Class: Numeric
| Relationships & Source Files | |
| Extension / Inclusion / Inheritance Descendants | |
|
Subclasses:
|
|
| Super Chains via Extension / Inclusion / Inheritance | |
|
Instance Chain:
self,
::Comparable
|
|
| Inherits: | Object |
| Defined in: | numeric.c, complex.c, numeric.rb, rational.c |
Overview
Numeric is the class from which all higher-level numeric classes should inherit.
Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as ::Integer are implemented as immediates, which means that each ::Integer is a single immutable object which is always passed by value.
a = 1
1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class
1.dup #=> 1
1.object_id == 1.dup.object_id #=> true
For this reason, Numeric should be used when defining other numeric classes.
Classes which inherit from Numeric must implement #coerce, which returns a two-member ::Array containing an object that has been coerced into an instance of the new class and self (see #coerce).
Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the #<=> operator (see ::Comparable). These methods may rely on #coerce to ensure interoperability with instances of other numeric classes.
class Tally < Numeric
def initialize(string)
@string = string
end
def to_s
@string
end
def to_i
@string.size
end
def coerce(other)
[self.class.new('|' * other.to_i), self]
end
def <=>(other)
to_i <=> other.to_i
end
def +(other)
self.class.new('|' * (to_i + other.to_i))
end
def -(other)
self.class.new('|' * (to_i - other.to_i))
end
def *(other)
self.class.new('|' * (to_i * other.to_i))
end
def /(other)
self.class.new('|' * (to_i / other.to_i))
end
end
tally = Tally.new('||')
puts tally * 2 #=> "||||"
puts tally > 1 #=> true
What’s Here
First, what’s elsewhere. Class Numeric:
-
Inherits from
class Object. -
Includes
module Comparable.
Here, class Numeric provides methods for:
-
Querying -
Comparing -
Converting -
Other
Querying
- #finite?
-
Returns true unless
selfis infinite or not a number.
- #infinite?
-
Returns -1,
nilor 1, depending on whether {self} is-Infinity<tt>, finite, or <tt>Infinity.
- #integer?
-
Returns whether
selfis an integer.
- #negative?
-
Returns whether
selfis negative.
- #nonzero?
-
Returns whether
selfis not zero.
- #positive?
-
Returns whether
selfis positive.
- #real?
-
Returns whether
selfis a real value.
- #zero?
-
Returns whether
selfis zero.
Comparing
<=>-
Returns:
-
-1 if
selfis less than the given value. -
0 if
selfis equal to the given value. -
1 if
selfis greater than the given value. -
nilifselfand the given value are not comparable.
- #eql?
-
Returns whether
selfand the given value have the same value and type.
Converting
- #-@
-
Returns the value of
self, negated.
- #abs (aliased as #magnitude)
-
Returns the absolute value of
self.
- #abs2
-
Returns the square of
self.
-
Math::PI otherwise. - #ceil
-
Returns the smallest number greater than or equal to
self, to a given precision.
- #coerce
-
Returns array
[coerced_self, coerced_other]for the given other value.
- #conj (aliased as #conjugate)
-
Returns the complex conjugate of
self.
- #denominator
-
Returns the denominator (always positive) of the Rational representation of
self.
- #div
-
Returns the value of
selfdivided by the given value and converted to an integer.
- #divmod
-
Returns array
[quotient, modulus]resulting from dividingselfthe given divisor.
- #fdiv
-
Returns the
::Floatresult of dividingselfby the given divisor.
- #floor
-
Returns the largest number less than or equal to
self, to a given precision.
- #i
-
Returns the
::ComplexobjectComplex(0, self). the given value.
- #imaginary (aliased as #imag)
-
Returns the imaginary part of the
self.
- #numerator
-
Returns the numerator of the
::Rationalrepresentation ofself; has the same sign asself.
- #polar
-
Returns the array
[self.abs, self.arg].
- #quo
-
Returns the value of
selfdivided by the given value.
- #real
-
Returns the real part of
self.
- #rect (aliased as #rectangular)
-
Returns the array
[self, 0].
- #remainder
-
Returns
self-arg*(self/arg).truncatefor the given #arg.
- #round
-
Returns the value of
selfrounded to the nearest value for the given a precision.
- #to_c
-
Returns the
::Complexrepresentation ofself.
- #to_int
-
Returns the
::Integerrepresentation ofself, truncating if necessary.
- #truncate
-
Returns
selftruncated (toward zero) to a given precision.
Other
Instance Attribute Summary
-
#finite? ⇒ Boolean
readonly
Returns
trueifnumis a finite number, otherwise returnsfalse. -
#infinite? ⇒ Boolean
readonly
Returns
nil, -1, or 1 depending on whether the value is finite,-Infinity, or+Infinity. -
#integer? ⇒ Boolean
readonly
Returns
trueifnumis an::Integer. -
#negative? ⇒ Boolean
readonly
Returns
trueifselfis less than 0,falseotherwise. -
#nonzero? ⇒ Boolean
readonly
Returns
selfifselfis not a zero value,nilotherwise; uses method #zero? for the evaluation. -
#positive? ⇒ Boolean
readonly
Returns
trueifselfis greater than 0,falseotherwise. -
#real ⇒ self
readonly
Returns self.
-
#real? ⇒ Boolean
readonly
Returns
trueifnumis a real number (i.e. -
#zero? ⇒ Boolean
readonly
Returns
trueifzerohas a zero value,falseotherwise.
Instance Method Summary
-
#%(other) ⇒ Numeric
(also: #modulo)
Returns
selfmodulootheras a real number. -
#+ ⇒ self
Returns
self. -
#- ⇒ Numeric
Unary Minus—Returns the receiver, negated.
-
#<=>(other) ⇒ zero?
Returns zero if
selfis the same asother,nilotherwise. -
#abs ⇒ Numeric
(also: #magnitude)
Returns the absolute value of
self. -
#abs2 ⇒ Numeric
Returns square of self.
-
#angle ⇒ 0, Float
Alias for #arg.
-
#arg ⇒ 0, Float
(also: #angle, #phase)
Returns 0 if the value is positive, pi otherwise.
-
#ceil(digits = 0) ⇒ Integer, Float
Returns the smallest number that is greater than or equal to
selfwith a precision ofdigitsdecimal digits. -
#clone(freeze: true) ⇒ self
Returns
self. -
#coerce(other) ⇒ Array
Returns a 2-element array containing two numeric elements, formed from the two operands
selfandother, of a common compatible type. -
#conj ⇒ self
(also: #conjugate)
Returns self.
-
#conjugate ⇒ self
Alias for #conj.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(other) ⇒ Integer
Returns the quotient
self/otheras an integer (via #floor), using method/in the derived class ofself. -
#divmod(other) ⇒ Array
Returns a 2-element array
[q, r], where. -
#dup ⇒ self
Returns
self. -
#eql?(other) ⇒ Boolean
Returns
trueifselfandotherare the same type and have equal values. -
#fdiv(other) ⇒ Float
Returns the quotient
self/otheras a float, using method/in the derived class ofself. -
#floor(digits = 0) ⇒ Integer, Float
Returns the largest number that is less than or equal to
selfwith a precision ofdigitsdecimal digits. -
#i ⇒ Complex
Returns
Complex(0, self): -
#imag ⇒ 0
(also: #imaginary)
Returns zero.
-
#imaginary ⇒ 0
Alias for #imag.
-
#magnitude ⇒ Numeric
Alias for #abs.
-
#modulo(other) ⇒ Numeric
Alias for #%.
-
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ 0, Float
Alias for #arg.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#quo(int_or_rat) ⇒ rat
Returns the most exact division (rational for integers, float for floats).
-
#rect ⇒ Array
(also: #rectangular)
Returns an array; [num, 0].
-
#rectangular ⇒ Array
Alias for #rect.
-
#remainder(other) ⇒ real_number
Returns the remainder after dividing
selfbyother. -
#round(digits = 0) ⇒ Integer, Float
Returns
selfrounded to the nearest value with a precision ofdigitsdecimal digits. -
#step(to = nil, by = 1) {|n| ... } ⇒ self
Generates a sequence of numbers; with a block given, traverses the sequence.
-
#to_c ⇒ Complex
Returns the value as a complex.
-
#to_int ⇒ Integer
Returns
selfas an integer; converts using methodto_iin the derived class. -
#truncate(digits = 0) ⇒ Integer, Float
Returns
selftruncated (toward zero) to a precision ofdigitsdecimal digits. -
#singleton_method_added(name)
Internal use only
Trap attempts to add methods to
Numericobjects.
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
| #between? | |
| #clamp |
Instance Attribute Details
#finite? ⇒ Boolean (readonly)
Returns true if num is a finite number, otherwise returns false.
# File 'numeric.rb', line 31
def finite? return true end
#infinite? ⇒ Boolean (readonly)
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.
# File 'numeric.rb', line 42
def infinite? return nil end
#integer? ⇒ Boolean (readonly)
Returns true if num is an ::Integer.
1.0.integer? #=> false
1.integer? #=> true
# File 'numeric.rb', line 21
def integer? return false end
#negative? ⇒ Boolean (readonly)
Returns true if self is less than 0, false otherwise.
# File 'numeric.c', line 928
static VALUE
num_negative_p(VALUE num)
{
return RBOOL(rb_num_negative_int_p(num));
}
#nonzero? ⇒ Boolean (readonly)
Returns self if self is not a zero value, nil otherwise; uses method #zero? for the evaluation.
The returned self allows the method to be chained:
a = %w[z Bb bB bb BB a aA Aa AA A]
a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
Of the Core and Standard Library classes, ::Integer, ::Float, ::Rational, and ::Complex use this implementation.
# File 'numeric.c', line 862
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
return Qnil;
}
return num;
}
#positive? ⇒ Boolean (readonly)
Returns true if self is greater than 0, false otherwise.
# File 'numeric.c', line 904
static VALUE
num_positive_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
}
else if (RB_BIGNUM_TYPE_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
}
return rb_num_compare_with_zero(num, mid);
}
#real ⇒ self (readonly)
Returns self.
# File 'complex.c', line 2142
static VALUE
numeric_real(VALUE self)
{
return self;
}
#real? ⇒ Boolean (readonly)
Returns true if num is a real number (i.e. not ::Complex).
# File 'numeric.rb', line 8
def real? return true end
#zero? ⇒ Boolean (readonly)
Returns true if zero has a zero value, false otherwise.
Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.
# File 'numeric.c', line 822
static VALUE
num_zero_p(VALUE num)
{
return rb_equal(num, INT2FIX(0));
}
Instance Method Details
#%(other) ⇒ Numeric Also known as: #modulo
Returns self modulo other as a real number.
Of the Core and Standard Library classes, only ::Rational uses this implementation.
For Rational r and real number n, these expressions are equivalent:
c % n
c-n*(c/n).floor
c.divmod(n)[1]
See #divmod.
Examples:
r = Rational(1, 2) # => (1/2)
r2 = Rational(2, 3) # => (2/3)
r % r2 # => (1/2)
r % 2 # => (1/2)
r % 2.0 # => 0.5
r = Rational(301,100) # => (301/100)
r2 = Rational(7,5) # => (7/5)
r % r2 # => (21/100)
r % -r2 # => (-119/100)
(-r) % r2 # => (119/100)
(-r) %-r2 # => (-21/100)
#modulo is an alias for %.
# File 'numeric.c', line 695
static VALUE
num_modulo(VALUE x, VALUE y)
{
VALUE q = num_funcall1(x, id_div, y);
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1, q));
}
#+ ⇒ self
Returns self.
# File 'numeric.c', line 576
static VALUE
num_uplus(VALUE num)
{
return num;
}
#- ⇒ Numeric
Unary Minus—Returns the receiver, negated.
# File 'numeric.c', line 609
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return num_funcall1(zero, '-', num);
}
#<=>(other) ⇒ zero?
Returns zero if self is the same as other, nil otherwise.
No subclass in the Ruby Core or Standard Library uses this implementation.
# File 'numeric.c', line 1581
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
#abs ⇒ Numeric Also known as: #magnitude
Returns the absolute value of self.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
#magnitude is an alias for abs.
# File 'numeric.c', line 802
static VALUE
num_abs(VALUE num)
{
if (rb_num_negative_int_p(num)) {
return num_funcall0(num, idUMinus);
}
return num;
}
#abs2 ⇒ Numeric
Returns square of self.
# File 'complex.c', line 2167
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
Alias for #arg.
Also known as: #angle, #phase
Returns 0 if the value is positive, pi otherwise.
# File 'complex.c', line 2181
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return DBL2NUM(M_PI);
}
#ceil(digits = 0) ⇒ Integer, Float
Returns the smallest number that is greater than or equal to self with a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#ceil.
# File 'numeric.c', line 2682
static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
return flo_ceil(argc, argv, rb_Float(num));
}
#clone(freeze: true) ⇒ self
# File 'numeric.c', line 540
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
return rb_immutable_obj_clone(argc, argv, x);
}
#coerce(other) ⇒ Array
Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.
Of the Core and Standard Library classes, ::Integer, ::Rational, and ::Complex use this implementation.
Examples:
i = 2 # => 2
i.coerce(3) # => [3, 2]
i.coerce(3.0) # => [3.0, 2.0]
i.coerce(Rational(1, 2)) # => [0.5, 2.0]
i.coerce(Complex(3, 4)) # Raises RangeError.
r = Rational(5, 2) # => (5/2)
r.coerce(2) # => [(2/1), (5/2)]
r.coerce(2.0) # => [2.0, 2.5]
r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)]
c = Complex(2, 3) # => (2+3i)
c.coerce(2) # => [(2+0i), (2+3i)]
c.coerce(2.0) # => [(2.0+0i), (2+3i)]
c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)]
Raises an exception if any type conversion fails.
# File 'numeric.c', line 424
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
#conj ⇒ self
#conjugate ⇒ self
Also known as: #conjugate
self
#conjugate ⇒ self
Returns self.
# File 'complex.c', line 2239
static VALUE
numeric_conj(VALUE self)
{
return self;
}
#conj ⇒ self
#conjugate ⇒ self
self
#conjugate ⇒ self
Alias for #conj.
#denominator ⇒ Integer
Returns the denominator (always positive).
# File 'rational.c', line 2016
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
#div(other) ⇒ Integer
Returns the quotient self/other as an integer (via #floor), using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, ::Float, ::Rational, and ::Complex use this implementation.
# File 'numeric.c', line 652
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}
#divmod(other) ⇒ Array
Returns a 2-element array [q, r], where
q = (self/other).floor # Quotient
r = self % other # Remainder
Of the Core and Standard Library classes, only ::Rational uses this implementation.
Examples:
Rational(11, 1).divmod(4) # => [2, (3/1)]
Rational(11, 1).divmod(-4) # => [-3, (-1/1)]
Rational(-11, 1).divmod(4) # => [-3, (1/1)]
Rational(-11, 1).divmod(-4) # => [2, (-3/1)]
Rational(12, 1).divmod(4) # => [3, (0/1)]
Rational(12, 1).divmod(-4) # => [-3, (0/1)]
Rational(-12, 1).divmod(4) # => [-3, (0/1)]
Rational(-12, 1).divmod(-4) # => [3, (0/1)]
Rational(13, 1).divmod(4.0) # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
# File 'numeric.c', line 782
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
#dup ⇒ self
Returns self.
Related: #clone.
# File 'numeric.c', line 559
static VALUE
num_dup(VALUE x)
{
return x;
}
#eql?(other) ⇒ Boolean
Returns true if self and other are the same type and have equal values.
Of the Core and Standard Library classes, only ::Integer, ::Rational, and ::Complex use this implementation.
Examples:
1.eql?(1) # => true
1.eql?(1.0) # => false
1.eql?(Rational(1, 1)) # => false
1.eql?(Complex(1, 0)) # => false
Method eql? is different from == in that eql? requires matching types, while == does not.
# File 'numeric.c', line 1559
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eql(x, y);
}
return rb_equal(x, y);
}
#fdiv(other) ⇒ Float
Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, only BigDecimal uses this implementation.
# File 'numeric.c', line 633
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
#floor(digits = 0) ⇒ Integer, Float
Returns the largest number that is less than or equal to self with a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#floor.
# File 'numeric.c', line 2665
static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
return flo_floor(argc, argv, rb_Float(num));
}
#i ⇒ Complex
# File 'numeric.c', line 596
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
#imag ⇒ 0
#imaginary ⇒ 0
Also known as: #imaginary
0
#imaginary ⇒ 0
Returns zero.
# File 'complex.c', line 2155
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
#imag ⇒ 0
#imaginary ⇒ 0
0
#imaginary ⇒ 0
Alias for #imag.
#abs ⇒ Numeric
#magnitude ⇒ Numeric
Numeric
#magnitude ⇒ Numeric
Alias for #abs.
#%(other) ⇒ Numeric
#modulo(other) ⇒ Numeric
Numeric
#modulo(other) ⇒ Numeric
Alias for #%.
#numerator ⇒ Integer
Returns the numerator.
# File 'rational.c', line 2004
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
Alias for #arg.
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
# File 'complex.c', line 2208
static VALUE
numeric_polar(VALUE self)
{
VALUE abs, arg;
if (RB_INTEGER_TYPE_P(self)) {
abs = rb_int_abs(self);
arg = numeric_arg(self);
}
else if (RB_FLOAT_TYPE_P(self)) {
abs = rb_float_abs(self);
arg = float_arg(self);
}
else if (RB_TYPE_P(self, T_RATIONAL)) {
abs = rb_rational_abs(self);
arg = numeric_arg(self);
}
else {
abs = f_abs(self);
arg = f_arg(self);
}
return rb_assoc_new(abs, arg);
}
#quo(int_or_rat) ⇒ rat
#quo(flo) ⇒ flo
rat
#quo(flo) ⇒ flo
Returns the most exact division (rational for integers, float for floats).
# File 'rational.c', line 2031
VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_div(x, y);
}
if (RB_FLOAT_TYPE_P(y)) {
return rb_funcallv(x, idFdiv, 1, &y);
}
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
return rb_rational_div(x, y);
}
Also known as: #rectangular
Returns an array; [num, 0].
# File 'complex.c', line 2196
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
Alias for #rect.
#remainder(other) ⇒ real_number
Returns the remainder after dividing self by other.
Of the Core and Standard Library classes, only ::Float and ::Rational use this implementation.
Examples:
11.0.remainder(4) # => 3.0
11.0.remainder(-4) # => 3.0
-11.0.remainder(4) # => -3.0
-11.0.remainder(-4) # => -3.0
12.0.remainder(4) # => 0.0
12.0.remainder(-4) # => 0.0
-12.0.remainder(4) # => -0.0
-12.0.remainder(-4) # => -0.0
13.0.remainder(4.0) # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0
Rational(13, 1).remainder(4) # => (1/1)
Rational(13, 1).remainder(-4) # => (1/1)
Rational(-13, 1).remainder(4) # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)
# File 'numeric.c', line 734
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
((rb_num_negative_int_p(x) &&
rb_num_positive_int_p(y)) ||
(rb_num_positive_int_p(x) &&
rb_num_negative_int_p(y)))) {
if (RB_FLOAT_TYPE_P(y)) {
if (isinf(RFLOAT_VALUE(y))) {
return x;
}
}
return rb_funcall(z, '-', 1, y);
}
return z;
}
#round(digits = 0) ⇒ Integer, Float
Returns self rounded to the nearest value with a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#round.
# File 'numeric.c', line 2699
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
#singleton_method_added(name)
Trap attempts to add methods to Numeric objects. Always raises a ::TypeError.
Numerics should be values; singleton_methods should not be added to them.
# File 'numeric.c', line 514
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
rb_id2str(mid),
rb_obj_class(x));
UNREACHABLE_RETURN(Qnil);
}
#step(to = nil, by = 1) {|n| ... } ⇒ self
#step(to = nil, by = 1) ⇒ Enumerator
#step(to = nil, by: 1) {|n| ... } ⇒ self
#step(to = nil, by: 1) ⇒ Enumerator
#step(by: 1, to::) {|n| ... } ⇒ self
#step(by: 1, to::) ⇒ Enumerator
#step(by::, to: nil) {|n| ... } ⇒ self
#step(by::, to: nil) ⇒ Enumerator
self
#step(to = nil, by = 1) ⇒ Enumerator
#step(to = nil, by: 1) {|n| ... } ⇒ self
#step(to = nil, by: 1) ⇒ Enumerator
#step(by: 1, to::) {|n| ... } ⇒ self
#step(by: 1, to::) ⇒ Enumerator
#step(by::, to: nil) {|n| ... } ⇒ self
#step(by::, to: nil) ⇒ Enumerator
Generates a sequence of numbers; with a block given, traverses the sequence.
Of the Core and Standard Library classes, ::Integer, ::Float, and ::Rational use this implementation.
A quick example:
squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]
The generated sequence:
-
Begins with
self. -
Continues at intervals of
step(which may not be zero). -
Ends with the last number that is within or equal to
limit; that is, less than or equal tolimitifstepis positive, greater than or equal tolimitifstepis negative. Iflimitis not given, the sequence is of infinite length.
If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an ::Enumerator::ArithmeticSequence.
Keyword Arguments
With keyword arguments by and to, their values (or defaults) determine the step and limit:
# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.
# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]
# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class # => Enumerator::ArithmeticSequence
Positional Arguments
With optional positional arguments limit and step, their values (or defaults) determine the step and limit:
squares = []
4.step(10, 2) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 } # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.
# File 'numeric.c', line 3036
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
if (!rb_block_given_p()) {
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
if (by != Qundef) {
step = by;
}
if (NIL_P(step)) {
step = INT2FIX(1);
}
else if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
rb_obj_is_kind_of(step, rb_cNumeric)) {
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
num_step_size, from, to, step, FALSE);
}
return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
inf = 1;
}
else if (RB_FLOAT_TYPE_P(to)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
#to_c ⇒ Complex
Returns the value as a complex.
# File 'complex.c', line 1691
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
#to_int ⇒ Integer
Returns self as an integer; converts using method to_i in the derived class.
Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.
Examples:
Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int # => 2
Complex(2, 1) # Raises RangeError (non-zero imaginary part)
# File 'numeric.c', line 890
static VALUE
num_to_int(VALUE num)
{
return num_funcall0(num, id_to_i);
}
#truncate(digits = 0) ⇒ Integer, Float
Returns self truncated (toward zero) to a precision of digits decimal digits.
Numeric implements this by converting self to a ::Float and invoking Float#truncate.
# File 'numeric.c', line 2716
static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
return flo_truncate(argc, argv, rb_Float(num));
}