⇒ Integer
Returns the truncated value as an integer.
Equivalent to #truncate.
Rational(2, 3).to_i #=> 0
Rational(3).to_i #=> 3
Rational(300.6).to_i #=> 300
Rational(98, 71).to_i #=> 1
Rational(-31, 2).to_i #=> -15
# File 'rational.c', line 1271
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num))
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
return rb_int_idiv(dat->num, dat->den);
}
#to_r ⇒ self
Returns self.
Rational(2).to_r #=> (2/1)
Rational(-8, 6).to_r #=> (-4/3)
# File 'rational.c', line 1584
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
#to_s ⇒ String
Returns the value as a string.
Rational(2).to_s #=> "2/1"
Rational(-8, 6).to_s #=> "-4/3"
Rational('1/2').to_s #=> "1/2"
# File 'rational.c', line 1795
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s);
}
#truncate([ndigits]) ⇒ Integer, Rational
Returns rat truncated (toward zero) to a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').truncate(+1).to_f #=> -123.4
Rational('-123.456').truncate(-1) #=> -120
# File 'rational.c', line 1488
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate);
}