123456789_123456789_123456789_123456789_123456789_

Module: BigMath

Relationships & Source Files
Defined in: lib/bigdecimal.rb,
lib/bigdecimal/math.rb

Overview

Provides mathematical functions.

Example:

require "bigdecimal/math"

include BigMath

a = BigDecimal((PI(49)/2).to_s)
puts sin(a,100) # => 0.9999999999...9999999986e0

Class Method Summary

Class Method Details

._erf_taylor(x, a, erf_a, prec) (private, mod_func)

This method is for internal use only.

Calculates erf(x + a)

[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 659

private_class_method def _erf_taylor(x, a, erf_a, prec) # :nodoc:
  return erf_a if x.zero?
  # Let f(x+a) = erf(xa)*exp((xa)**2)*sqrt(pi)/2
  #            = c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + ...
  # f'(x+a) = 12*(xa)*f(x+a)
  # f'(x+a) = c1 + 2*c2*x + 3*c3*x**2 + 4*c4*x**3 + 5*c5*x**4 + ...
  #         = 12*(xa)*(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + ...)
  # therefore,
  # c0 = f(a)
  # c1 = 2 * a * c0 + 1
  # c2 = (2 * c0 + 2 * a * c1) / 2
  # c3 = (2 * c1 + 2 * a * c2) / 3
  # c4 = (2 * c2 + 2 * a * c3) / 4
  #
  # All coefficients are positive when a >= 0

  scale = BigDecimal(2).div(sqrt(PI(prec), prec), prec)
  c_prev = erf_a.div(scale.mult(exp(-a*a, prec), prec), prec)
  c_next = (2 * a * c_prev).add(1, prec).mult(x, prec)
  sum = c_prev.add(c_next, prec)

  2.step do |k|
    cn = (c_prev.mult(x, prec) + a * c_next).mult(2, prec).mult(x, prec).div(k, prec)
    sum = sum.add(cn, prec)
    c_prev, c_next = c_next, cn
    break if [c_prev, c_next].all? { |c| c.zero?  || (c.exponent < sum.exponent - prec) }
  end
  value = sum.mult(scale.mult(exp(-(x + a).mult(x + a, prec), prec), prec), prec)
  value > 1 ? BigDecimal(1) : value
end

._erfc_asymptotic(x, prec) (private, mod_func)

This method is for internal use only.
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 690

private_class_method def _erfc_asymptotic(x, prec) # :nodoc:
  # Let f(x) = erfc(x)*sqrt(pi)*exp(x**2)/2
  # f(x) satisfies the following differential equation:
  # 2*x*f(x) = f'(x) + 1
  # From the above equation, we can derive the following asymptotic expansion:
  # f(x) = (0..kmax).sum { (-1)**k * (2*k)! / 4**k / k! / x**(2*k)) } / x

  # This asymptotic expansion does not converge.
  # But if there is a k that satisfies (2*k)! / 4**k / k! / x**(2*k) < 10**(-prec),
  # It is enough to calculate erfc within the given precision.
  # Using Stirling's approximation, we can simplify this condition to:
  # sqrt(2)/2 + k*log(k) - k - 2*k*log(x) < -prec*log(10)
  # and the left side is minimized when k = x**2.
  prec += BigDecimal.double_fig
  xf = x.to_f
  kmax = (1..(xf ** 2).floor).bsearch do |k|
    Math.log(2) / 2 + k * Math.log(k) - k - 2 * k * Math.log(xf) < -prec * Math.log(10)
  end
  return unless kmax

  sum = BigDecimal(1)
  x2 = x.mult(x, prec)
  d = BigDecimal(1)
  (1..kmax).each do |k|
    d = d.div(x2, prec).mult(1 - 2 * k, prec).div(2, prec)
    sum = sum.add(d, prec)
  end
  sum.div(exp(x2, prec).mult(PI(prec).sqrt(prec), prec), prec).div(x, prec)
end

._exp_taylor(x, prec) (private, mod_func)

This method is for internal use only.

Taylor series for exp(x) around 0

[ GitHub ]

  
# File 'lib/bigdecimal.rb', line 310

private_class_method def _exp_taylor(x, prec) # :nodoc:
  xn = BigDecimal(1)
  y = BigDecimal(1)
  1.step do |i|
    n = prec + xn.exponent
    break if n <= 0 || xn.zero?
    xn = xn.mult(x, n).div(i, n)
    y = y.add(xn, prec)
  end
  y
end

._gamma_positive_integer(x, prec) (private, mod_func)

This method is for internal use only.
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 842

private_class_method def _gamma_positive_integer(x, prec) # :nodoc:
  return x if x == 1
  numbers = (1..x - 1).map {|i| BigDecimal(i) }
  while numbers.size > 1
    numbers = numbers.each_slice(2).map {|a, b| b ? a.mult(b, prec) : a }
  end
  numbers.first
end

._gamma_spouge_sum_part(x, prec) (private, mod_func)

This method is for internal use only.

Returns sum part: sqrt(2*pi) and c/(x+k) terms of Spouge’s approximation

[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 802

private_class_method def _gamma_spouge_sum_part(x, prec) # :nodoc:
  x -= 1
  # Spouge's approximation
  # x! = (x + a)**(x + 0.5) * exp(-x - a) * (sqrt(2 * pi)  + (1..a - 1).sum{|k| c[k] / (x + k) } + epsilon)
  # where c[k] = (-1)**k * (a - k)**(k - 0.5) * exp(a - k) / (k - 1)!
  # and epsilon is bounded by a**(-0.5) * (2 * pi) ** (-a - 0.5)

  # Estimate required a for given precision
  a = (prec / Math.log10(2 * Math::PI)).ceil

  # Calculate exponent of c[k] in low precision to estimate required precision
  low_prec = 16
  log10f = Math.log(10)
  x_low_prec = x.mult(1, low_prec)
  loggamma_k = 0
  ck_exponents = (1..a-1).map do |k|
    loggamma_k += Math.log10(k - 1) if k > 1
    -loggamma_k - k / log10f + (k - 0.5) * Math.log10(a - k) - BigMath.log10(x_low_prec.add(k, low_prec), low_prec)
  end

  # Estimate exponent of sum by Stirling's approximation
  approx_sum_exponent = x < 1 ? -Math.log10(a) / 2 : Math.log10(2 * Math::PI) / 2 + x_low_prec.add(0.5, low_prec) * Math.log10(x_low_prec / x_low_prec.add(a, low_prec))

  # Determine required precision of c[k]
  prec2 = [ck_exponents.max.ceil - approx_sum_exponent.floor, 0].max + prec

  einv = BigMath.exp(-1, prec2)
  sum = (PI(prec) * 2).sqrt(prec).mult(BigMath.exp(-a, prec), prec)
  y = BigDecimal(1)
  (1..a - 1).each do |k|
    # c[k] = (-1)**k * (a - k)**(k - 0.5) * exp(-k) / (k-1)! / (x + k)
    y = y.div(1 - k, prec2) if k > 1
    y = y.mult(einv, prec2)
    z = y.mult(BigDecimal((a - k) ** k), prec2).div(BigDecimal(a - k).sqrt(prec2).mult(x.add(k, prec2), prec2), prec2)
    # sum += c[k] / (x + k)
    sum = sum.add(z, prec2)
  end
  [a, sum]
end

._sin_periodic_reduction(x, prec, add_half_pi: false) (private, mod_func)

This method is for internal use only.

Returns [sign, reduced_x] where reduced_x is in -pi/2..pi/2 and satisfies sin(x) = sign * sin(reduced_x) If add_half_pi is true, adds pi/2 to x before reduction. Precision of pi is adjusted to ensure reduced_x has the required precision.

[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 75

private_class_method def _sin_periodic_reduction(x, prec, add_half_pi: false) # :nodoc:
  return [1, x] if -Math::PI/2 <= x && x <= Math::PI/2 && !add_half_pi

  mod_prec = prec + BigDecimal.double_fig
  pi_extra_prec = [x.exponent, 0].max + BigDecimal.double_fig
  while true
    pi = PI(mod_prec + pi_extra_prec)
    half_pi = pi / 2
    div, mod = (add_half_pi ? x + pi : x + half_pi).divmod(pi)
    mod -= half_pi
    if mod.zero? || mod_prec + mod.exponent <= 0
      # mod is too small to estimate required pi precision
      mod_prec = mod_prec * 3 / 2 + BigDecimal.double_fig
    elsif mod_prec + mod.exponent < prec
      # Estimate required precision of pi
      mod_prec = prec - mod.exponent + BigDecimal.double_fig
    else
      return [div % 2 == 0 ? 1 : -1, mod.mult(1, prec)]
    end
  end
end

._sinpix(x, pi, prec) (private, mod_func)

This method is for internal use only.

Returns sin(pi * x), for gamma reflection formula calculation

[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 852

private_class_method def _sinpix(x, pi, prec) # :nodoc:
  x = x % 2
  sign = x > 1 ? -1 : 1
  x %= 1
  x = 1 - x if x > 0.5 # to avoid sin(pi*x) loss of precision for x close to 1
  sign * sin(x.mult(pi, prec), prec)
end

.acos(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the arccosine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.acos(BigDecimal('0.5'), 32).to_s
#=> "0.10471975511965977461542144610932e1"

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 256

def acos(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :acos)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :acos)
  raise Math::DomainError, "Out of domain argument for acos" if x < -1 || x > 1
  return BigDecimal::Internal.nan_computation_result if x.nan?

  prec2 = prec + BigDecimal.double_fig
  return (PI(prec2) / 2).sub(asin(x, prec2), prec) if x < 0
  return PI(prec2).div(2, prec) if x.zero?

  sin = (1 - x**2).sqrt(prec2)
  atan(sin.div(x, prec2), prec)
end

.acosh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the inverse hyperbolic cosine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.acosh(BigDecimal('2'), 32).to_s
#=> "0.1316957896924816708625046347308e1"

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 446

def acosh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :acosh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :acosh)
  raise Math::DomainError, "Out of domain argument for acosh" if x < 1
  return BigDecimal::Internal.infinity_computation_result if x.infinite?
  return BigDecimal::Internal.nan_computation_result if x.nan?

  log(x + sqrt(x**2 - 1, prec + BigDecimal.double_fig), prec)
end

.asin(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the arcsine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.asin(BigDecimal('0.5'), 32).to_s
#=> "0.52359877559829887307710723054658e0"

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 230

def asin(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :asin)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :asin)
  raise Math::DomainError, "Out of domain argument for asin" if x < -1 || x > 1
  return BigDecimal::Internal.nan_computation_result if x.nan?

  prec2 = prec + BigDecimal.double_fig
  cos = (1 - x**2).sqrt(prec2)
  if cos.zero?
    PI(prec2).div(x > 0 ? 2 : -2, prec)
  else
    atan(x.div(cos, prec2), prec)
  end
end

.asinh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the inverse hyperbolic sine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.asinh(BigDecimal('1'), 32).to_s
#=> "0.88137358701954302523260932497979e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 424

def asinh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :asinh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :asinh)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite?
  return -asinh(-x, prec) if x < 0

  sqrt_prec = prec + [-x.exponent, 0].max + BigDecimal.double_fig
  log(x + sqrt(x**2 + 1, sqrt_prec), prec)
end

.atan(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the arctangent of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.atan(BigDecimal('-1'), 32).to_s
#=> "-0.78539816339744830961566084581988e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 281

def atan(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :atan)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atan)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  n = prec + BigDecimal.double_fig
  pi = PI(n)
  x = -x if neg = x < 0
  return pi.div(neg ? -2 : 2, prec) if x.infinite?
  return pi.div(neg ? -4 : 4, prec) if x.round(n) == 1
  x = BigDecimal("1").div(x, n) if inv = x > 1
  x = (-1 + sqrt(1 + x.mult(x, n), n)).div(x, n) if dbl = x > 0.5
  y = x
  d = y
  t = x
  r = BigDecimal("3")
  x2 = x.mult(x,n)
  while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t = -t.mult(x2,n)
    d = t.div(r,m)
    y += d
    r += 2
  end
  y *= 2 if dbl
  y = pi / 2 - y if inv
  y = -y if neg
  y.mult(1, prec)
end

.atan2(decimal, decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the arctangent of y and x to the specified number of digits of precision, numeric.

BigMath.atan2(BigDecimal('-1'), BigDecimal('1'), 32).to_s
#=> "-0.78539816339744830961566084581988e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 319

def atan2(y, x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :atan2)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atan2)
  y = BigDecimal::Internal.coerce_to_bigdecimal(y, prec, :atan2)
  return BigDecimal::Internal.nan_computation_result if x.nan? || y.nan?

  if x.infinite? || y.infinite?
    one = BigDecimal(1)
    zero = BigDecimal(0)
    x = x.infinite? ? (x > 0 ? one : -one) : zero
    y = y.infinite? ? (y > 0 ? one : -one) : y.sign * zero
  end

  return x.sign >= 0 ? BigDecimal(0) : y.sign * PI(prec) if y.zero?

  y = -y if neg = y < 0
  xlarge = y.abs < x.abs
  prec2 = prec + BigDecimal.double_fig
  if x > 0
    v = xlarge ? atan(y.div(x, prec2), prec) : PI(prec2) / 2 - atan(x.div(y, prec2), prec2)
  else
    v = xlarge ? PI(prec2) - atan(-y.div(x, prec2), prec2) : PI(prec2) / 2 + atan(x.div(-y, prec2), prec2)
  end
  v.mult(neg ? -1 : 1, prec)
end

.atanh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the inverse hyperbolic tangent of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.atanh(BigDecimal('0.5'), 32).to_s
#=> "0.54930614433405484569762261846126e0"

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 467

def atanh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :atanh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atanh)
  raise Math::DomainError, "Out of domain argument for atanh" if x < -1 || x > 1
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result if x == 1
  return -BigDecimal::Internal.infinity_computation_result if x == -1

  prec2 = prec + BigDecimal.double_fig
  (log(x + 1, prec2) - log(1 - x, prec2)).div(2, prec)
end

.cbrt(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the cube root of decimal to the specified number of digits of precision, numeric.

BigMath.cbrt(BigDecimal('2'), 32).to_s
#=> "0.12599210498948731647672106072782e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 106

def cbrt(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :cbrt)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cbrt)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite?
  return BigDecimal(0) if x.zero?

  x = -x if neg = x < 0
  ex = x.exponent / 3
  x = x._decimal_shift(-3 * ex)
  y = BigDecimal(Math.cbrt(x.to_f), 0)
  precs = [prec + BigDecimal.double_fig]
  precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig
  precs.reverse_each do |p|
    y = (2 * y + x.div(y, p).div(y, p)).div(3, p)
  end
  y._decimal_shift(ex).mult(neg ? -1 : 1, prec)
end

.cos(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the cosine of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.cos(BigMath.PI(16), 32).to_s
#=> "-0.99999999999999999999999999999997e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 192

def cos(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :cos)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cos)
  return BigDecimal::Internal.nan_computation_result if x.infinite? || x.nan?
  sign, x = _sin_periodic_reduction(x, prec + BigDecimal.double_fig, add_half_pi: true)
  sign * sin(x, prec)
end

.cosh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the hyperbolic cosine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.cosh(BigDecimal('1'), 32).to_s
#=> "0.15430806348152437784779056207571e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 379

def cosh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :cosh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cosh)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result if x.infinite?

  prec2 = prec + BigDecimal.double_fig
  e = exp(x, prec2)
  (e + BigDecimal(1).div(e, prec2)).div(2, prec)
end

E(numeric) ⇒ BigDecimal (mod_func)

Computes e (the base of natural logarithms) to the specified number of digits of precision, numeric.

BigMath.E(32).to_s
#=> "0.27182818284590452353602874713527e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 944

def E(prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :E)
  exp(1, prec)
end

.erf(x, prec) (mod_func)

erf(decimal, numeric) -> ::BigDecimal

Computes the error function of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.erf(BigDecimal('1'), 32).to_s
#=> "0.84270079294971486934122063508261e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 597

def erf(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :erf)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :erf)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal(x.infinite?) if x.infinite?
  return BigDecimal(0) if x == 0
  return -erf(-x, prec) if x < 0
  return BigDecimal(1) if x > 5000000000 # erf(5000000000) > 1 - 1e-10000000000000000000

  if x > 8
    xf = x.to_f
    log10_erfc = -xf ** 2 / Math.log(10) - Math.log10(xf * Math::PI ** 0.5)
    erfc_prec = [prec + log10_erfc.ceil, 1].max
    erfc = _erfc_asymptotic(x, erfc_prec)
    if erfc
      # Workaround for https://github.com/ruby/bigdecimal/issues/464
      return BigDecimal(1) if erfc.exponent < -prec - BigDecimal.double_fig

      return BigDecimal(1).sub(erfc, prec)
    end
  end

  prec2 = prec + BigDecimal.double_fig
  x_smallprec = x.mult(1, Integer.sqrt(prec2) / 2)
  # Taylor series of x with small precision is fast
  erf1 = _erf_taylor(x_smallprec, BigDecimal(0), BigDecimal(0), prec2)
  # Taylor series converges quickly for small x
  _erf_taylor(x - x_smallprec, x_smallprec, erf1, prec2).mult(1, prec)
end

.erfc(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the complementary error function of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.erfc(BigDecimal('10'), 32).to_s
#=> "0.20884875837625447570007862949578e-44"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 638

def erfc(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :erfc)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :erfc)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal(1 - x.infinite?) if x.infinite?
  return BigDecimal(1).sub(erf(x, prec + BigDecimal.double_fig), prec) if x < 0
  return BigDecimal(0) if x > 5000000000 # erfc(5000000000) < 1e-10000000000000000000 (underflow)

  if x >= 8
    y = _erfc_asymptotic(x, prec)
    return y.mult(1, prec) if y
  end

  # erfc(x) = 1 - erf(x) < exp(-x**2)/x/sqrt(pi)
  # Precision of erf(x) needs about log10(exp(-x**2)) extra digits
  log10 = 2.302585092994046
  high_prec = prec + BigDecimal.double_fig + (x.ceil**2 / log10).ceil
  BigDecimal(1).sub(erf(x, high_prec), prec)
end

.exp(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the value of e (the base of natural logarithms) raised to the power of decimal, to the specified number of digits of precision.

If decimal is infinity, returns Infinity.

If decimal is NaN, returns NaN.

[ GitHub ]

  
# File 'lib/bigdecimal.rb', line 332

def exp(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :exp)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :exp)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return x.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) if x.infinite?
  return BigDecimal(1) if x.zero?

  # exp(x * 10**cnt) = exp(x)**(10**cnt)
  cnt = x < -1 || x > 1 ? x.exponent : 0
  prec2 = prec + BigDecimal.double_fig + cnt
  x = x._decimal_shift(-cnt)

  # Calculation of exp(small_prec) is fast because calculation of x**n is fast
  # Calculation of exp(small_abs) converges fast.
  # exp(x) = exp(small_prec_part + small_abs_part) = exp(small_prec_part) * exp(small_abs_part)
  x_small_prec = x.round(Integer.sqrt(prec2))
  y = _exp_taylor(x_small_prec, prec2).mult(_exp_taylor(x.sub(x_small_prec, prec2), prec2), prec2)

  # calculate exp(x * 10**cnt) from exp(x)
  # exp(x * 10**k) = exp(x * 10**(k - 1)) ** 10
  cnt.times do
    y2 = y.mult(y, prec2)
    y5 = y2.mult(y2, prec2).mult(y, prec2)
    y = y5.mult(y5, prec2)
  end

  y.mult(1, prec)
end

.expm1(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes exp(decimal) - 1 to the specified number of digits of precision, numeric.

BigMath.expm1(BigDecimal('0.1'), 32).to_s
#=> "0.10517091807564762481170782649025e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 559

def expm1(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :expm1)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :expm1)
  return BigDecimal(-1) if x.infinite? == -1

  exp_prec = prec
  if x < -1
    # log10(exp(x)) = x * log10(e)
    lg_e = 0.4342944819032518
    exp_prec = prec + (lg_e * x).ceil + BigDecimal.double_fig
  elsif x < 1
    exp_prec = prec - x.exponent + BigDecimal.double_fig
  else
    exp_prec = prec
  end

  return BigDecimal(-1) if exp_prec <= 0

  exp = exp(x, exp_prec)

  if exp.exponent > prec + BigDecimal.double_fig
    # Workaroudn for https://github.com/ruby/bigdecimal/issues/464
    exp
  else
    exp.sub(1, prec)
  end
end

.frexp(x) ⇒ Array, Integer (mod_func)

Decomposes x into a normalized fraction and an integral power of ten.

BigMath.frexp(BigDecimal(123.456))
#=> [0.123456e0, 3]
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 868

def frexp(x)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, 0, :frexp)
  return [x, 0] unless x.finite?

  exponent = x.exponent
  [x._decimal_shift(-exponent), exponent]
end

.gamma(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the gamma function of decimal to the specified number of digits of precision, numeric.

BigMath.gamma(BigDecimal('0.5'), 32).to_s
#=> "0.17724538509055160272981674833411e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 729

def gamma(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :gamma)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :gamma)
  prec2 = prec + BigDecimal.double_fig
  if x < 0.5
    raise Math::DomainError, 'Numerical argument is out of domain - gamma' if x.frac.zero?

    # Euler's reflection formula: gamma(z) * gamma(1-z) = pi/sin(pi*z)
    pi = PI(prec2)
    sin = _sinpix(x, pi, prec2)
    return pi.div(gamma(1 - x, prec2).mult(sin, prec2), prec)
  elsif x.frac.zero? && x < 1000 * prec
    return _gamma_positive_integer(x, prec2).mult(1, prec)
  end

  a, sum = _gamma_spouge_sum_part(x, prec2)
  (x + (a - 1)).power(x - 0.5, prec2).mult(BigMath.exp(1 - x, prec2), prec2).mult(sum, prec)
end

.hypot(x, y, numeric) ⇒ BigDecimal (mod_func)

Returns sqrt(x**2 + y**2) to the specified number of digits of precision, numeric.

BigMath.hypot(BigDecimal('1'), BigDecimal('2'), 32).to_s
#=> "0.22360679774997896964091736687313e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 134

def hypot(x, y, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :hypot)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :hypot)
  y = BigDecimal::Internal.coerce_to_bigdecimal(y, prec, :hypot)
  return BigDecimal::Internal.nan_computation_result if x.nan? || y.nan?
  return BigDecimal::Internal.infinity_computation_result if x.infinite? || y.infinite?
  prec2 = prec + BigDecimal.double_fig
  sqrt(x.mult(x, prec2) + y.mult(y, prec2), prec)
end

.ldexp(fraction, exponent) ⇒ BigDecimal (mod_func)

Inverse of .frexp. Returns the value of fraction * 10**exponent.

BigMath.ldexp(BigDecimal("0.123456e0"), 3)
#=> 0.123456e3
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 885

def ldexp(x, exponent)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, 0, :ldexp)
  x.finite? ? x._decimal_shift(exponent) : x
end

.lgamma(decimal, numeric) ⇒ Array, Integer (mod_func)

Computes the natural logarithm of the absolute value of the gamma function of decimal to the specified number of digits of precision, numeric and its sign.

BigMath.lgamma(BigDecimal('0.5'), 32)
#=> [0.57236494292470008707171367567653e0, 1]
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 757

def lgamma(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :lgamma)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :lgamma)
  prec2 = prec + BigDecimal.double_fig
  if x < 0.5
    return [BigDecimal::INFINITY, 1] if x.frac.zero?

    loop do
      # Euler's reflection formula: gamma(z) * gamma(1-z) = pi/sin(pi*z)
      pi = PI(prec2)
      sin = _sinpix(x, pi, prec2)
      log_gamma = BigMath.log(pi, prec2).sub(lgamma(1 - x, prec2).first + BigMath.log(sin.abs, prec2), prec)
      return [log_gamma, sin > 0 ? 1 : -1] if prec2 + log_gamma.exponent > prec + BigDecimal.double_fig

      # Retry with higher precision if loss of significance is too large
      prec2 = prec2 * 3 / 2
    end
  elsif x.frac.zero? && x < 1000 * prec
    log_gamma = BigMath.log(_gamma_positive_integer(x, prec2), prec)
    [log_gamma, 1]
  else
    # if x is close to 1 or 2, increase precision to reduce loss of significance
    diff1_exponent = (x - 1).exponent
    diff2_exponent = (x - 2).exponent
    extremely_near_one = diff1_exponent < -prec2
    extremely_near_two = diff2_exponent < -prec2

    if extremely_near_one || extremely_near_two
      # If x is extreamely close to base = 1 or 2, linear interpolation is accurate enough.
      # Taylor expansion at x = base is: (x - base) * digamma(base) + (x - base) ** 2 * trigamma(base) / 2 + ...
      # And we can ignore (x - base) ** 2 and higher order terms.
      base = extremely_near_one ? 1 : 2
      d = BigDecimal(1)._decimal_shift(1 - prec2)
      log_gamma_d, sign = lgamma(base + d, prec2)
      return [log_gamma_d.mult(x - base, prec2).div(d, prec), sign]
    end

    prec2 += [-diff1_exponent, -diff2_exponent, 0].max
    a, sum = _gamma_spouge_sum_part(x, prec2)
    log_gamma = BigMath.log(sum, prec2).add((x - 0.5).mult(BigMath.log(x.add(a - 1, prec2), prec2), prec2) + 1 - x, prec)
    [log_gamma, 1]
  end
end

.log(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the natural logarithm of decimal to the specified number of digits of precision, numeric.

If decimal is zero or negative, raises Math::DomainError.

If decimal is positive infinity, returns Infinity.

If decimal is NaN, returns NaN.

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal.rb', line 255

def log(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :log)
  raise Math::DomainError, 'Complex argument for BigMath.log' if Complex === x

  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  raise Math::DomainError, 'Negative argument for log' if x < 0
  return -BigDecimal::Internal.infinity_computation_result if x.zero?
  return BigDecimal::Internal.infinity_computation_result if x.infinite?
  return BigDecimal(0) if x == 1

  prec2 = prec + BigDecimal.double_fig
  BigDecimal.save_limit do
    BigDecimal.limit(0)
    if x > 10 || x < 0.1
      log10 = log(BigDecimal(10), prec2)
      exponent = x.exponent
      x = x._decimal_shift(-exponent)
      if x < 0.3
        x *= 10
        exponent -= 1
      end
      return (log10 * exponent).add(log(x, prec2), prec)
    end

    x_minus_one_exponent = (x - 1).exponent

    # log(x) = log(sqrt(sqrt(sqrt(sqrt(x))))) * 2**sqrt_steps
    sqrt_steps = [Integer.sqrt(prec2) + 3 * x_minus_one_exponent, 0].max

    lg2 = 0.3010299956639812
    sqrt_prec = prec2 + [-x_minus_one_exponent, 0].max + (sqrt_steps * lg2).ceil

    sqrt_steps.times do
      x = x.sqrt(sqrt_prec)
    end

    # Taylor series for log(x) around 1
    # log(x) = -log((1 + X) / (1 - X)) where X = (x - 1) / (x + 1)
    # log(x) = 2 * (X + X**3 / 3 + X**5 / 5 + X**7 / 7 + ...)
    x = (x - 1).div(x + 1, sqrt_prec)
    y = x
    x2 = x.mult(x, prec2)
    1.step do |i|
      n = prec2 + x.exponent - y.exponent + x2.exponent
      break if n <= 0 || x.zero?
      x = x.mult(x2.round(n - x2.exponent), n)
      y = y.add(x.div(2 * i + 1, n), prec2)
    end

    y.mult(2 ** (sqrt_steps + 1), prec)
  end
end

.log10(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the base 10 logarithm of decimal to the specified number of digits of precision, numeric.

If decimal is zero or negative, raises Math::DomainError.

If decimal is positive infinity, returns Infinity.

If decimal is NaN, returns NaN.

BigMath.log10(BigDecimal('3'), 32).to_s
#=> "0.47712125471966243729502790325512e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 522

def log10(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :log10)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log10)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result if x.infinite? == 1

  prec2 = prec + BigDecimal.double_fig * 3 / 2
  v = log(x, prec2).div(log(BigDecimal(10), prec2), prec2)
  # Perform half-up rounding to calculate log10(10**n)==n correctly in every rounding mode
  v = v.round(prec + BigDecimal.double_fig - (v.exponent < 0 ? v.exponent : 0), BigDecimal::ROUND_HALF_UP)
  v.mult(1, prec)
end

.log1p(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes log(1 + decimal) to the specified number of digits of precision, numeric.

BigMath.log1p(BigDecimal('0.1'), 32).to_s
#=> "0.95310179804324860043952123280765e-1"

Raises:

  • (Math::DomainError)
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 543

def log1p(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :log1p)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log1p)
  raise Math::DomainError, 'Out of domain argument for log1p' if x < -1

  return log(x + 1, prec)
end

.log2(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the base 2 logarithm of decimal to the specified number of digits of precision, numeric.

If decimal is zero or negative, raises Math::DomainError.

If decimal is positive infinity, returns Infinity.

If decimal is NaN, returns NaN.

BigMath.log2(BigDecimal('3'), 32).to_s
#=> "0.15849625007211561814537389439478e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 494

def log2(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :log2)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log2)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result if x.infinite? == 1

  prec2 = prec + BigDecimal.double_fig * 3 / 2
  v = log(x, prec2).div(log(BigDecimal(2), prec2), prec2)
  # Perform half-up rounding to calculate log2(2**n)==n correctly in every rounding mode
  v = v.round(prec + BigDecimal.double_fig - (v.exponent < 0 ? v.exponent : 0), BigDecimal::ROUND_HALF_UP)
  v.mult(1, prec)
end

PI(numeric) ⇒ BigDecimal (mod_func)

Computes the value of pi to the specified number of digits of precision, numeric.

BigMath.PI(32).to_s
#=> "0.31415926535897932384626433832795e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 899

def PI(prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :PI)
  n      = prec + BigDecimal.double_fig
  zero   = BigDecimal("0")
  one    = BigDecimal("1")
  two    = BigDecimal("2")

  m25    = BigDecimal("-0.04")
  m57121 = BigDecimal("-57121")

  pi     = zero

  d = one
  k = one
  t = BigDecimal("-80")
  while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t   = t*m25
    d   = t.div(k,m)
    k   = k+two
    pi  = pi + d
  end

  d = one
  k = one
  t = BigDecimal("956")
  while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t   = t.div(m57121,n)
    d   = t.div(k,m)
    pi  = pi + d
    k   = k+two
  end
  pi.mult(1, prec)
end

.sin(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the sine of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.sin(BigMath.PI(5)/4, 32).to_s
#=> "0.70710807985947359435812921837984e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 155

def sin(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :sin)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sin)
  return BigDecimal::Internal.nan_computation_result if x.infinite? || x.nan?
  n    = prec + BigDecimal.double_fig
  one  = BigDecimal("1")
  two  = BigDecimal("2")
  sign, x = _sin_periodic_reduction(x, n)
  x1   = x
  x2   = x.mult(x,n)
  y    = x
  d    = y
  i    = one
  z    = one
  while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    x1  = -x2.mult(x1,n)
    i  += two
    z  *= (i-one) * i
    d   = x1.div(z,m)
    y  += d
  end
  y = BigDecimal("1") if y > 1
  y.mult(sign, prec)
end

.sinh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the hyperbolic sine of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.sinh(BigDecimal('1'), 32).to_s
#=> "0.11752011936438014568823818505956e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 356

def sinh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :sinh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sinh)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite?

  prec2 = prec + BigDecimal.double_fig
  prec2 -= x.exponent if x.exponent < 0
  e = exp(x, prec2)
  (e - BigDecimal(1).div(e, prec2)).div(2, prec)
end

.sqrt(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the square root of decimal to the specified number of digits of precision, numeric.

BigMath.sqrt(BigDecimal('2'), 32).to_s
#=> "0.14142135623730950488016887242097e1"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 64

def sqrt(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :sqrt)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sqrt)
  x.sqrt(prec)
end

.tan(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the tangent of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.tan(BigDecimal("0.0"), 4).to_s
#=> "0.0"

BigMath.tan(BigMath.PI(24) / 4, 32).to_s
#=> "0.99999999999999999999999830836025e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 214

def tan(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :tan)
  sin(x, prec + BigDecimal.double_fig).div(cos(x, prec + BigDecimal.double_fig), prec)
end

.tanh(decimal, numeric) ⇒ BigDecimal (mod_func)

Computes the hyperbolic tangent of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.tanh(BigDecimal('1'), 32).to_s
#=> "0.76159415595576488811945828260479e0"
[ GitHub ]

  
# File 'lib/bigdecimal/math.rb', line 401

def tanh(x, prec)
  prec = BigDecimal::Internal.coerce_validate_prec(prec, :tanh)
  x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :tanh)
  return BigDecimal::Internal.nan_computation_result if x.nan?
  return BigDecimal(x.infinite?) if x.infinite?

  prec2 = prec + BigDecimal.double_fig + [-x.exponent, 0].max
  e = exp(x, prec2)
  einv = BigDecimal(1).div(e, prec2)
  (e - einv).div(e + einv, prec)
end