Class: Integer
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
::Numeric
|
|
Instance Chain:
self,
::Numeric ,
::Comparable
|
|
Inherits: | Numeric |
Defined in: | numeric.c, bignum.c, numeric.rb, rational.c |
Overview
An Integer object represents an integer value.
You can create an Integer object explicitly with:
-
An
integer literal
.
You can convert certain objects to Integers with:
-
Method {Kernel.html#method-i-Integer }.
An attempt to add a singleton method to an instance of this class causes an exception to be raised.
What’s Here
First, what’s elsewhere. Class Integer:
-
Inherits from [class Numeric](Numeric.html#class-Numeric-label-What-27s+Here).
Here, class Integer provides methods for:
Querying
- #allbits?
-
Returns whether all bits in
self
are set.
- #anybits?
-
Returns whether any bits in
self
are set.
- #nobits?
-
Returns whether no bits in
self
are set.
Comparing
<
-
Returns whether
self
is less than the given value.
<=
-
Returns whether
self
is less thanor equal to the given value.
<=>
-
Returns a number indicating whether
self
is less than,equal to, or greater than the given value.
==
(aliased as #===)-
Returns whether
self
is
equal to the given value.
>
-
Returns whether
self
is greater than the given value.
>=
-
Returns whether
self
is greater thanor equal to the given value.
Converting
- ::sqrt
-
Returns the integer square root of the given value.
- ::try_convert
-
Returns the given value converted to an Integer.
&
-
Returns the bitwise AND of
self
and the given value.
- #*
-
Returns the product of
self
and the given value.
**
-
Returns the value of
self
raised to the power of the given value.
- #+
-
Returns the sum of
self
and the given value.
- #-
-
Returns the difference of
self
and the given value.
/
-
Returns the quotient of
self
and the given value.
- #<<
-
Returns the value of
self
after a leftward bit-shift.
- #>>
-
Returns the value of
self
after a rightward bit-shift.
- #[]
-
Returns a slice of bits from
self
.
^
-
Returns the bitwise EXCLUSIVE OR of
self
and the given value.
- #ceil
-
Returns the smallest number greater than or equal to
self
.
- #chr
-
Returns a 1-character string containing the character represented by the value of
self
.
- #digits
-
Returns an array of integers representing the base-radix digits of
self
.
- #div
-
Returns the integer result of dividing
self
by the given value.
- #divmod
-
Returns a 2-element array containing the quotient and remainder results of dividing
self
by the given value.
- #fdiv
-
Returns the
::Float
result of dividingself
by the given value.
- #floor
-
Returns the greatest number smaller than or equal to
self
.
- #pow
-
Returns the modular exponentiation of
self
.
- #pred
-
Returns the integer predecessor of
self
.
- #remainder
-
Returns the remainder after dividing
self
by the given value.
- #round
-
Returns
self
rounded to the nearest value with the given precision.
- #to_f
-
Returns
self
converted to a::Float
.
-
representation of self in the given radix.
- #truncate
-
Returns
self
truncated to the given precision.
/
-
Returns the bitwise OR of
self
and the given value.
Other
- #downto
-
Calls the given block with each integer value from
self
down to the given value.
- #times
-
Calls the given block
self
times with each integer in(0..self-1)
.
- #upto
-
Calls the given block with each integer value from
self
up to the given value.
Constant Summary
-
GMP_VERSION =
The version of loaded GMP.
rb_sprintf("GMP %s", gmp_version)
Class Method Summary
-
.sqrt(numeric) ⇒ Integer
Returns the integer square root of the non-negative integer
n
, which is the largest non-negative integer less than or equal to the square root ofnumeric
. -
.try_convert(object) ⇒ Object, ...
Internal use only
If
object
is an Integer object, returnsobject
.
Instance Attribute Summary
-
#even? ⇒ Boolean
readonly
Returns
true
ifint
is an even number. -
#integer? ⇒ Boolean
readonly
Since
int
is already anInteger
, this always returnstrue
. -
#odd? ⇒ Boolean
readonly
Returns
true
ifint
is an odd number. -
#zero? ⇒ Boolean
readonly
Returns
true
ifint
has a zero value.
::Numeric
- Inherited
#finite? | Returns |
#infinite? | Returns |
#integer? | Returns |
#negative? | Returns |
#nonzero? | Returns |
#positive? | Returns |
#real | Returns self. |
#real? | Returns |
#zero? | Returns |
Instance Method Summary
-
#%(other) ⇒ real_number
(also: #modulo)
Returns
self
moduloother
as a real number. -
#&(other) ⇒ Integer
Bitwise AND; each bit in the result is 1 if both corresponding bits in
self
andother
are 1, 0 otherwise: -
#*(numeric) ⇒ numeric_result
Performs multiplication:
-
#**(numeric) ⇒ numeric_result
Raises
self
to the power ofnumeric
: -
#+(numeric) ⇒ numeric_result
Performs addition:
-
#-(numeric) ⇒ numeric_result
Performs subtraction:
-
#- ⇒ Integer
Returns
int
, negated. -
#/(numeric) ⇒ numeric_result
Performs division; for integer
numeric
, truncates the result to an integer: -
#<(other) ⇒ Boolean
Returns
true
if the value ofself
is less than that ofother
: -
#<<(count) ⇒ Integer
Returns
self
with bits shiftedcount
positions to the left, or to the right ifcount
is negative: -
#<=(real) ⇒ Boolean
Returns
true
if the value ofself
is less than or equal to that ofother
: -
#<=>(other) ⇒ 1, ...
Returns:
-
#==(other) ⇒ Boolean
(also: #===)
Returns
true
ifself
is numerically equal toother
;false
otherwise. -
#===(other) ⇒ Boolean
Alias for #==.
-
#>(other) ⇒ Boolean
Returns
true
if the value ofself
is greater than that ofother
: -
#>=(real) ⇒ Boolean
Returns
true
if the value ofself
is greater than or equal to that ofother
: -
#>>(count) ⇒ Integer
Returns
self
with bits shiftedcount
positions to the right, or to the left ifcount
is negative: -
#[](offset) ⇒ 0, 1
Returns a slice of bits from
self
. -
#^(other) ⇒ Integer
Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits in
self
andother
are different, 0 otherwise: -
#abs ⇒ Integer
(also: #magnitude)
Returns the absolute value of
int
. -
#allbits?(mask) ⇒ Boolean
Returns
true
if all bits that are set (=1) inmask
are also set inself
; returnsfalse
otherwise. -
#anybits?(mask) ⇒ Boolean
Returns
true
if any bit that is set (=1) inmask
is also set inself
; returnsfalse
otherwise. -
#bit_length ⇒ Integer
Returns the number of bits of the value of
int
. -
#ceil(ndigits = 0) ⇒ Integer
Returns the smallest number greater than or equal to
self
with a precision ofndigits
decimal digits. -
#chr ⇒ String
Returns a 1-character string containing the character represented by the value of
self
, according to the givenencoding
. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numeric
and abig
represented as Bignum objects. -
#denominator ⇒ 1
Returns 1.
-
#digits(base = 10) ⇒ Integer
Returns an array of integers representing the
base
-radix digits ofself
; the first element of the array represents the least significant digit: -
#div(numeric) ⇒ Integer
Performs integer division; returns the integer result of dividing
self
bynumeric
: -
#divmod(other) ⇒ Array
Returns a 2-element array
[q, r]
, where. -
#downto(limit) {|i| ... } ⇒ self
Calls the given block with each integer value from
self
down tolimit
; returnsself
: -
#fdiv(numeric) ⇒ Float
Returns the
::Float
result of dividingself
bynumeric
: -
#floor(ndigits = 0) ⇒ Integer
Returns the largest number less than or equal to
self
with a precision ofndigits
decimal digits. -
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers.
-
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
-
#inspect(base = 10) ⇒ String
Alias for #to_s.
-
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers.
-
#magnitude
Alias for #abs.
-
#modulo(other) ⇒ real_number
Alias for #%.
-
#next ⇒ Integer
(also: #succ)
Returns the successor integer of
self
(equivalent toself + 1
): -
#nobits?(mask) ⇒ Boolean
Returns
true
if no bit that is set (=1) inmask
is also set inself
; returnsfalse
otherwise. -
#numerator ⇒ self
Returns self.
-
#ord ⇒ self
Returns the
int
itself. -
#pow(numeric) ⇒ Numeric
Returns (modular) exponentiation as:
-
#pred ⇒ Integer
Returns the predecessor of
self
(equivalent toself - 1
): -
#rationalize([eps]) ⇒ Rational
Returns the value as a rational.
-
#remainder(other) ⇒ real_number
Returns the remainder after dividing
self
byother
. -
#round(ndigits = 0, half: :up) ⇒ Integer
Returns
self
rounded to the nearest value with a precision ofndigits
decimal digits. -
#size ⇒ Integer
Document-method:
size
. -
#succ ⇒ Integer
Alias for #next.
-
#times {|i| ... } ⇒ self
Calls the given block
self
times with each integer in(0..self-1)
: -
#to_f ⇒ Float
Converts
self
to a::Float
: -
#to_i ⇒ Integer
Since
int
is already anInteger
, returnsself
. -
#to_int ⇒ Integer
Since
int
is already anInteger
, returnsself
. -
#to_r ⇒ Rational
Returns the value as a rational.
-
#to_s(base = 10) ⇒ String
(also: #inspect)
Returns a string containing the place-value representation of
self
in radixbase
(in 2..36). -
#truncate(ndigits = 0) ⇒ Integer
Returns
self
truncated (toward zero) to a precision ofndigits
decimal digits. -
#upto(limit) {|i| ... } ⇒ self
Calls the given block with each integer value from
self
up tolimit
; returnsself
: -
#|(other) ⇒ Integer
Bitwise OR; each bit in the result is 1 if either corresponding bit in
self
orother
is 1, 0 otherwise: -
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
::Numeric
- Inherited
#% | Returns |
#+@ | Returns |
#-@ | Unary Minus—Returns the receiver, negated. |
#<=> | Returns zero if |
#abs | Returns the absolute value of |
#abs2 | Returns square of self. |
#angle | Alias for Numeric#arg. |
#arg | Returns 0 if the value is positive, pi otherwise. |
#ceil | Returns the smallest number that is greater than or equal to |
#clone | Returns |
#coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
#conj | Returns self. |
#conjugate | Alias for Numeric#conj. |
#denominator | Returns the denominator (always positive). |
#div | Returns the quotient |
#divmod | Returns a 2-element array |
#dup | Returns |
#eql? | Returns |
#fdiv | Returns the quotient |
#floor | Returns the largest number that is less than or equal to |
#i | Returns |
#imag | Returns zero. |
#imaginary | Alias for Numeric#imag. |
#magnitude | Alias for Numeric#abs. |
#modulo | Alias for Numeric#%. |
#numerator | Returns the numerator. |
#phase | Alias for Numeric#arg. |
#polar | Returns an array; [num.abs, num.arg]. |
#quo | Returns the most exact division (rational for integers, float for floats). |
#rect | Returns an array; [num, 0]. |
#rectangular | Alias for Numeric#rect. |
#remainder | Returns the remainder after dividing |
#round | Returns |
#step | Generates a sequence of numbers; with a block given, traverses the sequence. |
#to_c | Returns the value as a complex. |
#to_int | Returns |
#truncate | Returns |
#singleton_method_added | Trap attempts to add methods to |
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Class Method Details
.sqrt(numeric) ⇒ Integer
Returns the integer square root of the non-negative integer n
, which is the largest non-negative integer less than or equal to the square root of numeric
.
Integer.sqrt(0) # => 0
Integer.sqrt(1) # => 1
Integer.sqrt(24) # => 4
Integer.sqrt(25) # => 5
Integer.sqrt(10**400) # => 10**200
If numeric
is not an Integer, it is converted to an Integer:
Integer.sqrt(Complex(4, 0)) # => 2
Integer.sqrt(Rational(4, 1)) # => 2
Integer.sqrt(4.0) # => 2
Integer.sqrt(3.14159) # => 1
This method is equivalent to Math.sqrt(numeric).floor
, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) # => 100000000000000000000000
Math.sqrt(10**46).floor # => 99999999999999991611392
Raises an exception if numeric
is negative.
# File 'numeric.c', line 5964
static VALUE rb_int_s_isqrt(VALUE self, VALUE num) { unsigned long n, sq; num = rb_to_int(num); if (FIXNUM_P(num)) { if (FIXNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } n = FIX2ULONG(num); sq = rb_ulong_isqrt(n); return LONG2FIX(sq); } else { size_t biglen; if (RBIGNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } biglen = BIGNUM_LEN(num); if (biglen == 0) return INT2FIX(0); #if SIZEOF_BDIGIT <= SIZEOF_LONG /* short-circuit */ if (biglen == 1) { n = BIGNUM_DIGITS(num)[0]; sq = rb_ulong_isqrt(n); return ULONG2NUM(sq); } #endif return rb_big_isqrt(num); } }
.try_convert(object) ⇒ Object, ...
If object
is an Integer object, returns object
.
Integer.try_convert(1) # => 1
Otherwise if object
responds to :to_int
, calls object.to_int
and returns the result.
Integer.try_convert(1.25) # => 1
Returns nil
if object
does not respond to :to_int
Integer.try_convert([]) # => nil
Raises an exception unless object.to_int
returns an Integer object.
# File 'numeric.c', line 5997
static VALUE int_s_try_convert(VALUE self, VALUE num) { return rb_check_integer_type(num); }
Instance Attribute Details
#even? ⇒ Boolean
(readonly)
Returns true
if int
is an even number.
# File 'numeric.rb', line 139
def even? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_even_p(self)' end
#integer? ⇒ Boolean
(readonly)
Since int
is already an Integer
, this always returns true
.
# File 'numeric.rb', line 148
def integer? return true end
#odd? ⇒ Boolean
(readonly)
Returns true
if int
is an odd number.
# File 'numeric.rb', line 164
def odd? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_odd_p(self)' end
#zero? ⇒ Boolean
(readonly)
Returns true
if int
has a zero value.
# File 'numeric.rb', line 226
def zero? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_zero_p(self)' end
Instance Method Details
#%(other) ⇒ real_number
Also known as: #modulo
Returns self
modulo other
as a real number.
For integer n
and real number r
, these expressions are equivalent:
n % r
n-r*(n/r).floor
n.divmod(r)[1]
See Numeric#divmod.
Examples:
10 % 2 # => 0
10 % 3 # => 1
10 % 4 # => 2
10 % -2 # => 0
10 % -3 # => -2
10 % -4 # => -2
10 % 3.0 # => 1.0
10 % Rational(3, 1) # => (1/1)
#modulo is an alias for %
.
# File 'numeric.c', line 4325
VALUE rb_int_modulo(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_mod(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_modulo(x, y); } return num_modulo(x, y); }
#&(other) ⇒ Integer
# File 'numeric.c', line 4974
VALUE rb_int_and(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_and(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_and(x, y); } return Qnil; }
#*(numeric) ⇒ numeric_result
# File 'numeric.c', line 4097
VALUE rb_int_mul(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_mul(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_mul(x, y); } return rb_num_coerce_bin(x, y, '*'); }
#**(numeric) ⇒ numeric_result
# File 'numeric.c', line 4576
VALUE rb_int_pow(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_pow(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_pow(x, y); } return Qnil; }
#+(numeric) ⇒ numeric_result
# File 'numeric.c', line 3997
VALUE rb_int_plus(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_plus(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_plus(x, y); } return rb_num_coerce_bin(x, y, '+'); }
#-(numeric) ⇒ numeric_result
# File 'numeric.c', line 4042
VALUE rb_int_minus(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_minus(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_minus(x, y); } return rb_num_coerce_bin(x, y, '-'); }
#- ⇒ Integer
Returns int
, negated.
# File 'numeric.rb', line 52
def -@ Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_uminus(self)' end
#/(numeric) ⇒ numeric_result
# File 'numeric.c', line 4228
VALUE rb_int_div(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_div(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_div(x, y); } return Qnil; }
#<(other) ⇒ Boolean
Returns true
if the value of self
is less than that of other
:
1 < 0 # => false
1 < 1 # => false
1 < 2 # => true
1 < 0.5 # => false
1 < Rational(1, 2) # => false
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4838
static VALUE int_lt(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_lt(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_lt(x, y); } return Qnil; }
#<<(count) ⇒ Integer
Returns self
with bits shifted count
positions to the left, or to the right if count
is negative:
n = 0b11110000
"%08b" % (n << 1) # => "111100000"
"%08b" % (n << 3) # => "11110000000"
"%08b" % (n << -1) # => "01111000"
"%08b" % (n << -3) # => "00011110"
Related: #>>.
# File 'numeric.c', line 5113
VALUE rb_int_lshift(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return rb_fix_lshift(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_lshift(x, y); } return Qnil; }
#<=(real) ⇒ Boolean
Returns true
if the value of self
is less than or equal to that of other
:
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
1 <= 0.5 # => false
1 <= Rational(1, 2) # => false
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4885
static VALUE int_le(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_le(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_le(x, y); } return Qnil; }
#<=>(other) ⇒ 1
, ...
Returns:
-
-1, if
self
is less thanother
. -
0, if
self
is equal toother
. -
1, if
self
is greater thenother
. -
nil
, ifself
andother
are incomparable.
Examples:
1 <=> 2 # => -1
1 <=> 1 # => 0
1 <=> 0 # => 1
1 <=> 'foo' # => nil
1 <=> 1.0 # => 0
1 <=> Rational(1, 1) # => 0
1 <=> Complex(1, 0) # => 0
This method is the basis for comparisons in module ::Comparable
.
# File 'numeric.c', line 4699
VALUE rb_int_cmp(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_cmp(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_cmp(x, y); } else { rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x)); } }
#==(other) ⇒ Boolean
Also known as: #===
Returns true
if self
is numerically equal to other
; false
otherwise.
1 == 2 #=> false
1 == 1.0 #=> true
Related: Integer#eql?
(requires other
to be an Integer).
#=== is an alias for ==
.
# File 'numeric.c', line 4637
VALUE rb_int_equal(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_equal(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_eq(x, y); } return Qnil; }
#==(other) ⇒ Boolean
#===(other) ⇒ Boolean
Boolean
#===(other) ⇒ Boolean
Alias for #==.
#>(other) ⇒ Boolean
Returns true
if the value of self
is greater than that of other
:
1 > 0 # => true
1 > 1 # => false
1 > 2 # => false
1 > 0.5 # => true
1 > Rational(1, 2) # => true
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4746
VALUE rb_int_gt(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_gt(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_gt(x, y); } return Qnil; }
#>=(real) ⇒ Boolean
Returns true
if the value of self
is greater than or equal to that of other
:
1 >= 0 # => true
1 >= 1 # => true
1 >= 2 # => false
1 >= 0.5 # => true
1 >= Rational(1, 2) # => true
Raises an exception if the comparison cannot be made.
# File 'numeric.c', line 4793
VALUE rb_int_ge(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_ge(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_ge(x, y); } return Qnil; }
#>>(count) ⇒ Integer
Returns self
with bits shifted count
positions to the right, or to the left if count
is negative:
n = 0b11110000
"%08b" % (n >> 1) # => "01111000"
"%08b" % (n >> 3) # => "00011110"
"%08b" % (n >> -1) # => "111100000"
"%08b" % (n >> -3) # => "11110000000"
Related: #<<.
# File 'numeric.c', line 5169
static VALUE rb_int_rshift(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return rb_fix_rshift(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_rshift(x, y); } return Qnil; }
#[](offset) ⇒ 0
, 1
#[](offset, size) ⇒ Integer
#[](range) ⇒ Integer
0
, 1
#[](offset, size) ⇒ Integer
#[](range) ⇒ Integer
Returns a slice of bits from self
.
With argument offset
, returns the bit at the given offset, where offset 0 refers to the least significant bit:
n = 0b10 # => 2
n[0] # => 0
n[1] # => 1
n[2] # => 0
n[3] # => 0
In principle, n[i]
is equivalent to (n >> i) & 1
. Thus, negative index always returns zero:
255[-1] # => 0
With arguments offset
and #size, returns #size bits from self
, beginning at offset
and including bits of greater significance:
n = 0b111000 # => 56
"%010b" % n[0, 10] # => "0000111000"
"%010b" % n[4, 10] # => "0000000011"
With argument range
, returns range.size
bits from self
, beginning at range.begin
and including bits of greater significance:
n = 0b111000 # => 56
"%010b" % n[0..9] # => "0000111000"
"%010b" % n[4..9] # => "0000000011"
Raises an exception if the slice cannot be constructed.
# File 'numeric.c', line 5330
static VALUE int_aref(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 2) { return int_aref2(num, argv[0], argv[1]); } return int_aref1(num, argv[0]); return Qnil; }
#^(other) ⇒ Integer
# File 'numeric.c', line 5058
static VALUE int_xor(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_xor(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_xor(x, y); } return Qnil; }
#abs ⇒ Integer
#magnitude ⇒ Integer
Also known as: #magnitude
Integer
#magnitude ⇒ Integer
Returns the absolute value of int
.
(-12345).abs #=> 12345
-12345.abs #=> 12345
12345.abs #=> 12345
#magnitude is an alias for abs
.
# File 'numeric.rb', line 84
def abs Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_abs(self)' end
#allbits?(mask) ⇒ Boolean
# File 'numeric.c', line 3626
static VALUE int_allbits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return rb_int_equal(rb_int_and(num, mask), mask); }
#anybits?(mask) ⇒ Boolean
Returns true
if any bit that is set (=1) in mask
is also set in self
; returns false
otherwise.
Example values:
0b10000010 self
0b11111111 mask
0b10000010 self & mask
true self.anybits?(mask)
0b00000000 self
0b11111111 mask
0b00000000 self & mask
false self.anybits?(mask)
# File 'numeric.c', line 3656
static VALUE int_anybits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue; }
#bit_length ⇒ Integer
Returns the number of bits of the value of int
.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e
. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001
(-2**1000).bit_length #=> 1000
(-2**1000+1).bit_length #=> 1000
(-2**12-1).bit_length #=> 13
(-2**12).bit_length #=> 12
(-2**12+1).bit_length #=> 12
-0x101.bit_length #=> 9
-0x100.bit_length #=> 8
-0xff.bit_length #=> 8
-2.bit_length #=> 1
-1.bit_length #=> 0
0.bit_length #=> 0
1.bit_length #=> 1
0xff.bit_length #=> 8
0x100.bit_length #=> 9
(2**12-1).bit_length #=> 12
(2**12).bit_length #=> 13
(2**12+1).bit_length #=> 13
(2**1000-1).bit_length #=> 1000
(2**1000).bit_length #=> 1001
(2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack as follows:
if n.bit_length < 32
[n].pack("l") # no overflow
else
raise "overflow"
end
# File 'numeric.rb', line 130
def bit_length Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_bit_length(self)' end
#ceil(ndigits = 0) ⇒ Integer
Returns the smallest number greater than or equal to self
with a precision of ndigits
decimal digits.
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros:
555.ceil(-1) # => 560
555.ceil(-2) # => 600
-555.ceil(-2) # => -500
555.ceil(-3) # => 1000
Returns self
when ndigits
is zero or positive.
555.ceil # => 555
555.ceil(50) # => 555
Related: #floor.
# File 'numeric.c', line 5842
static VALUE int_ceil(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_ceil(num, ndigits); }
Returns a 1-character string containing the character represented by the value of self
, according to the given encoding
.
65.chr # => "A"
0..chr # => "\x00"
255.chr # => "\xFF"
string = 255.chr(Encoding::UTF_8)
string.encoding # => Encoding::UTF_8
Raises an exception if self
is negative.
Related: #ord.
# File 'numeric.c', line 3791
static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%u out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_error_arity(argc, 0, 1); } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); }
#coerce(numeric) ⇒ Array
Returns an array with both a numeric
and a big
represented as Bignum objects.
This is achieved by converting numeric
to a Bignum.
A TypeError is raised if the numeric
is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
# File 'bignum.c', line 6748
static VALUE rb_int_coerce(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(y)) { return rb_assoc_new(y, x); } else { x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x); } }
#denominator ⇒ 1
Returns 1.
# File 'rational.c', line 2074
static VALUE integer_denominator(VALUE self) { return INT2FIX(1); }
#digits(base = 10) ⇒ Integer
Returns an array of integers representing the base
-radix digits of self
; the first element of the array represents the least significant digit:
12345.digits # => [5, 4, 3, 2, 1]
12345.digits(7) # => [4, 6, 6, 0, 5]
12345.digits(100) # => [45, 23, 1]
Raises an exception if self
is negative or base
is less than 2.
# File 'numeric.c', line 5530
static VALUE rb_int_digits(int argc, VALUE *argv, VALUE num) { VALUE base_value; long base; if (rb_num_negative_p(num)) rb_raise(rb_eMathDomainError, "out of domain"); if (rb_check_arity(argc, 0, 1)) { base_value = rb_to_int(argv[0]); if (!RB_INTEGER_TYPE_P(base_value)) rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)", rb_obj_classname(argv[0])); if (RB_BIGNUM_TYPE_P(base_value)) return rb_int_digits_bigbase(num, base_value); base = FIX2LONG(base_value); if (base < 0) rb_raise(rb_eArgError, "negative radix"); else if (base < 2) rb_raise(rb_eArgError, "invalid radix %ld", base); } else base = 10; if (FIXNUM_P(num)) return rb_fix_digits(num, base); else if (RB_BIGNUM_TYPE_P(num)) return rb_int_digits_bigbase(num, LONG2FIX(base)); return Qnil; }
#div(numeric) ⇒ Integer
Performs integer division; returns the integer result of dividing self
by numeric
:
4.div(3) # => 1
4.div(-3) # => -2
-4.div(3) # => -2
-4.div(-3) # => 1
4.div(3.0) # => 1
4.div(Rational(3, 1)) # => 1
Raises an exception if numeric does not have method div.
# File 'numeric.c', line 4264
VALUE rb_int_idiv(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_idiv(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_idiv(x, y); } return num_div(x, y); }
#divmod(other) ⇒ Array
Returns a 2-element array [q, r]
, where
q = (self/other).floor # Quotient
r = self % other # Remainder
Examples:
11.divmod(4) # => [2, 3]
11.divmod(-4) # => [-3, -1]
-11.divmod(4) # => [-3, 1]
-11.divmod(-4) # => [2, -3]
12.divmod(4) # => [3, 0]
12.divmod(-4) # => [-3, 0]
-12.divmod(4) # => [-3, 0]
-12.divmod(-4) # => [3, 0]
13.divmod(4.0) # => [3, 1.0]
13.divmod(Rational(4, 1)) # => [3, (1/1)]
# File 'numeric.c', line 4426
VALUE rb_int_divmod(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_divmod(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_divmod(x, y); } return Qnil; }
#downto(limit) {|i| ... } ⇒ self
#downto(limit) ⇒ Enumerator
self
#downto(limit) ⇒ Enumerator
Calls the given block with each integer value from self
down to limit
; returns self
:
a = []
10.downto(5) {|i| a << i } # => 10
a # => [10, 9, 8, 7, 6, 5]
a = []
0.downto(-5) {|i| a << i } # => 0
a # => [0, -1, -2, -3, -4, -5]
4.downto(5) {|i| fail 'Cannot happen' } # => 4
With no block given, returns an ::Enumerator
.
# File 'numeric.c', line 5640
static VALUE int_downto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }
#fdiv(numeric) ⇒ Float
# File 'numeric.c', line 4163
VALUE rb_int_fdiv(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x)) { return DBL2NUM(rb_int_fdiv_double(x, y)); } return Qnil; }
#floor(ndigits = 0) ⇒ Integer
Returns the largest number less than or equal to self
with a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.floor(-1) # => 550
555.floor(-2) # => 500
-555.floor(-2) # => -600
555.floor(-3) # => 0
Returns self
when ndigits
is zero or positive.
555.floor # => 555
555.floor(50) # => 555
Related: #ceil.
# File 'numeric.c', line 5805
static VALUE int_floor(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_floor(num, ndigits); }
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
# File 'rational.c', line 1903
VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); }
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180]
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
# File 'rational.c', line 1941
VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); }
Alias for #to_s.
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
# File 'rational.c', line 1922
VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); }
#magnitude
Alias for #abs.
# File 'numeric.rb', line 152
alias magnitude abs
#%(other) ⇒ real_number
#modulo(other) ⇒ real_number
real_number
#modulo(other) ⇒ real_number
Alias for #%.
#next ⇒ Integer
Also known as: #succ
# File 'numeric.c', line 3707
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } if (RB_BIGNUM_TYPE_P(num)) { return rb_big_plus(num, INT2FIX(1)); } return num_funcall1(num, '+', INT2FIX(1)); }
#nobits?(mask) ⇒ Boolean
# File 'numeric.c', line 3686
static VALUE int_nobits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return int_zero_p(rb_int_and(num, mask)); }
#numerator ⇒ self
Returns self.
# File 'rational.c', line 2062
static VALUE integer_numerator(VALUE self) { return self; }
#ord ⇒ self
Returns the int
itself.
97.ord #=> 97
This method is intended for compatibility to character literals in Ruby 1.9.
For example, ?a.ord
returns 97 both in 1.8 and 1.9.
# File 'numeric.rb', line 180
def ord return self end
#pow(numeric) ⇒ Numeric
#pow(integer, integer) ⇒ Integer
Integer
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b
a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
# File 'bignum.c', line 7105
VALUE rb_int_powm(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 1) { return rb_int_pow(num, argv[0]); } else { VALUE const a = num; VALUE const b = argv[0]; VALUE m = argv[1]; int nega_flg = 0; if ( ! RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer"); } if (rb_int_negative_p(b)) { rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified"); } if (!RB_INTEGER_TYPE_P(m)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers"); } if (rb_int_negative_p(m)) { m = rb_int_uminus(m); nega_flg = 1; } if (FIXNUM_P(m)) { long const half_val = (long)HALF_LONG_MSB; long const mm = FIX2LONG(m); if (!mm) rb_num_zerodiv(); if (mm == 1) return INT2FIX(0); if (mm <= half_val) { return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg); } else { return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg); } } else { if (rb_bigzero_p(m)) rb_num_zerodiv(); if (bignorm(m) == INT2FIX(1)) return INT2FIX(0); return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg); } } UNREACHABLE_RETURN(Qnil); }
#pred ⇒ Integer
Returns the predecessor of self
(equivalent to self - 1
):
1.pred #=> 0
-1.pred #=> -2
Related: #succ (successor value).
# File 'numeric.c', line 3735
static VALUE rb_int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } if (RB_BIGNUM_TYPE_P(num)) { return rb_big_minus(num, INT2FIX(1)); } return num_funcall1(num, '-', INT2FIX(1)); }
#rationalize([eps]) ⇒ Rational
Returns the value as a rational. The optional argument eps
is always ignored.
# File 'rational.c', line 2171
static VALUE integer_rationalize(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 0, 1); return integer_to_r(self); }
#remainder(other) ⇒ real_number
Returns the remainder after dividing self
by other
.
Examples:
11.remainder(4) # => 3
11.remainder(-4) # => 3
-11.remainder(4) # => -3
-11.remainder(-4) # => -3
12.remainder(4) # => 0
12.remainder(-4) # => 0
-12.remainder(4) # => 0
-12.remainder(-4) # => 0
13.remainder(4.0) # => 1.0
13.remainder(Rational(4, 1)) # => (1/1)
# File 'numeric.c', line 4360
static VALUE int_remainder(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return num_remainder(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_remainder(x, y); } return Qnil; }
#round(ndigits = 0, half: :up) ⇒ Integer
Returns self
rounded to the nearest value with a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.round(-1) # => 560
555.round(-2) # => 600
555.round(-3) # => 1000
-555.round(-2) # => -600
555.round(-4) # => 0
Returns self
when ndigits
is zero or positive.
555.round # => 555
555.round(1) # => 555
555.round(50) # => 555
If keyword argument half
is given, and self
is equidistant from the two candidate values, the rounding is according to the given half
value:
-
:up
ornil
: round away from zero:25.round(-1, half: :up) # => 30 (-25).round(-1, half: :up) # => -30
-
:down
: round toward zero:25.round(-1, half: :down) # => 20 (-25).round(-1, half: :down) # => -20
-
:even
: round toward the candidate whose last nonzero digit is even:25.round(-1, half: :even) # => 20 15.round(-1, half: :even) # => 20 (-25).round(-1, half: :even) # => -20
Raises and exception if the value for half
is invalid.
Related: #truncate.
# File 'numeric.c', line 5765
static VALUE int_round(int argc, VALUE* argv, VALUE num) { int ndigits; int mode; VALUE nd, opt; if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num; ndigits = NUM2INT(nd); mode = rb_num_get_rounding_option(opt); if (ndigits >= 0) { return num; } return rb_int_round(num, ndigits, mode); }
#size ⇒ Integer
Document-method: size
Returns the number of bytes in the machine representation of int
(machine dependent).
1.size #=> 8
-1.size #=> 8
2147483647.size #=> 8
(256**10 - 1).size #=> 10
(256**20 - 1).size #=> 20
(256**40 - 1).size #=> 40
# File 'numeric.rb', line 199
def size Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_size(self)' end
#next ⇒ Integer
#succ ⇒ Integer
Integer
#succ ⇒ Integer
Alias for #next.
#times {|i| ... } ⇒ self
#times ⇒ Enumerator
self
#times ⇒ Enumerator
Calls the given block self
times with each integer in (0..self-1)
:
a = []
5.times {|i| a.push(i) } # => 5
a # => [0, 1, 2, 3, 4]
With no block given, returns an ::Enumerator
.
# File 'numeric.c', line 5691
static VALUE int_dotimes(VALUE num) { RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i<end; i++) { rb_yield_1(LONG2FIX(i)); } } else { VALUE i = INT2FIX(0); for (;;) { if (!RTEST(int_le(i, num))) break; rb_yield(i); i = rb_int_plus(i, INT2FIX(1)); } } return num; }
#to_f ⇒ Float
Converts self
to a ::Float
:
1.to_f # => 1.0
-1.to_f # => -1.0
If the value of self
does not fit in a Float, the result is infinity:
(10**400).to_f # => Infinity
(-10**400).to_f # => -Infinity
# File 'numeric.c', line 5359
static VALUE int_to_f(VALUE num) { double val; if (FIXNUM_P(num)) { val = (double)FIX2LONG(num); } else if (RB_BIGNUM_TYPE_P(num)) { val = rb_big2dbl(num); } else { rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num)); } return DBL2NUM(val); }
#to_i ⇒ Integer
Since int
is already an Integer
, returns self
.
#to_int is an alias for #to_i
.
# File 'numeric.rb', line 210
def to_i return self end
#to_int ⇒ Integer
Since int
is already an Integer
, returns self
.
# File 'numeric.rb', line 218
def to_int return self end
#to_r ⇒ Rational
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
# File 'rational.c', line 2158
static VALUE integer_to_r(VALUE self) { return rb_rational_new1(self); }
#to_s(base = 10) ⇒ String Also known as: #inspect
Returns a string containing the place-value representation of self
in radix base
(in 2..36).
12345.to_s # => "12345"
12345.to_s(2) # => "11000000111001"
12345.to_s(8) # => "30071"
12345.to_s(10) # => "12345"
12345.to_s(16) # => "3039"
12345.to_s(36) # => "9ix"
78546939656932.to_s(36) # => "rubyrules"
Raises an exception if base
is out of range.
#inspect is an alias for to_s
.
# File 'numeric.c', line 3931
MJIT_FUNC_EXPORTED VALUE rb_int_to_s(int argc, VALUE *argv, VALUE x) { int base; if (rb_check_arity(argc, 0, 1)) base = NUM2INT(argv[0]); else base = 10; return rb_int2str(x, base); }
#truncate(ndigits = 0) ⇒ Integer
Returns self
truncated (toward zero) to a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.truncate(-1) # => 550
555.truncate(-2) # => 500
-555.truncate(-2) # => -500
Returns self
when ndigits
is zero or positive.
555.truncate # => 555
555.truncate(50) # => 555
Related: #round.
# File 'numeric.c', line 5878
static VALUE int_truncate(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_truncate(num, ndigits); }
#upto(limit) {|i| ... } ⇒ self
#upto(limit) ⇒ Enumerator
self
#upto(limit) ⇒ Enumerator
Calls the given block with each integer value from self
up to limit
; returns self
:
a = []
5.upto(10) {|i| a << i } # => 5
a # => [5, 6, 7, 8, 9, 10]
a = []
-5.upto(0) {|i| a << i } # => -5
a # => [-5, -4, -3, -2, -1, 0]
5.upto(4) {|i| fail 'Cannot happen' } # => 5
With no block given, returns an ::Enumerator
.
# File 'numeric.c', line 5590
static VALUE int_upto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } ensure_cmp(c, i, to); } return from; }
#|(other) ⇒ Integer
# File 'numeric.c', line 5016
static VALUE int_or(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_or(x, y); } else if (RB_BIGNUM_TYPE_P(x)) { return rb_big_or(x, y); } return Qnil; }
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
Inverts the bits in an Integer
. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
# File 'numeric.rb', line 68
def ~ Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_comp(self)' end