123456789_123456789_123456789_123456789_123456789_

Class: Numeric

Relationships & Source Files
Extension / Inclusion / Inheritance Descendants
Subclasses:
Super Chains via Extension / Inclusion / Inheritance
Instance Chain:
self, ::Comparable
Inherits: Object
Defined in: numeric.c,
complex.c,
numeric.rb,
rational.c

Overview

Numeric is the class from which all higher-level numeric classes should inherit.

Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as ::Integer are implemented as immediates, which means that each ::Integer is a single immutable object which is always passed by value.

a = 1
1.object_id == a.object_id   #=> true

There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.

Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
1.dup                            #=> 1
1.object_id == 1.dup.object_id   #=> true

For this reason, Numeric should be used when defining other numeric classes.

Classes which inherit from Numeric must implement #coerce, which returns a two-member ::Array containing an object that has been coerced into an instance of the new class and self (see #coerce).

Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the #<=> operator (see ::Comparable). These methods may rely on #coerce to ensure interoperability with instances of other numeric classes.

class Tally < Numeric
  def initialize(string)
    @string = string
  end

  def to_s
    @string
  end

  def to_i
    @string.size
  end

  def coerce(other)
    [self.class.new('|' * other.to_i), self]
  end

  def <=>(other)
    to_i <=> other.to_i
  end

  def +(other)
    self.class.new('|' * (to_i + other.to_i))
  end

  def -(other)
    self.class.new('|' * (to_i - other.to_i))
  end

  def *(other)
    self.class.new('|' * (to_i * other.to_i))
  end

  def /(other)
    self.class.new('|' * (to_i / other.to_i))
  end
end

tally = Tally.new('||')
puts tally * 2            #=> "||||"
puts tally > 1            #=> true

What’s Here

First, what’s elsewhere. Class Numeric:

  • Inherits from [class Object](Object.html#class-Object-label-What-27s+Here).

  • Includes [module Comparable](Comparable.html#module-Comparable-label-What-27s+Here).

Here, class Numeric provides methods for:

Querying

  • #finite?

    Returns true unless self is infinite or not a number.

  • #infinite?

    Returns -1, nil or 1, depending on whether {self} is -Infinity<tt>, finite, or <tt>Infinity.

  • #integer?

    Returns whether self is an integer.

  • #negative?

    Returns whether self is negative.

  • #nonzero?

    Returns whether self is not zero.

  • #positive?

    Returns whether self is positive.

  • #real?

    Returns whether self is a real value.

  • #zero?

    Returns whether self is zero.

Comparing

  • <=>

    Returns:

    • -1 if self is less than the given value.

    • 0 if self is equal to the given value.

    • 1 if self is greater than the given value.

    • nil if self and the given value are not comparable.

  • #eql?

    Returns whether self and the given value have the same value and type.

Converting

  • #% (aliased as #modulo)

    Returns the remainder of self divided by the given value.

  • #-@

    Returns the value of self, negated.

  • #abs (aliased as #magnitude)

    Returns the absolute value of self.

  • #abs2

    Returns the square of self.

  • #angle (aliased as #arg and #phase)

    Returns 0 if self is positive,

    Math::PI otherwise.
  • #ceil

    Returns the smallest number greater than or equal to self, to a given precision.

  • #coerce

    Returns array [coerced_self, coerced_other] for the given other value.

  • #conj (aliased as #conjugate)

    Returns the complex conjugate of self.

  • #denominator

    Returns the denominator (always positive) of the Rational representation of self.

  • #div

    Returns the value of self divided by the given value and converted to an integer.

  • #divmod

    Returns array [quotient, modulus] resulting from dividing self the given divisor.

  • #fdiv

    Returns the ::Float result of dividing self by the given divisor.

  • #floor

    Returns the largest number less than or equal to self, to a given precision.

  • #i

    Returns the ::Complex object Complex(0, self). the given value.

  • #imaginary (aliased as #imag)

    Returns the imaginary part of the self.

  • #numerator

    Returns the numerator of the ::Rational representation of self; has the same sign as self.

  • #polar

    Returns the array [self.abs, self.arg].

  • #quo

    Returns the value of self divided by the given value.

  • #real

    Returns the real part of self.

  • #rect (aliased as #rectangular)

    Returns the array [self, 0].

  • #remainder

    Returns self-arg*(self/arg).truncate for the given #arg.

  • #round

    Returns the value of self rounded to the nearest value for the given a precision.

  • #to_c

    Returns the ::Complex representation of self.

  • #to_int

    Returns the ::Integer representation of self, truncating if necessary.

  • #truncate

    Returns self truncated (toward zero) to a given precision.

Other

  • #clone

    Returns self; does not allow freezing.

  • #dup (aliased as #+@)

    Returns self.

  • #step

    Invokes the given block with the sequence of specified numbers.

Instance Attribute Summary

Instance Method Summary

::Comparable - Included

#<

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0.

#<=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0.

#==

Compares two objects based on the receiver’s #<=> method, returning true if it returns 0.

#>

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0.

#>=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0.

#between?

Returns false if obj #<=> min is less than zero or if obj #<=> max is greater than zero, true otherwise.

#clamp

In (min, max) form, returns min if obj #<=> min is less than zero, max if obj #<=> max is greater than zero, and obj otherwise.

Instance Attribute Details

#finite?Boolean (readonly)

Returns true if num is a finite number, otherwise returns false.

[ GitHub ]

  
# File 'numeric.rb', line 31

def finite?
  return true
end

#infinite?Boolean (readonly)

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

[ GitHub ]

  
# File 'numeric.rb', line 42

def infinite?
  return nil
end

#integer?Boolean (readonly)

Returns true if num is an ::Integer.

1.0.integer?   #=> false
1.integer?     #=> true
[ GitHub ]

  
# File 'numeric.rb', line 21

def integer?
  return false
end

#negative?Boolean (readonly)

Returns true if self is less than 0, false otherwise.

[ GitHub ]

  
# File 'numeric.c', line 928

static VALUE
num_negative_p(VALUE num)
{
    return RBOOL(rb_num_negative_int_p(num));
}

#nonzero?Boolean (readonly)

Returns self if self is not a zero value, nil otherwise; uses method #zero? for the evaluation.

The returned self allows the method to be chained:

a = %w[z Bb bB bb BB a aA Aa AA A]
a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Of the Core and Standard Library classes, ::Integer, ::Float, ::Rational, and ::Complex use this implementation.

[ GitHub ]

  
# File 'numeric.c', line 862

static VALUE
num_nonzero_p(VALUE num)
{
    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
	return Qnil;
    }
    return num;
}

#positive?Boolean (readonly)

Returns true if self is greater than 0, false otherwise.

[ GitHub ]

  
# File 'numeric.c', line 904

static VALUE
num_positive_p(VALUE num)
{
    const ID mid = '>';

    if (FIXNUM_P(num)) {
	if (method_basic_p(rb_cInteger))
	    return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
	if (method_basic_p(rb_cInteger))
	    return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
    }
    return rb_num_compare_with_zero(num, mid);
}

#realself (readonly)

Returns self.

[ GitHub ]

  
# File 'complex.c', line 2142

static VALUE
numeric_real(VALUE self)
{
    return self;
}

#real?Boolean (readonly)

Returns true if num is a real number (i.e. not ::Complex).

[ GitHub ]

  
# File 'numeric.rb', line 8

def real?
  return true
end

#zero?Boolean (readonly)

Returns true if zero has a zero value, false otherwise.

Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.

[ GitHub ]

  
# File 'numeric.c', line 822

static VALUE
num_zero_p(VALUE num)
{
    return rb_equal(num, INT2FIX(0));
}

Instance Method Details

#%(other) ⇒ Numeric Also known as: #modulo

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only ::Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

c % n
c-n*(c/n).floor
c.divmod(n)[1]

See #divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)

#modulo is an alias for %.

[ GitHub ]

  
# File 'numeric.c', line 695

static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
		      rb_funcall(y, '*', 1, q));
}

#+self

Returns self.

[ GitHub ]

  
# File 'numeric.c', line 576

static VALUE
num_uplus(VALUE num)
{
    return num;
}

#-Numeric

Unary Minus—Returns the receiver, negated.

[ GitHub ]

  
# File 'numeric.c', line 609

static VALUE
num_uminus(VALUE num)
{
    VALUE zero;

    zero = INT2FIX(0);
    do_coerce(&zero, &num, TRUE);

    return num_funcall1(zero, '-', num);
}

#<=>(other) ⇒ zero?

Returns zero if self is the same as other, nil otherwise.

No subclass in the Ruby Core or Standard Library uses this implementation.

[ GitHub ]

  
# File 'numeric.c', line 1581

static VALUE
num_cmp(VALUE x, VALUE y)
{
    if (x == y) return INT2FIX(0);
    return Qnil;
}

#absNumeric Also known as: #magnitude

Returns the absolute value of self.

12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56

#magnitude is an alias for abs.

[ GitHub ]

  
# File 'numeric.c', line 802

static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
	return num_funcall0(num, idUMinus);
    }
    return num;
}

#abs2Numeric

Returns square of self.

[ GitHub ]

  
# File 'complex.c', line 2167

static VALUE
numeric_abs2(VALUE self)
{
    return f_mul(self, self);
}

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#arg0, Float #angle0, Float #phase0, Float
Also known as: #angle, #phase

Returns 0 if the value is positive, pi otherwise.

[ GitHub ]

  
# File 'complex.c', line 2181

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#ceil(digits = 0) ⇒ Integer, Float

Returns the smallest number that is greater than or equal to self with a precision of digits decimal digits.

Numeric implements this by converting self to a ::Float and invoking Float#ceil.

[ GitHub ]

  
# File 'numeric.c', line 2682

static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
    return flo_ceil(argc, argv, rb_Float(num));
}

#clone(freeze: true) ⇒ self

Returns self.

Raises an exception if the value for freeze is neither true nor nil.

Related: #dup.

[ GitHub ]

  
# File 'numeric.c', line 540

static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
    return rb_immutable_obj_clone(argc, argv, x);
}

#coerce(other) ⇒ Array

Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.

Of the Core and Standard Library classes, ::Integer, ::Rational, and ::Complex use this implementation.

Examples:

i = 2                    # => 2
i.coerce(3)              # => [3, 2]
i.coerce(3.0)            # => [3.0, 2.0]
i.coerce(Rational(1, 2)) # => [0.5, 2.0]
i.coerce(Complex(3, 4))  # Raises RangeError.

r = Rational(5, 2)       # => (5/2)
r.coerce(2)              # => [(2/1), (5/2)]
r.coerce(2.0)            # => [2.0, 2.5]
r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
r.coerce(Complex(3, 4))  # => [(3+4i), ((5/2)+0i)]

c = Complex(2, 3)        # => (2+3i)
c.coerce(2)              # => [(2+0i), (2+3i)]
c.coerce(2.0)            # => [(2.0+0i), (2+3i)]
c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
c.coerce(Complex(3, 4))  # => [(3+4i), (2+3i)]

Raises an exception if any type conversion fails.

[ GitHub ]

  
# File 'numeric.c', line 424

static VALUE
num_coerce(VALUE x, VALUE y)
{
    if (CLASS_OF(x) == CLASS_OF(y))
	return rb_assoc_new(y, x);
    x = rb_Float(x);
    y = rb_Float(y);
    return rb_assoc_new(y, x);
}

#conjself #conjugateself
Also known as: #conjugate

Returns self.

[ GitHub ]

  
# File 'complex.c', line 2239

static VALUE
numeric_conj(VALUE self)
{
    return self;
}

#conjself #conjugateself

Alias for #conj.

#denominatorInteger

Returns the denominator (always positive).

[ GitHub ]

  
# File 'rational.c', line 2016

static VALUE
numeric_denominator(VALUE self)
{
    return f_denominator(f_to_r(self));
}

#div(other) ⇒ Integer

Returns the quotient self/other as an integer (via #floor), using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, ::Float, ::Rational, and ::Complex use this implementation.

[ GitHub ]

  
# File 'numeric.c', line 652

static VALUE
num_div(VALUE x, VALUE y)
{
    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}

#divmod(other) ⇒ Array

Returns a 2-element array [q, r], where

q = (self/other).floor                  # Quotient
r = self % other                        # Remainder

Of the Core and Standard Library classes, only ::Rational uses this implementation.

Examples:

Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]

Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]

Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
[ GitHub ]

  
# File 'numeric.c', line 782

static VALUE
num_divmod(VALUE x, VALUE y)
{
    return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}

#dupself

Returns self.

Related: #clone.

[ GitHub ]

  
# File 'numeric.c', line 559

static VALUE
num_dup(VALUE x)
{
    return x;
}

#eql?(other) ⇒ Boolean

Returns true if self and other are the same type and have equal values.

Of the Core and Standard Library classes, only ::Integer, ::Rational, and ::Complex use this implementation.

Examples:

1.eql?(1)              # => true
1.eql?(1.0)            # => false
1.eql?(Rational(1, 1)) # => false
1.eql?(Complex(1, 0))  # => false

Method eql? is different from == in that eql? requires matching types, while == does not.

[ GitHub ]

  
# File 'numeric.c', line 1559

static VALUE
num_eql(VALUE x, VALUE y)
{
    if (TYPE(x) != TYPE(y)) return Qfalse;

    if (RB_BIGNUM_TYPE_P(x)) {
	return rb_big_eql(x, y);
    }

    return rb_equal(x, y);
}

#fdiv(other) ⇒ Float

Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, only BigDecimal uses this implementation.

[ GitHub ]

  
# File 'numeric.c', line 633

static VALUE
num_fdiv(VALUE x, VALUE y)
{
    return rb_funcall(rb_Float(x), '/', 1, y);
}

#floor(digits = 0) ⇒ Integer, Float

Returns the largest number that is less than or equal to self with a precision of digits decimal digits.

Numeric implements this by converting self to a ::Float and invoking Float#floor.

[ GitHub ]

  
# File 'numeric.c', line 2665

static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
    return flo_floor(argc, argv, rb_Float(num));
}

#iComplex

Returns Complex(0, self):

2.i              # => (0+2i)
-2.i             # => (0-2i)
2.0.i            # => (0+2.0i)
Rational(1, 2).i # => (0+(1/2)*i)
Complex(3, 4).i  # Raises NoMethodError.
[ GitHub ]

  
# File 'numeric.c', line 596

static VALUE
num_imaginary(VALUE num)
{
    return rb_complex_new(INT2FIX(0), num);
}

#imag0 #imaginary0
Also known as: #imaginary

Returns zero.

[ GitHub ]

  
# File 'complex.c', line 2155

static VALUE
numeric_imag(VALUE self)
{
    return INT2FIX(0);
}

#imag0 #imaginary0

Alias for #imag.

#absNumeric #magnitudeNumeric

Alias for #abs.

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Alias for #%.

#numeratorInteger

Returns the numerator.

[ GitHub ]

  
# File 'rational.c', line 2004

static VALUE
numeric_numerator(VALUE self)
{
    return f_numerator(f_to_r(self));
}

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#polarArray

Returns an array; [num.abs, num.arg].

[ GitHub ]

  
# File 'complex.c', line 2208

static VALUE
numeric_polar(VALUE self)
{
    VALUE abs, arg;

    if (RB_INTEGER_TYPE_P(self)) {
        abs = rb_int_abs(self);
        arg = numeric_arg(self);
    }
    else if (RB_FLOAT_TYPE_P(self)) {
        abs = rb_float_abs(self);
        arg = float_arg(self);
    }
    else if (RB_TYPE_P(self, T_RATIONAL)) {
        abs = rb_rational_abs(self);
        arg = numeric_arg(self);
    }
    else {
        abs = f_abs(self);
        arg = f_arg(self);
    }
    return rb_assoc_new(abs, arg);
}

#quo(int_or_rat) ⇒ rat #quo(flo) ⇒ flo

Returns the most exact division (rational for integers, float for floats).

[ GitHub ]

  
# File 'rational.c', line 2031

VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
    if (RB_TYPE_P(x, T_COMPLEX)) {
        return rb_complex_div(x, y);
    }

    if (RB_FLOAT_TYPE_P(y)) {
        return rb_funcallv(x, idFdiv, 1, &y);
    }

    x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
    return rb_rational_div(x, y);
}

#rectArray #rectangularArray
Also known as: #rectangular

Returns an array; [num, 0].

[ GitHub ]

  
# File 'complex.c', line 2196

static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}

#rectArray #rectangularArray

Alias for #rect.

#remainder(other) ⇒ real_number

Returns the remainder after dividing self by other.

Of the Core and Standard Library classes, only ::Float and ::Rational use this implementation.

Examples:

11.0.remainder(4)              # => 3.0
11.0.remainder(-4)             # => 3.0
-11.0.remainder(4)             # => -3.0
-11.0.remainder(-4)            # => -3.0

12.0.remainder(4)              # => 0.0
12.0.remainder(-4)             # => 0.0
-12.0.remainder(4)             # => -0.0
-12.0.remainder(-4)            # => -0.0

13.0.remainder(4.0)            # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0

Rational(13, 1).remainder(4)   # => (1/1)
Rational(13, 1).remainder(-4)  # => (1/1)
Rational(-13, 1).remainder(4)  # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)
[ GitHub ]

  
# File 'numeric.c', line 734

static VALUE
num_remainder(VALUE x, VALUE y)
{
    VALUE z = num_funcall1(x, '%', y);

    if ((!rb_equal(z, INT2FIX(0))) &&
	((rb_num_negative_int_p(x) &&
	  rb_num_positive_int_p(y)) ||
	 (rb_num_positive_int_p(x) &&
	  rb_num_negative_int_p(y)))) {
        if (RB_FLOAT_TYPE_P(y)) {
            if (isinf(RFLOAT_VALUE(y))) {
                return x;
            }
        }
	return rb_funcall(z, '-', 1, y);
    }
    return z;
}

#round(digits = 0) ⇒ Integer, Float

Returns self rounded to the nearest value with a precision of digits decimal digits.

Numeric implements this by converting self to a ::Float and invoking Float#round.

[ GitHub ]

  
# File 'numeric.c', line 2699

static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
    return flo_round(argc, argv, rb_Float(num));
}

#singleton_method_added(name)

This method is for internal use only.

Trap attempts to add methods to Numeric objects. Always raises a ::TypeError.

Numerics should be values; singleton_methods should not be added to them.

[ GitHub ]

  
# File 'numeric.c', line 514

static VALUE
num_sadded(VALUE x, VALUE name)
{
    ID mid = rb_to_id(name);
    /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
    rb_remove_method_id(rb_singleton_class(x), mid);
    rb_raise(rb_eTypeError,
	     "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
	     rb_id2str(mid),
	     rb_obj_class(x));

    UNREACHABLE_RETURN(Qnil);
}

#step(to = nil, by = 1) {|n| ... } ⇒ self #step(to = nil, by = 1) ⇒ Enumerator #step(to = nil, by: 1) {|n| ... } ⇒ self #step(to = nil, by: 1) ⇒ Enumerator #step(by: 1, to::) {|n| ... } ⇒ self #step(by: 1, to::) ⇒ Enumerator #step(by::, to: nil) {|n| ... } ⇒ self #step(by::, to: nil) ⇒ Enumerator

Generates a sequence of numbers; with a block given, traverses the sequence.

Of the Core and Standard Library classes, ::Integer, ::Float, and ::Rational use this implementation.

A quick example:

squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]

The generated sequence:

  • Begins with self.

  • Continues at intervals of step (which may not be zero).

  • Ends with the last number that is within or equal to limit; that is, less than or equal to limit if step is positive, greater than or equal to limit if step is negative. If limit is not given, the sequence is of infinite length.

If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an ::Enumerator::ArithmeticSequence.

Keyword Arguments

With keyword arguments by and to, their values (or defaults) determine the step and limit:

# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes   # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) }           # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.

# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]

# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class                      # => Enumerator::ArithmeticSequence

Positional Arguments

With optional positional arguments limit and step, their values (or defaults) determine the step and limit:

squares = []
4.step(10, 2) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 }  # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]

Implementation Notes

If all the arguments are integers, the loop operates using an integer counter.

If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.

[ GitHub ]

  
# File 'numeric.c', line 3036

static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
    VALUE to, step;
    int desc, inf;

    if (!rb_block_given_p()) {
        VALUE by = Qundef;

        num_step_extract_args(argc, argv, &to, &step, &by);
        if (by != Qundef) {
            step = by;
        }
        if (NIL_P(step)) {
            step = INT2FIX(1);
        }
        else if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }
        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
            rb_obj_is_kind_of(step, rb_cNumeric)) {
            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
                                    num_step_size, from, to, step, FALSE);
        }

        return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
    }

    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
    if (rb_equal(step, INT2FIX(0))) {
	inf = 1;
    }
    else if (RB_FLOAT_TYPE_P(to)) {
	double f = RFLOAT_VALUE(to);
	inf = isinf(f) && (signbit(f) ? desc : !desc);
    }
    else inf = 0;

    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
	long i = FIX2LONG(from);
	long diff = FIX2LONG(step);

	if (inf) {
	    for (;; i += diff)
		rb_yield(LONG2FIX(i));
	}
	else {
	    long end = FIX2LONG(to);

	    if (desc) {
		for (; i >= end; i += diff)
		    rb_yield(LONG2FIX(i));
	    }
	    else {
		for (; i <= end; i += diff)
		    rb_yield(LONG2FIX(i));
	    }
	}
    }
    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
	VALUE i = from;

	if (inf) {
	    for (;; i = rb_funcall(i, '+', 1, step))
		rb_yield(i);
	}
	else {
	    ID cmp = desc ? '<' : '>';

	    for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
		rb_yield(i);
	}
    }
    return from;
}

#to_cComplex

Returns the value as a complex.

[ GitHub ]

  
# File 'complex.c', line 1691

static VALUE
numeric_to_c(VALUE self)
{
    return rb_complex_new1(self);
}

#to_intInteger

Returns self as an integer; converts using method to_i in the derived class.

Of the Core and Standard Library classes, only ::Rational and ::Complex use this implementation.

Examples:

Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int  # => 2
Complex(2, 1)         # Raises RangeError (non-zero imaginary part)
[ GitHub ]

  
# File 'numeric.c', line 890

static VALUE
num_to_int(VALUE num)
{
    return num_funcall0(num, id_to_i);
}

#truncate(digits = 0) ⇒ Integer, Float

Returns self truncated (toward zero) to a precision of digits decimal digits.

Numeric implements this by converting self to a ::Float and invoking Float#truncate.

[ GitHub ]

  
# File 'numeric.c', line 2716

static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
    return flo_truncate(argc, argv, rb_Float(num));
}