Class: Random
Overview
Random
provides an interface to Ruby’s pseudo-random number generator, or PRNG. The PRNG produces a deterministic sequence of bits which approximate true randomness. The sequence may be represented by integers, floats, or binary strings.
The generator may be initialized with either a system-generated or user-supplied seed value by using .srand.
The class method .rand provides the base functionality of Kernel.rand along with better handling of floating point values. These are both interfaces to the Ruby system PRNG.
.new will create a new PRNG with a state independent of the Ruby system PRNG, allowing multiple generators with different seed values or sequence positions to exist simultaneously. Random
objects can be marshaled, allowing sequences to be saved and resumed.
PRNGs are currently implemented as a modified Mersenne Twister with a period of 2**19937-1. As this algorithm is not for cryptographical use, you must use SecureRandom for security purpose, instead of this PRNG.
See also Formatter
module that adds convenience methods to generate various forms of random data.
Class Method Summary
-
.bytes(size) ⇒ String
Returns a random binary string.
-
.new(seed = Random.new_seed) ⇒ prng
constructor
Creates a new PRNG using .seed to set the initial state.
-
.new_seed ⇒ Integer
Returns an arbitrary seed value.
-
.rand ⇒ Float
Returns a random number using the Ruby system PRNG.
-
.seed ⇒ Integer
Returns the seed value used to initialize the Ruby system PRNG.
-
.srand(number = Random.new_seed) ⇒ old_seed
Alias for Kernel.srand.
-
.urandom(size) ⇒ String
Returns a string, using platform providing features.
Instance Method Summary
-
#==(prng2) ⇒ Boolean
Returns true if the two generators have the same internal state, otherwise false.
-
#bytes(size) ⇒ String
Returns a random binary string containing
size
bytes. - #rand ⇒ Float
-
#seed ⇒ Integer
Returns the seed value used to initialize the generator.
- #initialize_copy(orig) Internal use only
- #left private Internal use only
- #marshal_dump private Internal use only
- #marshal_load(dump) private Internal use only
- #state private Internal use only
Constructor Details
.new(seed = Random.new_seed) ⇒ prng
# File 'random.c', line 403
static VALUE random_init(int argc, VALUE *argv, VALUE obj) { rb_random_t *rnd = try_get_rnd(obj); const rb_random_interface_t *rng = rb_rand_if(obj); if (!rng) { rb_raise(rb_eTypeError, "undefined random interface: %s", RTYPEDDATA_TYPE(obj)->wrap_struct_name); } unsigned int major = rng->version.major; unsigned int minor = rng->version.minor; if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) { rb_raise(rb_eTypeError, "Random interface version " STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "." STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " " "expected: %d.%d", major, minor); } argc = rb_check_arity(argc, 0, 1); rb_check_frozen(obj); if (argc == 0) { rnd->seed = rand_init_default(rng, rnd); } else { rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0])); } return obj; }
Class Method Details
.bytes(size) ⇒ String
Returns a random binary string. The argument size
specifies the length of the returned string.
# File 'random.c', line 1321
static VALUE random_s_bytes(VALUE obj, VALUE len) { rb_random_t *rnd = rand_start(default_rand()); return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len))); }
.new_seed ⇒ Integer
Returns an arbitrary seed value. This is used by .new when no seed value is specified as an argument.
Random.new_seed #=> 115032730400174366788466674494640623225
# File 'random.c', line 745
static VALUE random_seed(VALUE _) { VALUE v; with_random_seed(DEFAULT_SEED_CNT, 1, true) { v = make_seed_value(seedbuf, DEFAULT_SEED_CNT); } return v; }
Returns a random number using the Ruby system PRNG.
See also #rand.
# File 'random.c', line 1700
static VALUE random_s_rand(int argc, VALUE *argv, VALUE obj) { VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand())); check_random_number(v, argv); return v; }
.seed ⇒ Integer
Returns the seed value used to initialize the Ruby system PRNG. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.
Random.seed #=> 1234
prng1 = Random.new(Random.seed)
prng1.seed #=> 1234
prng1.rand(100) #=> 47
Random.seed #=> 1234
Random.rand(100) #=> 47
# File 'random.c', line 1343
static VALUE random_s_seed(VALUE obj) { rb_random_mt_t *rnd = rand_mt_start(default_rand()); return rnd->base.seed; }
.srand(number = Random.new_seed) ⇒ old_seed
Alias for Kernel.srand.
.urandom(size) ⇒ String
Returns a string, using platform providing features. Returned value is expected to be a cryptographically secure pseudo-random number in binary form. This method raises a ::RuntimeError
if the feature provided by platform failed to prepare the result.
In 2017, Linux manpage random(7) writes that “no cryptographic primitive available today can hope to promise more than 256 bits of security”. So it might be questionable to pass size > 32 to this method.
Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
# File 'random.c', line 771
static VALUE random_raw_seed(VALUE self, VALUE size) { long n = NUM2ULONG(size); VALUE buf = rb_str_new(0, n); if (n == 0) return buf; if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE)) rb_raise(rb_eRuntimeError, "failed to get urandom"); return buf; }
Instance Method Details
#==(prng2) ⇒ Boolean
Returns true if the two generators have the same internal state, otherwise false. Equivalent generators will return the same sequence of pseudo-random numbers. Two generators will generally have the same state only if they were initialized with the same seed
Random.new == Random.new # => false
Random.new(1234) == Random.new(1234) # => true
and have the same invocation history.
prng1 = Random.new(1234)
prng2 = Random.new(1234)
prng1 == prng2 # => true
prng1.rand # => 0.1915194503788923
prng1 == prng2 # => false
prng2.rand # => 0.1915194503788923
prng1 == prng2 # => true
# File 'random.c', line 1628
static VALUE rand_mt_equal(VALUE self, VALUE other) { rb_random_mt_t *r1, *r2; if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse; r1 = get_rnd_mt(self); r2 = get_rnd_mt(other); if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse; if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse; if (r1->mt.left != r2->mt.left) return Qfalse; return rb_equal(r1->base.seed, r2->base.seed); }
#bytes(size) ⇒ String
Returns a random binary string containing size
bytes.
random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
random_string.size # => 10
# File 'random.c', line 1275
static VALUE random_bytes(VALUE obj, VALUE len) { rb_random_t *rnd = try_get_rnd(obj); return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len))); }
#initialize_copy(orig)
# File 'random.c', line 803
static VALUE rand_mt_copy(VALUE obj, VALUE orig) { rb_random_mt_t *rnd1, *rnd2; struct MT *mt; if (!OBJ_INIT_COPY(obj, orig)) return obj; rnd1 = get_rnd_mt(obj); rnd2 = get_rnd_mt(orig); mt = &rnd1->mt; *rnd1 = *rnd2; mt->next = mt->state + numberof(mt->state) - mt->left + 1; return obj; }
#left (private)
# File 'random.c', line 844
static VALUE rand_mt_left(VALUE obj) { rb_random_mt_t *rnd = get_rnd_mt(obj); return INT2FIX(rnd->mt.left); }
#marshal_dump (private)
# File 'random.c', line 859
static VALUE rand_mt_dump(VALUE obj) { rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type); VALUE dump = rb_ary_new2(3); rb_ary_push(dump, mt_state(&rnd->mt)); rb_ary_push(dump, INT2FIX(rnd->mt.left)); rb_ary_push(dump, rnd->base.seed); return dump; }
#marshal_load(dump) (private)
# File 'random.c', line 873
static VALUE rand_mt_load(VALUE obj, VALUE dump) { rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type); struct MT *mt = &rnd->mt; VALUE state, left = INT2FIX(1), seed = INT2FIX(0); unsigned long x; rb_check_copyable(obj, dump); Check_Type(dump, T_ARRAY); switch (RARRAY_LEN(dump)) { case 3: seed = RARRAY_AREF(dump, 2); case 2: left = RARRAY_AREF(dump, 1); case 1: state = RARRAY_AREF(dump, 0); break; default: rb_raise(rb_eArgError, "wrong dump data"); } rb_integer_pack(state, mt->state, numberof(mt->state), sizeof(*mt->state), 0, INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); x = NUM2ULONG(left); if (x > numberof(mt->state) || x == 0) { rb_raise(rb_eArgError, "wrong value"); } mt->left = (unsigned int)x; mt->next = mt->state + numberof(mt->state) - x + 1; rnd->base.seed = rb_to_int(seed); return obj; }
When max
is an ::Integer
, rand
returns a random integer greater than or equal to zero and less than max
. Unlike Kernel.rand, when max
is a negative integer or zero, rand
raises an ::ArgumentError
.
prng = Random.new
prng.rand(100) # => 42
When max
is a ::Float
, rand
returns a random floating point number between 0.0 and max
, including 0.0 and excluding max
.
prng.rand(1.5) # => 1.4600282860034115
When range
is a ::Range
, rand
returns a random number where range.member?(number) == true
.
prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
prng.rand(5...9) # => one of [5, 6, 7, 8]
prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
Both the beginning and ending values of the range must respond to subtract (-
) and add (+
)methods, or rand will raise an ::ArgumentError
.
# File 'random.c', line 1545
static VALUE random_rand(int argc, VALUE *argv, VALUE obj) { VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj)); check_random_number(v, argv); return v; }
#seed ⇒ Integer
Returns the seed value used to initialize the generator. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.
prng1 = Random.new(1234)
prng1.seed #=> 1234
prng1.rand(100) #=> 47
prng2 = Random.new(prng1.seed)
prng2.rand(100) #=> 47
# File 'random.c', line 796
static VALUE random_get_seed(VALUE obj) { return get_rnd(obj)->seed; }
#state (private)
# File 'random.c', line 829
static VALUE rand_mt_state(VALUE obj) { rb_random_mt_t *rnd = get_rnd_mt(obj); return mt_state(&rnd->mt); }