Class: BigDecimal
| Relationships & Source Files | |
| Namespace Children | |
|
Modules:
| |
| Super Chains via Extension / Inclusion / Inheritance | |
|
Class Chain:
self,
::Numeric
|
|
|
Instance Chain:
self,
::Numeric
|
|
| Inherits: |
Numeric
|
| Defined in: | ext/bigdecimal/bigdecimal.c, lib/bigdecimal.rb, lib/bigdecimal.rb, lib/bigdecimal/util.rb |
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
Similarly:
(BigDecimal("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true
(1.2 - 1.0) == 0.2 #=> false
A Note About Precision
For a calculation using a BigDecimal and another value, the precision of the result depends on the type of value:
-
If
valueis a Float, the precision is Float::DIG + 1. -
If
valueis a Rational, the precision is larger thanFloat::DIG+ 1. -
If
valueis a BigDecimal, the precision isvalue‘s precision in the internal representation, which is platform-dependent. -
If
valueis other object, the precision is determined by the result of BigDecimal(value).
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal("1.0") / BigDecimal("0.0") #=> Infinity
BigDecimal("-1.0") / BigDecimal("0.0") #=> -Infinity
You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal("0.0") / BigDecimal("0.0") #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal('NaN')
n == 0.0 #=> false
n == n #=> false
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal("1.0") / BigDecimal("-Infinity") #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal("1.0") / BigDecimal("Infinity") #=> 0.0
(See .mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native ::Integer, ::Float, ::Rational, ::String, ::Complex, and ::NilClass classes:
require 'bigdecimal/util'
42.to_d # => 0.42e2
0.5.to_d # => 0.5e0
(2/3r).to_d(3) # => 0.667e0
"0.5".to_d # => 0.5e0
Complex(0.1234567, 0).to_d(4) # => 0.1235e0
nil.to_d # => 0.0
Methods for Working with JSON
-
::json_create: Returns a new BigDecimal object constructed from the given object.
-
#as_json: Returns a 2-element hash representing
self. -
#to_json: Returns a JSON string representing
self.
These methods are provided by the JSON gem. To make these methods available:
require 'json/add/bigdecimal'
-
License
Copyright © 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <mrkn@mrkn.jp> and ruby-core members.
Documented by zzak <zachary@zacharyscott.net>, mathew <meta@pobox.com>, and many other contributors.
Constant Summary
-
BASE =
# File 'ext/bigdecimal/bigdecimal.c', line 3485
Base value used in internal calculations. On a 32 bit system,
BASEis 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)INT2FIX((SIGNED_VALUE)BASE)
-
EXCEPTION_ALL =
# File 'ext/bigdecimal/bigdecimal.c', line 3493
Determines whether overflow, underflow or zero divide result in an exception being thrown. See .mode.
0xff -
EXCEPTION_INFINITY =
# File 'ext/bigdecimal/bigdecimal.c', line 3505
Determines what happens when the result of a computation is infinity. See .mode.
0x01 -
EXCEPTION_NaN =
# File 'ext/bigdecimal/bigdecimal.c', line 3499
Determines what happens when the result of a computation is not a number (NaN). See .mode.
0x02 -
EXCEPTION_OVERFLOW =
# File 'ext/bigdecimal/bigdecimal.c', line 3517
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See .mode.
0x01 -
EXCEPTION_UNDERFLOW =
# File 'ext/bigdecimal/bigdecimal.c', line 3511
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See .mode.
0x04 -
EXCEPTION_ZERODIVIDE =
# File 'ext/bigdecimal/bigdecimal.c', line 3523
Determines what happens when a division by zero is performed. See .mode.
0x10 -
INFINITY =
# File 'ext/bigdecimal/bigdecimal.c', line 3587
BigDecimal@Infinity] value.
Positive infinity[rdoc-ref
-
NAN =
# File 'ext/bigdecimal/bigdecimal.c', line 3593
BigDecimal@Not+a+Number]‘ value.
'{Not a Number}[rdoc-ref -
ROUND_CEILING =
# File 'ext/bigdecimal/bigdecimal.c', line 3551
Round towards +Infinity. See .mode.
5 -
ROUND_DOWN =
# File 'ext/bigdecimal/bigdecimal.c', line 3540
Indicates that values should be rounded towards zero. See .mode.
2 -
ROUND_FLOOR =
# File 'ext/bigdecimal/bigdecimal.c', line 3554
Round towards -Infinity. See .mode.
6 -
ROUND_HALF_DOWN =
# File 'ext/bigdecimal/bigdecimal.c', line 3549
Indicates that digits >= 6 should be rounded up, others rounded down. See .mode.
4 -
ROUND_HALF_EVEN =
# File 'ext/bigdecimal/bigdecimal.c', line 3557
Round towards the even neighbor. See .mode.
7 -
ROUND_HALF_UP =
# File 'ext/bigdecimal/bigdecimal.c', line 3544
Indicates that digits >= 5 should be rounded up, others rounded down. See .mode.
3 -
ROUND_MODE =
# File 'ext/bigdecimal/bigdecimal.c', line 3530
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See .mode.
0x100 -
ROUND_UP =
# File 'ext/bigdecimal/bigdecimal.c', line 3535
Indicates that values should be rounded away from zero. See .mode.
1 -
SIGN_NEGATIVE_FINITE =
# File 'ext/bigdecimal/bigdecimal.c', line 3572
Indicates that a value is negative and finite. See #sign.
-2
-
SIGN_NEGATIVE_INFINITE =
# File 'ext/bigdecimal/bigdecimal.c', line 3578
Indicates that a value is negative and infinite. See #sign.
-3
-
SIGN_NEGATIVE_ZERO =
# File 'ext/bigdecimal/bigdecimal.c', line 3566
Indicates that a value is -0. See #sign.
-1
-
SIGN_NaN =
# File 'ext/bigdecimal/bigdecimal.c', line 3560
Indicates that a value is not a number. See #sign.
0 -
SIGN_POSITIVE_FINITE =
# File 'ext/bigdecimal/bigdecimal.c', line 3569
Indicates that a value is positive and finite. See #sign.
2 -
SIGN_POSITIVE_INFINITE =
# File 'ext/bigdecimal/bigdecimal.c', line 3575
Indicates that a value is positive and infinite. See #sign.
3 -
SIGN_POSITIVE_ZERO =
# File 'ext/bigdecimal/bigdecimal.c', line 3563
Indicates that a value is +0. See #sign.
1 -
VERSION =
# File 'ext/bigdecimal/bigdecimal.c', line 3476
The version of bigdecimal library
rb_str_new2(BIGDECIMAL_VERSION)
Class Method Summary
-
._load(str)
Internalmethod used to provide marshalling support. - .double_fig
-
.interpret_loosely(string) ⇒ BigDecimal
Returns the
BigDecimalconverted loosely fromstring. -
.limit(digits)
Limit the number of significant digits in newly created
BigDecimalnumbers to the specified value. -
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
-
.save_exception_mode
Execute the provided block, but preserve the exception mode.
-
.save_limit
Execute the provided block, but preserve the precision limit.
-
.save_rounding_mode
Execute the provided block, but preserve the rounding mode.
Instance Attribute Summary
-
#finite? ⇒ Boolean
readonly
Returns True if the value is finite (not NaN or infinite).
-
#infinite? ⇒ Boolean
readonly
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
-
#nan? ⇒ Boolean
readonly
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
readonly
Returns self if the value is non-zero, nil otherwise.
-
#zero? ⇒ Boolean
readonly
Returns True if the value is zero.
Instance Method Summary
- #%
-
#*(b) ⇒ BigDecimal
Multiply by the specified value.
-
#**(other) ⇒ BigDecimal
Returns the BigDecimal value of
selfraised to powerother: -
#+(value) ⇒ BigDecimal
Returns the BigDecimal sum of
selfandvalue: -
#+ ⇒ self
Returns
self: -
#-(value) ⇒ BigDecimal
Returns the BigDecimal difference of
selfandvalue: -
#- ⇒ BigDecimal
Returns the BigDecimal negation of self:
- #/
-
#<(other) ⇒ Boolean
Returns
trueifselfis less thanother,falseotherwise: -
#<=(other) ⇒ Boolean
Returns
trueifselfis less or equal to thanother,falseotherwise: -
#<=>(r)
The comparison operator.
-
#==(r)
(also: #===, #eql?)
Tests for value equality; returns true if the values are equal.
-
#===(r)
Alias for #==.
-
#>(other) ⇒ Boolean
Returns
trueifselfis greater thanother,falseotherwise: -
#>=(other) ⇒ Boolean
Returns
trueifselfis greater than or equal toother,falseotherwise: -
#_dump ⇒ String
Returns a string representing the marshalling of
self. -
#abs ⇒ BigDecimal
Returns the BigDecimal absolute value of
self: -
#add(value, ndigits) ⇒ BigDecimal
Returns the BigDecimal sum of
selfandvaluewith a precision ofndigitsdecimal digits. -
#ceil(n)
Return the smallest integer greater than or equal to the value, as a
BigDecimal. -
#coerce(other)
The coerce method provides support for Ruby type coercion.
-
#div(value) ⇒ Integer
Divide by the specified value.
-
#divmod(value)
Divides by the specified value, and returns the quotient and modulus as
BigDecimalnumbers. - #dup (also: #clone)
-
#eql?(r)
Alias for #==.
-
#exponent
Returns the exponent of the
BigDecimalnumber, as an::Integer. -
#fix
Return the integer part of the number, as a
BigDecimal. -
#floor(n)
Return the largest integer less than or equal to the value, as a
BigDecimal. -
#frac
Return the fractional part of the number, as a
BigDecimal. -
#hash ⇒ Integer
Returns the integer hash value for
self. -
#inspect
Returns a string representation of self.
- #modulo
-
#mult(other, ndigits) ⇒ BigDecimal
Returns the BigDecimal product of
selfandvaluewith a precision ofndigitsdecimal digits. -
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in
self. -
#power(n)
Returns the value raised to the power of n.
-
#precision ⇒ Integer
Returns the number of decimal digits in
self: -
#precision_scale ⇒ Array, Integer
Returns a 2-length array; the first item is the result of #precision and the second one is of #scale.
-
#precs ⇒ Array
Returns an Array of two
::Integervalues that represent platform-dependent internal storage properties. -
#quo(value) ⇒ BigDecimal
Divide by the specified value.
- #remainder
-
#round(n, mode)
Round to the nearest integer (by default), returning the result as a
BigDecimalif n is specified and positive, or as an::Integerif it isn’t. -
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in
self. -
#sign
Returns the sign of the value.
-
#split
Splits a
BigDecimalnumber into four parts, returned as an array of values. -
#sqrt(prec)
Returns the square root of the value.
-
#sub(value, digits) ⇒ BigDecimal
Subtract the specified value.
-
#to_d ⇒ BigDecimal
Returns self.
-
#to_digits ⇒ String
Converts a
BigDecimalto a::Stringof the form “nnnnnn.mmm”. -
#to_f
Returns a new
::Floatobject having approximately the same value as theBigDecimalnumber. -
#to_i
(also: #to_int)
Returns the value as an
::Integer. -
#to_int
Alias for #to_i.
-
#to_r
Converts a
BigDecimalto a::Rational. -
#to_s(s) ⇒ ?
Converts the value to a string.
-
#truncate(n)
Truncate to the nearest integer (by default), returning the result as a
BigDecimal. - #vpdivd(r, cprec)
- #vpmult(v)
- #_decimal_shift(i) Internal use only
-
#clone
Internal use only
Alias for #dup.
Class Method Details
._load(str)
::BigDecimal::Internal method used to provide marshalling support. See the Marshal module.
# File 'ext/bigdecimal/bigdecimal.c', line 722
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
BDVALUE v;
unsigned char *pch;
unsigned char ch;
pch = (unsigned char *)StringValueCStr(str);
/* First skip max prec. Don't trust the value. */
while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
}
v = bdvalue_nonnullable(CreateFromString((char *)pch, self, true, true));
return CheckGetValue(v);
}
.double_fig
[ GitHub ]
.interpret_loosely(string) ⇒ BigDecimal
Returns the BigDecimal converted loosely from string.
# File 'ext/bigdecimal/bigdecimal.c', line 3061
static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
char const *c_str = StringValueCStr(str);
NULLABLE_BDVALUE v = CreateFromString(c_str, klass, false, true);
if (v.bigdecimal_or_nil == Qnil)
return Qnil;
else
return CheckGetValue(bdvalue_nonnullable(v));
}
.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by .mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
# File 'ext/bigdecimal/bigdecimal.c', line 3085
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = SIZET2NUM(VpGetPrecLimit());
if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
int nf;
if (NIL_P(nFig)) return nCur;
nf = NUM2INT(nFig);
if (nf < 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
These modes control exception handling:
-
BigDecimal::EXCEPTION_NaN.
-
BigDecimal::EXCEPTION_INFINITY.
-
BigDecimal::EXCEPTION_UNDERFLOW.
-
BigDecimal::EXCEPTION_OVERFLOW.
-
BigDecimal::EXCEPTION_ZERODIVIDE.
-
BigDecimal::EXCEPTION_ALL.
Values for setting for exception handling:
-
true: sets the givenmodetotrue. -
false: sets the givenmodetofalse. -
nil: does not modify the mode settings.
You can use method .save_exception_mode to temporarily change, and then automatically restore, exception modes.
For clarity, some examples below begin by setting all exception modes to false.
This mode controls the way rounding is to be performed:
-
BigDecimal::ROUND_MODE
You can use method .save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.
NaNs
Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.
Settings:
-
false(default): ReturnsBigDecimal('NaN'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN') # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true) # => 2
BigDecimal('NaN') # Raises FloatDomainError
Infinities
Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('Infinity') # => Infinity
BigDecimal('-Infinity') # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity') # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError
Underflow
Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:
-
false(default): ReturnsBigDecimal('0')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_under
x = BigDecimal('0.1')
100.times { x *= x }
end
flow_under # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError
Overflow
Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_over
x = BigDecimal('10')
100.times { x *= x }
end
flow_over # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError
Zero Division
Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError
All Exceptions
Mode BigDecimal::EXCEPTION_ALL controls all of the above:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true) # => 23
Rounding
Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:
-
ROUND_UP: Round away from zero. Aliased as
:up. -
ROUND_DOWN: Round toward zero. Aliased as
:downand:truncate. -
ROUND_HALF_UP: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as
:half_upand:default. -
ROUND_HALF_DOWN: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as
:half_down. -
ROUND_HALF_EVEN (Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as
:half_evenand:banker. -
ROUND_CEILING: Round toward positive infinity. Aliased as
:ceilingand:ceil. -
ROUND_FLOOR: Round toward negative infinity. Aliased as
:floor:.
# File 'ext/bigdecimal/bigdecimal.c', line 974
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
rb_scan_args(argc, argv, "11", &which, &val);
f = (unsigned long)NUM2INT(which);
if (f & VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if (val == Qnil) return INT2FIX(fo);
if (val != Qfalse && val!=Qtrue) {
rb_raise(rb_eArgError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if (f & VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
(fo & (~VP_EXCEPTION_INFINITY))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
(fo & (~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_UNDERFLOW) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
(fo & (~VP_EXCEPTION_UNDERFLOW))));
}
fo = VpGetException();
if(f & VP_EXCEPTION_ZERODIVIDE) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
(fo & (~VP_EXCEPTION_ZERODIVIDE))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if (VP_ROUND_MODE == f) {
/* Rounding mode setting */
unsigned short sw;
fo = VpGetRoundMode();
if (NIL_P(val)) return INT2FIX(fo);
sw = check_rounding_mode(val);
fo = VpSetRoundMode(sw);
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
return Qnil;
}
.save_exception_mode
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
For use with the BigDecimal::EXCEPTION_*
See .mode
# File 'ext/bigdecimal/bigdecimal.c', line 3146
static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
unsigned short const exception_mode = VpGetException();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetException(exception_mode);
if (state) rb_jump_tag(state);
return ret;
}
.save_limit
# File 'ext/bigdecimal/bigdecimal.c', line 3196
static VALUE
BigDecimal_save_limit(VALUE self)
{
size_t const limit = VpGetPrecLimit();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetPrecLimit(limit);
if (state) rb_jump_tag(state);
return ret;
}
.save_rounding_mode
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
For use with the BigDecimal::ROUND_*
See .mode
# File 'ext/bigdecimal/bigdecimal.c', line 3171
static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
unsigned short const round_mode = VpGetRoundMode();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetRoundMode(round_mode);
if (state) rb_jump_tag(state);
return ret;
}
Instance Attribute Details
#finite? ⇒ Boolean (readonly)
Returns True if the value is finite (not NaN or infinite).
# File 'ext/bigdecimal/bigdecimal.c', line 1100
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsNaN(p)) return Qfalse;
if (VpIsInf(p)) return Qfalse;
return Qtrue;
}
#infinite? ⇒ Boolean (readonly)
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
# File 'ext/bigdecimal/bigdecimal.c', line 1090
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsPosInf(p)) return INT2FIX(1);
if (VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
#nan? ⇒ Boolean (readonly)
Returns True if the value is Not a Number.
# File 'ext/bigdecimal/bigdecimal.c', line 1079
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsNaN(p)) return Qtrue;
return Qfalse;
}
#nonzero? ⇒ Boolean (readonly)
Returns self if the value is non-zero, nil otherwise.
# File 'ext/bigdecimal/bigdecimal.c', line 1461
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetSelfVpValue(self);
return VpIsZero(a) ? Qnil : self;
}
#zero? ⇒ Boolean (readonly)
Returns True if the value is zero.
# File 'ext/bigdecimal/bigdecimal.c', line 1453
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetSelfVpValue(self);
return VpIsZero(a) ? Qtrue : Qfalse;
}
Instance Method Details
#%
[ GitHub ]
#*(b) ⇒ BigDecimal
Multiply by the specified value.
The result precision will be the precision of the sum of each precision.
See #mult.
# File 'ext/bigdecimal/bigdecimal.c', line 1607
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '*');
return BigDecimal_mult_with_coerce(self, r, 0);
}
#**(other) ⇒ BigDecimal
#+(value) ⇒ BigDecimal
Returns the BigDecimal sum of self and value:
b = BigDecimal('111111.111') # => 0.111111111e6
b + 2 # => 0.111113111e6
b + 2.0 # => 0.111113111e6
b + Rational(2, 1) # => 0.111113111e6
b + Complex(2, 0) # => (0.111113111e6+0i)
See the Note About Precision.
# File 'ext/bigdecimal/bigdecimal.c', line 1315
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '+');
return BigDecimal_addsub_with_coerce(self, r, 0, +1);
}
#+ ⇒ self
Returns self:
+BigDecimal(5) # => 0.5e1
+BigDecimal(-5) # => -0.5e1
# File 'ext/bigdecimal/bigdecimal.c', line 1284
static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}
#-(value) ⇒ BigDecimal
Returns the BigDecimal difference of self and value:
b = BigDecimal('333333.333') # => 0.333333333e6
b - 2 # => 0.333331333e6
b - 2.0 # => 0.333331333e6
b - Rational(2, 1) # => 0.333331333e6
b - Complex(2, 0) # => (0.333331333e6+0i)
See the Note About Precision.
# File 'ext/bigdecimal/bigdecimal.c', line 1369
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '-');
return BigDecimal_addsub_with_coerce(self, r, 0, -1);
}
#- ⇒ BigDecimal
Returns the BigDecimal negation of self:
b0 = BigDecimal('1.5')
b1 = -b0 # => -0.15e1
b2 = -b1 # => 0.15e1
# File 'ext/bigdecimal/bigdecimal.c', line 1587
static VALUE
BigDecimal_neg(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG);
VpAsgn(c.real, a.real, -10);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
#/
[ GitHub ]
#<(other) ⇒ Boolean
Returns true if self is less than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b < 2 # => true
b < 2.0 # => true
b < Rational(2, 1) # => true
b < 1.5 # => false
Raises an exception if the comparison cannot be made.
# File 'ext/bigdecimal/bigdecimal.c', line 1507
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
#<=(other) ⇒ Boolean
Returns true if self is less or equal to than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b <= 2 # => true
b <= 2.0 # => true
b <= Rational(2, 1) # => true
b <= 1.5 # => true
b < 1 # => false
Raises an exception if the comparison cannot be made.
# File 'ext/bigdecimal/bigdecimal.c', line 1528
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
#<=>(r)
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
# File 'ext/bigdecimal/bigdecimal.c', line 1471
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}
#==(r) Also known as: #===, #eql?
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
# File 'ext/bigdecimal/bigdecimal.c', line 1487
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
#===(r)
Alias for #==.
#>(other) ⇒ Boolean
Returns true if self is greater than other, false otherwise:
b = BigDecimal('1.5')
b > 1 # => true
b > 1.0 # => true
b > Rational(1, 1) # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
# File 'ext/bigdecimal/bigdecimal.c', line 1548
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
#>=(other) ⇒ Boolean
Returns true if self is greater than or equal to other, false otherwise:
b = BigDecimal('1.5')
b >= 1 # => true
b >= 1.0 # => true
b >= Rational(1, 1) # => true
b >= 1.5 # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
# File 'ext/bigdecimal/bigdecimal.c', line 1569
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
#_decimal_shift(i)
# File 'lib/bigdecimal.rb', line 5
def _decimal_shift(i) # :nodoc: to_java.move_point_right(i).to_d end
#_dump ⇒ String
Returns a string representing the marshalling of self. See module Marshal.
inf = BigDecimal('Infinity') # => Infinity
dumped = inf._dump # => "9:Infinity"
BigDecimal._load(dumped) # => Infinity
# File 'ext/bigdecimal/bigdecimal.c', line 697
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
BDVALUE v;
char *psz;
VALUE dummy;
volatile VALUE dump;
size_t len;
rb_scan_args(argc, argv, "01", &dummy);
v = GetBDValueMust(self);
dump = rb_str_new(0, VpNumOfChars(v.real, "E")+50);
psz = RSTRING_PTR(dump);
snprintf(psz, RSTRING_LEN(dump), "%"PRIuSIZE":", v.real->Prec*VpBaseFig());
len = strlen(psz);
VpToString(v.real, psz+len, RSTRING_LEN(dump)-len, 0, 0);
rb_str_resize(dump, strlen(psz));
RB_GC_GUARD(v.bigdecimal);
return dump;
}
#abs ⇒ BigDecimal
Returns the BigDecimal absolute value of self:
BigDecimal('5').abs # => 0.5e1
BigDecimal('-3').abs # => 0.3e1
# File 'ext/bigdecimal/bigdecimal.c', line 2070
static VALUE
BigDecimal_abs(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG);
VpAsgn(c.real, a.real, 10);
VpChangeSign(c.real, 1);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
#add(value, ndigits) ⇒ BigDecimal
Returns the BigDecimal sum of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see .mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('111111.111')
b.add(1, 0) # => 0.111112111e6
b.add(1, 3) # => 0.111e6
b.add(1, 6) # => 0.111112e6
b.add(1, 15) # => 0.111112111e6
b.add(1.0, 15) # => 0.111112111e6
b.add(Rational(1, 1), 15) # => 0.111112111e6
# File 'ext/bigdecimal/bigdecimal.c', line 2002
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), +1);
}
#ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').ceil #=> 4
BigDecimal('-9.1').ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').ceil(3) #=> 3.142
BigDecimal('13345.234').ceil(-2) #=> 13400.0
# File 'ext/bigdecimal/bigdecimal.c', line 2277
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_CEIL);
}
#clone
Alias for #dup.
#coerce(other)
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
Note that coercing a ::String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
# File 'ext/bigdecimal/bigdecimal.c', line 1265
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
Real* pv = DATA_PTR(self);
BDVALUE b = GetBDValueWithPrecMust(other, GetCoercePrec(pv, 0));
return rb_assoc_new(CheckGetValue(b), self);
}
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as for the / operator or #quo.
If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3) # => 0.133e1
a.div(b, 0) # => 0.1333333333333333333e1
a / b # => 0.1333333333333333333e1
a.quo(b) # => 0.1333333333333333333e1
a.div(b) # => 1
# File 'ext/bigdecimal/bigdecimal.c', line 1967
static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
VALUE b,n;
rb_scan_args(argc, argv, "11", &b, &n);
return BigDecimal_div2(self, b, n);
}
#divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal("42")
b = BigDecimal("9")
q, m = a.divmod(b)
c = q * b + m
a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
# File 'ext/bigdecimal/bigdecimal.c', line 1864
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
NULLABLE_BDVALUE div, mod;
if (BigDecimal_DoDivmod(self, r, &div, &mod, false)) {
return rb_assoc_new(CheckGetValue(bdvalue_nonnullable(div)), CheckGetValue(bdvalue_nonnullable(mod)));
}
return DoSomeOne(self,r,rb_intern("divmod"));
}
#dup Also known as: #clone
[ GitHub ]# File 'ext/bigdecimal/bigdecimal.c', line 2561
static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}
#eql?(r)
Alias for #==.
#exponent
Returns the exponent of the BigDecimal number, as an ::Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
# File 'ext/bigdecimal/bigdecimal.c', line 2450
static VALUE
BigDecimal_exponent(VALUE self)
{
ssize_t e = VpExponent10(GetSelfVpValue(self));
return SSIZET2NUM(e);
}
#fix
Return the integer part of the number, as a BigDecimal.
# File 'ext/bigdecimal/bigdecimal.c', line 2083
static VALUE
BigDecimal_fix(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG);
VpActiveRound(c.real, a.real, VP_ROUND_DOWN, 0); /* 0: round off */
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
#floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').floor #=> 3
BigDecimal('-9.1').floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').floor(3) #=> 3.141
BigDecimal('13345.234').floor(-2) #=> 13300.0
# File 'ext/bigdecimal/bigdecimal.c', line 2254
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_FLOOR);
}
#frac
Return the fractional part of the number, as a BigDecimal.
# File 'ext/bigdecimal/bigdecimal.c', line 2227
static VALUE
BigDecimal_frac(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG);
VpFrac(c.real, a.real);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
#hash ⇒ Integer
Returns the integer hash value for self.
Two instances of BigDecimal have the same hash value if and only if they have equal:
-
Sign.
-
Fractional part.
-
Exponent.
# File 'ext/bigdecimal/bigdecimal.c', line 671
static VALUE
BigDecimal_hash(VALUE self)
{
BDVALUE v = GetBDValueMust(self);
st_index_t hash = (st_index_t)v.real->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash == 2 || hash == (st_index_t)-2) {
hash ^= rb_memhash(v.real->frac, sizeof(DECDIG)*v.real->Prec);
hash += v.real->exponent;
}
RB_GC_GUARD(v.bigdecimal);
return ST2FIX(hash);
}
#inspect
Returns a string representation of self.
BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
# File 'ext/bigdecimal/bigdecimal.c', line 2462
static VALUE
BigDecimal_inspect(VALUE self)
{
BDVALUE v;
volatile VALUE str;
size_t nc;
v = GetBDValueMust(self);
nc = VpNumOfChars(v.real, "E");
str = rb_str_new(0, nc);
VpToString(v.real, RSTRING_PTR(str), RSTRING_LEN(str), 0, 0);
rb_str_resize(str, strlen(RSTRING_PTR(str)));
RB_GC_GUARD(v.bigdecimal);
return str;
}
#modulo
[ GitHub ]
#mult(other, ndigits) ⇒ BigDecimal
Returns the BigDecimal product of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see .mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('555555.555')
b.mult(3, 0) # => 0.1666666665e7
b.mult(3, 3) # => 0.167e7
b.mult(3, 6) # => 0.166667e7
b.mult(3, 15) # => 0.1666666665e7
b.mult(3.0, 0) # => 0.1666666665e7
b.mult(Rational(3, 1), 0) # => 0.1666666665e7
b.mult(Complex(3, 0), 0) # => (0.1666666665e7+0.0i)
# File 'ext/bigdecimal/bigdecimal.c', line 2053
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_mult_with_coerce(self, b, check_int_precision(n));
}
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in self.
BigDecimal("0").n_significant_digits # => 0
BigDecimal("1").n_significant_digits # => 1
BigDecimal("1.1").n_significant_digits # => 2
BigDecimal("3.1415").n_significant_digits # => 5
BigDecimal("-1e20").n_significant_digits # => 1
BigDecimal("1e-20").n_significant_digits # => 1
BigDecimal("Infinity").n_significant_digits # => 0
BigDecimal("-Infinity").n_significant_digits # => 0
BigDecimal("NaN").n_significant_digits # => 0
# File 'ext/bigdecimal/bigdecimal.c', line 633
static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
BDVALUE v = GetBDValueMust(self);
if (VpIsZero(v.real) || !VpIsDef(v.real)) {
return INT2FIX(0);
}
ssize_t n = v.real->Prec; /* The length of frac without trailing zeros. */
for (n = v.real->Prec; n > 0 && v.real->frac[n-1] == 0; --n);
if (n == 0) return INT2FIX(0);
DECDIG x;
int nlz = BASE_FIG;
for (x = v.real->frac[0]; x > 0; x /= 10) --nlz;
int ntz = 0;
for (x = v.real->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz;
RB_GC_GUARD(v.bigdecimal);
ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz;
return SSIZET2NUM(n_significant_digits);
}
#power(n)
#power(n, prec)
Returns the value raised to the power of n.
Also available as the operator **.
# File 'lib/bigdecimal.rb', line 97
def power(y, prec = 0) prec = Internal.coerce_validate_prec(prec, :power, accept_zero: true) x = self y = Internal.coerce_to_bigdecimal(y, prec.nonzero? || n_significant_digits, :power) return Internal.nan_computation_result if x.nan? || y.nan? return BigDecimal(1) if y.zero? if y.infinite? if x < 0 return BigDecimal(0) if x < -1 && y.negative? return BigDecimal(0) if x > -1 && y.positive? raise Math::DomainError, 'Result undefined for negative base raised to infinite power' elsif x < 1 return y.positive? ? BigDecimal(0) : BigDecimal::Internal.infinity_computation_result elsif x == 1 return BigDecimal(1) else return y.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) end end if x.infinite? && y < 0 # Computation result will be +0 or -0. Avoid overflow. neg = x < 0 && y.frac.zero? && y % 2 == 1 return neg ? -BigDecimal(0) : BigDecimal(0) end if x.zero? return BigDecimal(1) if y.zero? return BigDecimal(0) if y > 0 if y.frac.zero? && y % 2 == 1 && x.sign == -1 return -BigDecimal::Internal.infinity_computation_result else return BigDecimal::Internal.infinity_computation_result end elsif x < 0 if y.frac.zero? if y % 2 == 0 return (-x).power(y, prec) else return -(-x).power(y, prec) end else raise Math::DomainError, 'Computation results in complex number' end elsif x == 1 return BigDecimal(1) end prec = BigDecimal.limit if prec.zero? frac_part = y.frac if frac_part.zero? && prec.zero? # Infinite precision calculation for `x ** int` and `x.power(int)` int_part = y.fix.to_i int_part = -int_part if (neg = int_part < 0) ans = BigDecimal(1) n = 1 xn = x while true ans *= xn if int_part.allbits?(n) n <<= 1 break if n > int_part xn *= xn # Detect overflow/underflow before consuming infinite memory if (xn.exponent.abs - 1) * int_part / n >= 0x7FFFFFFFFFFFFFFF return ((xn.exponent > 0) ^ neg ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)) * (int_part.even? || x > 0 ? 1 : -1) end end return neg ? BigDecimal(1) / ans : ans end prec = [x.n_significant_digits, y.n_significant_digits, BigDecimal.double_fig].max + BigDecimal.double_fig if prec.zero? if y < 0 inv = x.power(-y, prec) return BigDecimal(0) if inv.infinite? return BigDecimal::Internal.infinity_computation_result if inv.zero? return BigDecimal(1).div(inv, prec) end prec2 = prec + BigDecimal.double_fig if frac_part.zero? && y.exponent < Math.log(prec) * 5 + 20 # Use exponentiation by squaring if y is an integer and not too large pow_prec = prec2 + y.exponent n = 1 xn = x ans = BigDecimal(1) int_part = y.fix.to_i while true ans = ans.mult(xn, pow_prec) if int_part.allbits?(n) n <<= 1 break if n > int_part xn = xn.mult(xn, pow_prec) end ans.mult(1, prec) else if x > 1 # To calculate exp(z, prec), z needs prec+max(z.exponent, 0) precision if z > 0. # Estimate (y*log(x)).exponent logx_exponent = x < 2 ? (x - 1).exponent : Math.log10(x.exponent).round ylogx_exponent = y.exponent + logx_exponent prec2 += [ylogx_exponent, 0].max end BigMath.exp(BigMath.log(x, prec2).mult(y, prec2), prec) end end
#precision ⇒ Integer
Returns the number of decimal digits in self:
BigDecimal("0").precision # => 0
BigDecimal("1").precision # => 1
BigDecimal("1.1").precision # => 2
BigDecimal("3.1415").precision # => 5
BigDecimal("-1e20").precision # => 21
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").precision # => 0
BigDecimal("-Infinity").precision # => 0
BigDecimal("NaN").precision # => 0
# File 'ext/bigdecimal/bigdecimal.c', line 567
static VALUE
BigDecimal_precision(VALUE self)
{
ssize_t precision;
BigDecimal_count_precision_and_scale(self, &precision, NULL);
return SSIZET2NUM(precision);
}
#precision_scale ⇒ Array, Integer
Returns a 2-length array; the first item is the result of #precision and the second one is of #scale.
See #precision. See #scale.
# File 'ext/bigdecimal/bigdecimal.c', line 609
static VALUE
BigDecimal_precision_scale(VALUE self)
{
ssize_t precision, scale;
BigDecimal_count_precision_and_scale(self, &precision, &scale);
return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale));
}
#precs ⇒ Array
Returns an Array of two ::Integer values that represent platform-dependent internal storage properties.
This method is deprecated and will be removed in the future. Instead, use #n_significant_digits for obtaining the number of significant digits in scientific notation, and #precision for obtaining the number of digits in decimal notation.
# File 'ext/bigdecimal/bigdecimal.c', line 416
static VALUE
BigDecimal_prec(VALUE self)
{
BDVALUE v;
VALUE obj;
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
"BigDecimal#precs is deprecated and will be removed in the future; "
"use BigDecimal#precision instead.");
v = GetBDValueMust(self);
obj = rb_assoc_new(SIZET2NUM(v.real->Prec*VpBaseFig()),
SIZET2NUM(v.real->MaxPrec*VpBaseFig()));
RB_GC_GUARD(v.bigdecimal);
return obj;
}
#quo(value) ⇒ BigDecimal
#quo(value, digits) ⇒ BigDecimal
BigDecimal
#quo(value, digits) ⇒ BigDecimal
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by BigDecimal.mode.
If digits is 0 or omitted, the result is the same as for the / operator.
# File 'ext/bigdecimal/bigdecimal.c', line 1675
static VALUE
BigDecimal_quo(int argc, VALUE *argv, VALUE self)
{
VALUE value, digits, result;
SIGNED_VALUE n = -1;
argc = rb_scan_args(argc, argv, "11", &value, &digits);
if (argc > 1) {
n = check_int_precision(digits);
}
if (n > 0) {
result = BigDecimal_div2(self, value, digits);
}
else {
result = BigDecimal_div(self, value);
}
return result;
}
#remainder
[ GitHub ]#round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified and positive, or as an ::Integer if it isn’t.
BigDecimal('3.14159').round #=> 3
BigDecimal('8.7').round #=> 9
BigDecimal('-9.9').round #=> -10
BigDecimal('3.14159').round(2).class.name #=> "BigDecimal"
BigDecimal('3.14159').round.class.name #=> "Integer"
BigDecimal('3.14159').round(0).class.name #=> "Integer"
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an ::Integer.
BigDecimal('3.14159').round(3) #=> 3.142
BigDecimal('13345.234').round(-2) #=> 13300
The value of the optional mode argument can be used to determine how rounding is performed; see .mode.
# File 'ext/bigdecimal/bigdecimal.c', line 2119
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
BDVALUE c, a;
int iLoc = 0;
VALUE vLoc;
VALUE vRound;
int round_to_int = 0;
size_t mx;
unsigned short sw = VpGetRoundMode();
switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
case 0:
iLoc = 0;
round_to_int = 1;
break;
case 1:
if (RB_TYPE_P(vLoc, T_HASH)) {
sw = check_rounding_mode_option(vLoc);
}
else {
iLoc = NUM2INT(vLoc);
if (iLoc < 1) round_to_int = 1;
}
break;
case 2:
iLoc = NUM2INT(vLoc);
if (RB_TYPE_P(vRound, T_HASH)) {
sw = check_rounding_mode_option(vRound);
}
else {
sw = check_rounding_mode(vRound);
}
break;
default:
break;
}
a = GetBDValueMust(self);
mx = (a.real->Prec + 1) * BASE_FIG;
c = NewZeroWrap(1, mx);
VpActiveRound(c.real, a.real, sw, iLoc);
RB_GC_GUARD(a.bigdecimal);
if (round_to_int) {
return BigDecimal_to_i(CheckGetValue(c));
}
return CheckGetValue(c);
}
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in self.
BigDecimal("0").scale # => 0
BigDecimal("1").scale # => 0
BigDecimal("1.1").scale # => 1
BigDecimal("3.1415").scale # => 4
BigDecimal("-1e20").scale # => 0
BigDecimal("1e-20").scale # => 20
BigDecimal("Infinity").scale # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale # => 0
# File 'ext/bigdecimal/bigdecimal.c', line 591
static VALUE
BigDecimal_scale(VALUE self)
{
ssize_t scale;
BigDecimal_count_precision_and_scale(self, NULL, &scale);
return SSIZET2NUM(scale);
}
#sign
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0. It behaves the same with zeros - it returns a positive value for a positive zero (BigDecimal(‘0’)) and a negative value for a negative zero (BigDecimal(‘-0’)).
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
# File 'ext/bigdecimal/bigdecimal.c', line 3121
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetSelfVpValue(self)->sign;
return INT2FIX(s);
}
#split
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an ::Integer.
The fourth value is an ::Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a ::Float.)
# File 'ext/bigdecimal/bigdecimal.c', line 2412
static VALUE
BigDecimal_split(VALUE self)
{
BDVALUE v;
VALUE obj,str;
ssize_t e, s;
char *psz1;
v = GetBDValueMust(self);
str = rb_str_new(0, VpNumOfChars(v.real, "E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(v.real, psz1, RSTRING_LEN(str));
s = 1;
if(psz1[0] == '-') {
size_t len = strlen(psz1 + 1);
memmove(psz1, psz1 + 1, len);
psz1[len] = '\0';
s = -1;
}
if (psz1[0] == 'N') s = 0; /* NaN */
e = VpExponent10(v.real);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, SSIZET2NUM(e));
RB_GC_GUARD(v.bigdecimal);
return obj;
}
#sqrt(prec)
Returns the square root of the value.
Result has at least prec significant digits.
# File 'lib/bigdecimal.rb', line 211
def sqrt(prec) prec = Internal.coerce_validate_prec(prec, :sqrt, accept_zero: true) return Internal.infinity_computation_result if infinite? == 1 raise FloatDomainError, 'sqrt of negative value' if self < 0 raise FloatDomainError, "sqrt of 'NaN'(Not a Number)" if nan? return self if zero? if prec == 0 prec = BigDecimal.limit.nonzero? || n_significant_digits + BigDecimal.double_fig end ex = exponent / 2 x = _decimal_shift(-2 * ex) y = BigDecimal(Math.sqrt(x.to_f), 0) precs = [prec + BigDecimal.double_fig] precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig precs.reverse_each do |p| y = y.add(x.div(y, p), p).div(2, p) end y._decimal_shift(ex).mult(1, prec) end
#sub(value, digits) ⇒ BigDecimal
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
# File 'ext/bigdecimal/bigdecimal.c', line 2021
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), -1);
}
#to_d ⇒ BigDecimal
Returns self.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_d # => 0.314e1
# File 'lib/bigdecimal/util.rb', line 110
def to_d self end
#to_digits ⇒ String
#to_f
# File 'ext/bigdecimal/bigdecimal.c', line 1161
static VALUE
BigDecimal_to_f(VALUE self)
{
double d;
SIGNED_VALUE e;
char *buf;
volatile VALUE str;
BDVALUE v = GetBDValueMust(self);
bool negative = BIGDECIMAL_NEGATIVE_P(v.real);
if (VpVtoD(&d, &e, v.real) != 1)
return rb_float_new(d);
if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
goto overflow;
if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-DBL_DIG))
goto underflow;
str = rb_str_new(0, VpNumOfChars(v.real, "E"));
buf = RSTRING_PTR(str);
VpToString(v.real, buf, RSTRING_LEN(str), 0, 0);
RB_GC_GUARD(v.bigdecimal);
errno = 0;
d = strtod(buf, 0);
if (errno == ERANGE) {
if (d == 0.0) goto underflow;
if (fabs(d) >= HUGE_VAL) goto overflow;
}
return rb_float_new(d);
overflow:
VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
if (negative)
return rb_float_new(VpGetDoubleNegInf());
else
return rb_float_new(VpGetDoublePosInf());
underflow:
VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
if (negative)
return rb_float_new(-0.0);
else
return rb_float_new(0.0);
}
#to_i Also known as: #to_int
Returns the value as an ::Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
# File 'ext/bigdecimal/bigdecimal.c', line 1122
static VALUE
BigDecimal_to_i(VALUE self)
{
BDVALUE v;
VALUE ret;
v = GetBDValueMust(self);
BigDecimal_check_num(v.real);
if (v.real->exponent <= 0) return INT2FIX(0);
if (v.real->exponent == 1) {
ret = LONG2NUM((long)(VpGetSign(v.real) * (DECDIG_DBL_SIGNED)v.real->frac[0]));
}
else {
VALUE fix = (ssize_t)v.real->Prec > v.real->exponent ? BigDecimal_fix(self) : self;
VALUE digits = RARRAY_AREF(BigDecimal_split(fix), 1);
ssize_t dpower = VpExponent10(v.real) - (ssize_t)RSTRING_LEN(digits);
ret = rb_funcall(digits, rb_intern("to_i"), 0);
if (BIGDECIMAL_NEGATIVE_P(v.real)) {
ret = rb_funcall(ret, '*', 1, INT2FIX(-1));
}
if (dpower) {
VALUE pow10 = rb_funcall(INT2FIX(10), rb_intern("**"), 1, SSIZET2NUM(dpower));
// In Ruby < 3.4, int**int may return Float::INFINITY
if (RB_TYPE_P(pow10, T_FLOAT)) rb_raise(rb_eFloatDomainError, "Infinity");
ret = rb_funcall(ret, '*', 1, pow10);
}
}
RB_GC_GUARD(v.bigdecimal);
return ret;
}
#to_int
Alias for #to_i.
#to_r
Converts a BigDecimal to a ::Rational.
# File 'ext/bigdecimal/bigdecimal.c', line 1210
static VALUE
BigDecimal_to_r(VALUE self)
{
BDVALUE v;
ssize_t sign, power, denomi_power;
VALUE a, digits, numerator;
v = GetBDValueMust(self);
BigDecimal_check_num(v.real);
sign = VpGetSign(v.real);
power = VpExponent10(v.real);
RB_GC_GUARD(v.bigdecimal);
a = BigDecimal_split(self);
digits = RARRAY_AREF(a, 1);
denomi_power = power - RSTRING_LEN(digits);
numerator = rb_funcall(digits, rb_intern("to_i"), 0);
if (sign < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (denomi_power < 0) {
return rb_Rational(numerator,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-denomi_power)));
}
else {
return rb_Rational1(rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(denomi_power))));
}
}
#to_s(s) ⇒ ?
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many digits, starting from ‘.’ and counting outwards.
If s ends with an ‘E’, scientific notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-1234567890123.45678901234567890').to_s('5F')
#=> '-123 45678 90123.45678 90123 45678 9'
BigDecimal('1234567890123.45678901234567890').to_s('+8F')
#=> '+12345 67890123.45678901 23456789'
BigDecimal('1234567890123.45678901234567890').to_s(' F')
#=> ' 1234567890123.4567890123456789'
# File 'ext/bigdecimal/bigdecimal.c', line 2316
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
int fmt = 0; /* 0: E format, 1: F format */
int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
BDVALUE v;
volatile VALUE str;
char *psz;
char ch;
size_t nc, mc = 0;
SIGNED_VALUE m;
VALUE f;
v = GetBDValueMust(self);
if (rb_scan_args(argc, argv, "01", &f) == 1) {
if (RB_TYPE_P(f, T_STRING)) {
psz = StringValueCStr(f);
if (*psz == ' ') {
fPlus = 1;
psz++;
}
else if (*psz == '+') {
fPlus = 2;
psz++;
}
while ((ch = *psz++) != 0) {
if (ISSPACE(ch)) {
continue;
}
if (!ISDIGIT(ch)) {
if (ch == 'F' || ch == 'f') {
fmt = 1; /* F format */
}
break;
}
mc = mc*10 + ch - '0';
}
}
else {
m = NUM2INT(f);
if (m <= 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
mc = (size_t)m;
}
}
if (fmt) {
nc = VpNumOfChars(v.real, "F");
}
else {
nc = VpNumOfChars(v.real, "E");
}
if (mc > 0) {
nc += (nc + mc - 1) / mc + 1;
}
str = rb_usascii_str_new(0, nc);
psz = RSTRING_PTR(str);
if (fmt) {
VpToFString(v.real, psz, RSTRING_LEN(str), mc, fPlus);
}
else {
VpToString (v.real, psz, RSTRING_LEN(str), mc, fPlus);
}
rb_str_resize(str, strlen(psz));
RB_GC_GUARD(v.bigdecimal);
return str;
}
#truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').truncate #=> 3
BigDecimal('8.7').truncate #=> 8
BigDecimal('-9.9').truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').truncate(3) #=> 3.141
BigDecimal('13345.234').truncate(-2) #=> 13300.0
# File 'ext/bigdecimal/bigdecimal.c', line 2219
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_DOWN);
}
#vpdivd(r, cprec)
[ GitHub ]# File 'ext/bigdecimal/bigdecimal.c', line 3259
VALUE
BigDecimal_vpdivd(VALUE self, VALUE r, VALUE cprec) {
BDVALUE a,b,c,d;
size_t cn = NUM2INT(cprec);
a = GetBDValueMust(self);
b = GetBDValueMust(r);
c = NewZeroWrap(1, cn * BASE_FIG);
d = NewZeroWrap(1, VPDIVD_REM_PREC(a.real, b.real, c.real) * BASE_FIG);
VpDivd(c.real, d.real, a.real, b.real);
RB_GC_GUARD(a.bigdecimal);
RB_GC_GUARD(b.bigdecimal);
return rb_assoc_new(c.bigdecimal, d.bigdecimal);
}
#vpmult(v)
[ GitHub ]# File 'ext/bigdecimal/bigdecimal.c', line 3273
VALUE
BigDecimal_vpmult(VALUE self, VALUE v) {
BDVALUE a,b,c;
a = GetBDValueMust(self);
b = GetBDValueMust(v);
c = NewZeroWrap(1, VPMULT_RESULT_PREC(a.real, b.real) * BASE_FIG);
VpMult(c.real, a.real, b.real);
RB_GC_GUARD(a.bigdecimal);
RB_GC_GUARD(b.bigdecimal);
return c.bigdecimal;
}