123456789_123456789_123456789_123456789_123456789_

Class: Regexp

Relationships & Source Files
Namespace Children
Exceptions:
Inherits: Object
Defined in: re.c,
encoding.c,
re.c

Overview

A regular expression (also called a regexp) is a match pattern (also simply called a pattern).

A common notation for a regexp uses enclosing slash characters:

/foo/

A regexp may be applied to a target string; The part of the string (if any) that matches the pattern is called a match, and may be said to match:

re = /red/
re.match?('redirect') # => true   # Match at beginning of target.
re.match?('bored')    # => true   # Match at end of target.
re.match?('credit')   # => true   # Match within target.
re.match?('foo')      # => false  # No match.

Regexp Uses

A regexp may be used:

  • To extract substrings based on a given pattern:

    re = /foo/              # => /foo/
    re.match('food')        # => #<MatchData "foo">
    re.match('good')        # => nil

    See sections Method match and Operator =~.

  • To determine whether a string matches a given pattern:

    re.match?('food') # => true
    re.match?('good') # => false

    See section Method match?.

  • As an argument for calls to certain methods in other classes and modules; most such methods accept an argument that may be either a string or the (much more powerful) regexp.

    See Regexp Methods.

Regexp Objects

A regexp object has:

  • A source; see Sources.

  • Several modes; see Modes.

  • A timeout; see Timeouts.

  • An encoding; see Encodings.

Creating a Regexp

A regular expression may be created with:

  • A regexp literal using slash characters (see Literals):

    # This is a very common usage.
    /foo/ # => /foo/
  • A %r regexp literal (see %r: Literals):

    # Same delimiter character at beginning and end;
    # useful for avoiding escaping characters
    %r/name\/value pair/ # => /name\/value pair/
    %r:name/value pair:  # => /name\/value pair/
    %r|name/value pair|  # => /name\/value pair/
    
    # Certain "paired" characters can be delimiters.
    %r[foo] # => /foo/
    %r{foo} # => /foo/
    %r(foo) # => /foo/
    %r<foo> # => /foo/
  • Method .new.

Method #match

Each of the methods #match, String#match, and Symbol#match returns a ::MatchData object if a match was found, nil otherwise; each also sets global variables:

'food'.match(/foo/) # => #<MatchData "foo">
'food'.match(/bar/) # => nil

Operator #=~

Each of the operators #=~, String#=~, and Symbol#=~ returns an integer offset if a match was found, nil otherwise; each also sets global variables:

/bar/ =~ 'foo bar' # => 4
'foo bar' =~ /bar/ # => 4
/baz/ =~ 'foo bar' # => nil

Method #match?

Each of the methods #match?, String#match?, and Symbol#match? returns true if a match was found, false otherwise; none sets global variables:

'food'.match?(/foo/) # => true
'food'.match?(/bar/) # => false

Global Variables

Certain regexp-oriented methods assign values to global variables:

  • #match: see {Method match}.

  • #=~: see Operator =~.

The affected global variables are:

  • $~: Returns a ::MatchData object, or nil.

  • $&: Returns the matched part of the string, or nil.

  • $`: Returns the part of the string to the left of the match, or nil.

  • $': Returns the part of the string to the right of the match, or nil.

  • $+: Returns the last group matched, or nil.

  • $1, $2, etc.: Returns the first, second, etc., matched group, or nil. Note that $0 is quite different; it returns the name of the currently executing program.

Examples:

# Matched string, but no matched groups.
'foo bar bar baz'.match('bar')
$~ # => #<MatchData "bar">
$& # => "bar"
$` # => "foo "
$' # => " bar baz"
$+ # => nil
$1 # => nil

# Matched groups.
/s(\w{2}).*(c)/.match('haystack')
$~ # => #<MatchData "stac" 1:"ta" 2:"c">
$& # => "stac"
$` # => "hay"
$' # => "k"
$+ # => "c"
$1 # => "ta"
$2 # => "c"
$3 # => nil

# No match.
'foo'.match('bar')
$~ # => nil
$& # => nil
$` # => nil
$' # => nil
$+ # => nil
$1 # => nil

Note that #match?, String#match?, and Symbol#match? do not set global variables.

Sources

As seen above, the simplest regexp uses a literal expression as its source:

re = /foo/              # => /foo/
re.match('food')        # => #<MatchData "foo">
re.match('good')        # => nil

A rich collection of available subexpressions gives the regexp great power and flexibility:

  • Special characters

  • Source literals

  • Character classes

  • Shorthand character classes

  • Anchors

  • Alternation

  • Quantifiers

  • Groups and captures

  • Unicode

  • POSIX Bracket Expressions

  • Comments

Special Characters

Regexp special characters, called metacharacters, have special meanings in certain contexts; depending on the context, these are sometimes metacharacters:

. ? - + * ^ \ | $ ( ) [ ] { }

To match a metacharacter literally, backslash-escape it:

# Matches one or more 'o' characters.
/o+/.match('foo')  # => #<MatchData "oo">
# Would match 'o+'.
/o\+/.match('foo') # => nil

To match a backslash literally, backslash-escape it:

/\./.match('\.')  # => #<MatchData ".">
/\\./.match('\.') # => #<MatchData "\\.">

::Method .escape returns an escaped string:

Regexp.escape('.?-+*^\|$()[]{}')
# => "\\.\\?\\-\\+\\*\\^\\\\\\|\\$\\(\\)\\[\\]\\{\\}"

Source Literals

The source literal largely behaves like a double-quoted string; see Double-Quoted {String Literals}.

In particular, a source literal may contain interpolated expressions:

s = 'foo'         # => "foo"
/#{s}/            # => /foo/
/#{s.capitalize}/ # => /Foo/
/#{2 + 2}/        # => /4/

There are differences between an ordinary string literal and a source literal; see Shorthand Character Classes.

  • \s in an ordinary string literal is equivalent to a space character; in a source literal, it’s shorthand for matching a whitespace character.

  • In an ordinary string literal, these are (needlessly) escaped characters; in a source literal, they are shorthands for various matching characters:

    \w \W \d \D \h \H \S \R

Character Classes

A character class is delimited by square brackets; it specifies that certain characters match at a given point in the target string:

# This character class will match any vowel.
re = /B[aeiou]rd/
re.match('Bird') # => #<MatchData "Bird">
re.match('Bard') # => #<MatchData "Bard">
re.match('Byrd') # => nil

A character class may contain hyphen characters to specify ranges of characters:

# These regexps have the same effect.
/[abcdef]/.match('foo') # => #<MatchData "f">
/[a-f]/.match('foo')    # => #<MatchData "f">
/[a-cd-f]/.match('foo') # => #<MatchData "f">

When the first character of a character class is a caret (^), the sense of the class is inverted: it matches any character except those specified.

/[^a-eg-z]/.match('f') # => #<MatchData "f">

A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]] describes the same set as [a-z0-9].

However, character classes also support the && operator, which performs set intersection on its arguments. The two can be combined as follows:

/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))

This is equivalent to:

/[abh-w]/

Shorthand Character Classes

Each of the following metacharacters serves as a shorthand for a character class:

  • /./: Matches any character except a newline:

    /./.match('foo') # => #<MatchData "f">
    /./.match("\n")  # => nil
  • /./m: Matches any character, including a newline; see Multiline Mode:

    /./m.match("\n") # => #<MatchData "\n">
  • /\w/: Matches a word character: equivalent to [a-zA-Z0-9_]:

    /\w/.match(' foo') # => #<MatchData "f">
    /\w/.match(' _')   # => #<MatchData "_">
    /\w/.match(' ')    # => nil
  • /\W/: Matches a non-word character: equivalent to [^a-zA-Z0-9_]:

    /\W/.match(' ') # => #<MatchData " ">
    /\W/.match('_') # => nil
  • /\d/: Matches a digit character: equivalent to [0-9]:

    /\d/.match('THX1138') # => #<MatchData "1">
    /\d/.match('foo')     # => nil
  • /\D/: Matches a non-digit character: equivalent to [^0-9]:

    /\D/.match('123Jump!') # => #<MatchData "J">
    /\D/.match('123')      # => nil
  • /\h/: Matches a hexdigit character: equivalent to [0-9a-fA-F]:

    /\h/.match('xyz fedcba9876543210') # => #<MatchData "f">
    /\h/.match('xyz')                  # => nil
  • /\H/: Matches a non-hexdigit character: equivalent to [^0-9a-fA-F]:

    /\H/.match('fedcba9876543210xyz') # => #<MatchData "x">
    /\H/.match('fedcba9876543210')    # => nil
  • /\s/: Matches a whitespace character: equivalent to /[ \t\r\n\f\v]/:

    /\s/.match('foo bar') # => #<MatchData " ">
    /\s/.match('foo')     # => nil
  • /\S/: Matches a non-whitespace character: equivalent to /[^ \t\r\n\f\v]/:

    /\S/.match(" \t\r\n\f\v foo") # => #<MatchData "f">
    /\S/.match(" \t\r\n\f\v")     # => nil
  • /\R/: Matches a linebreak, platform-independently:

    /\R/.match("\r")     # => #<MatchData "\r">     # Carriage return (CR)
    /\R/.match("\n")     # => #<MatchData "\n">     # Newline (LF)
    /\R/.match("\f")     # => #<MatchData "\f">     # Formfeed (FF)
    /\R/.match("\v")     # => #<MatchData "\v">     # Vertical tab (VT)
    /\R/.match("\r\n")   # => #<MatchData "\r\n">   # CRLF
    /\R/.match("\u0085") # => #<MatchData "\u0085"> # Next line (NEL)
    /\R/.match("\u2028") # => #<MatchData "\u2028"> # Line separator (LSEP)
    /\R/.match("\u2029") # => #<MatchData "\u2029"> # Paragraph separator (PSEP)

Anchors

An anchor is a metasequence that matches a zero-width position between characters in the target string.

For a subexpression with no anchor, matching may begin anywhere in the target string:

/real/.match('surrealist') # => #<MatchData "real">

For a subexpression with an anchor, matching must begin at the matched anchor.

Boundary Anchors

Each of these anchors matches a boundary:

  • ^: Matches the beginning of a line:

    /^bar/.match("foo\nbar") # => #<MatchData "bar">
    /^ar/.match("foo\nbar")  # => nil
  • $: Matches the end of a line:

    /bar$/.match("foo\nbar") # => #<MatchData "bar">
    /ba$/.match("foo\nbar")  # => nil
  • \A: Matches the beginning of the string:

    /\Afoo/.match('foo bar')  # => #<MatchData "foo">
    /\Afoo/.match(' foo bar') # => nil
  • \Z: Matches the end of the string; if string ends with a single newline, it matches just before the ending newline:

    /foo\Z/.match('bar foo')     # => #<MatchData "foo">
    /foo\Z/.match('foo bar')     # => nil
    /foo\Z/.match("bar foo\n")   # => #<MatchData "foo">
    /foo\Z/.match("bar foo\n\n") # => nil
  • \z: Matches the end of the string:

    /foo\z/.match('bar foo')   # => #<MatchData "foo">
    /foo\z/.match('foo bar')   # => nil
    /foo\z/.match("bar foo\n") # => nil
  • \b: Matches word boundary when not inside brackets; matches backspace ("0x08") when inside brackets:

    /foo\b/.match('foo bar') # => #<MatchData "foo">
    /foo\b/.match('foobar')  # => nil
  • \B: Matches non-word boundary:

    /foo\B/.match('foobar')  # => #<MatchData "foo">
    /foo\B/.match('foo bar') # => nil
  • \G: Matches first matching position:

    In methods like String#gsub and String#scan, it changes on each iteration. It initially matches the beginning of subject, and in each following iteration it matches where the last match finished.

    "    a b c".gsub(/ /, '_')   # => "____a_b_c"
    "    a b c".gsub(/\G /, '_') # => "____a b c"

    In methods like Regexp#match and String#match that take an optional offset, it matches where the search begins.

    "hello, world".match(/,/, 3)   # => #<MatchData ",">
    "hello, world".match(/\G,/, 3) # => nil
Lookaround Anchors

Lookahead anchors:

  • (?=pat): Positive lookahead assertion: ensures that the following characters match pat, but doesn’t include those characters in the matched substring.

  • (?!pat): Negative lookahead assertion: ensures that the following characters do not match pat, but doesn’t include those characters in the matched substring.

Lookbehind anchors:

  • (?<=pat): Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn’t include those characters in the matched substring.

  • (?<!pat): Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn’t include those characters in the matched substring.

The pattern below uses positive lookahead and positive lookbehind to match text appearing in tags without including the tags in the match:

/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favors the <b>bold</b>.")
# => #<MatchData "bold">
Match-Reset Anchor
  • \K: Match reset: the matched content preceding \K in the regexp is excluded from the result. For example, the following two regexps are almost equivalent:

    /ab\Kc/.match('abc')    # => #<MatchData "c">
    /(?<=ab)c/.match('abc') # => #<MatchData "c">

    These match same string and $& equals 'c', while the matched position is different.

    As are the following two regexps:

    /(a)\K(b)\Kc/
    /(?<=(?<=(a))(b))c/

Alternation

The vertical bar metacharacter (|) may be used within parentheses to express alternation: two or more subexpressions any of which may match the target string.

Two alternatives:

re = /(a|b)/
re.match('foo') # => nil
re.match('bar') # => #<MatchData "b" 1:"b">

Four alternatives:

re = /(a|b|c|d)/
re.match('shazam') # => #<MatchData "a" 1:"a">
re.match('cold')   # => #<MatchData "c" 1:"c">

Each alternative is a subexpression, and may be composed of other subexpressions:

re = /([a-c]|[x-z])/
re.match('bar') # => #<MatchData "b" 1:"b">
re.match('ooz') # => #<MatchData "z" 1:"z">

Method .union provides a convenient way to construct a regexp with alternatives.

Quantifiers

A simple regexp matches one character:

/\w/.match('Hello')  # => #<MatchData "H">

An added quantifier specifies how many matches are required or allowed:

  • * - Matches zero or more times:

    /\w*/.match('')
    # => #<MatchData "">
    /\w*/.match('x')
    # => #<MatchData "x">
    /\w*/.match('xyz')
    # => #<MatchData "yz">
  • + - Matches one or more times:

    /\w+/.match('')    # => nil
    /\w+/.match('x')   # => #<MatchData "x">
    /\w+/.match('xyz') # => #<MatchData "xyz">
  • ? - Matches zero or one times:

    /\w?/.match('')    # => #<MatchData "">
    /\w?/.match('x')   # => #<MatchData "x">
    /\w?/.match('xyz') # => #<MatchData "x">
  • {n} - Matches exactly n times:

    /\w{2}/.match('')    # => nil
    /\w{2}/.match('x')   # => nil
    /\w{2}/.match('xyz') # => #<MatchData "xy">
  • {min,} - Matches min or more times:

    /\w{2,}/.match('')    # => nil
    /\w{2,}/.match('x')   # => nil
    /\w{2,}/.match('xy')  # => #<MatchData "xy">
    /\w{2,}/.match('xyz') # => #<MatchData "xyz">
  • {,max} - Matches max or fewer times:

    /\w{,2}/.match('')    # => #<MatchData "">
    /\w{,2}/.match('x')   # => #<MatchData "x">
    /\w{,2}/.match('xyz') # => #<MatchData "xy">
  • {min,max} - Matches at least min times and at most max times:

    /\w{1,2}/.match('')    # => nil
    /\w{1,2}/.match('x')   # => #<MatchData "x">
    /\w{1,2}/.match('xyz') # => #<MatchData "xy">
Greedy, Lazy, or Possessive Matching

Quantifier matching may be greedy, lazy, or possessive:

  • In greedy matching, as many occurrences as possible are matched while still allowing the overall match to succeed. Greedy quantifiers: *, +, ?, {min, max} and its variants.

  • In lazy matching, the minimum number of occurrences are matched. Lazy quantifiers: *?, +?, ??, {min, max}? and its variants.

  • In possessive matching, once a match is found, there is no backtracking; that match is retained, even if it jeopardises the overall match. Possessive quantifiers: *+, ++, ?+. Note that {min, max} and its variants do not support possessive matching.

More:

Groups and Captures

A simple regexp has (at most) one match:

re = /\d\d\d\d-\d\d-\d\d/
re.match('1943-02-04')      # => #<MatchData "1943-02-04">
re.match('1943-02-04').size # => 1
re.match('foo')             # => nil

Adding one or more pairs of parentheses, (subexpression), defines groups, which may result in multiple matched substrings, called captures:

re = /(\d\d\d\d)-(\d\d)-(\d\d)/
re.match('1943-02-04')      # => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
re.match('1943-02-04').size # => 4

The first capture is the entire matched string; the other captures are the matched substrings from the groups.

A group may have a quantifier:

re = /July 4(th)?/
re.match('July 4')   # => #<MatchData "July 4" 1:nil>
re.match('July 4th') # => #<MatchData "July 4th" 1:"th">

re = /(foo)*/
re.match('')       # => #<MatchData "" 1:nil>
re.match('foo')    # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">

re = /(foo)+/
re.match('')       # => nil
re.match('foo')    # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">

The returned MatchData object gives access to the matched substrings:

re = /(\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04')
# => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
md[0] # => "1943-02-04"
md[1] # => "1943"
md[2] # => "02"
md[3] # => "04"
Non-Capturing Groups

A group may be made non-capturing; it is still a group (and, for example, can have a quantifier), but its matching substring is not included among the captures.

A non-capturing group begins with ?: (inside the parentheses):

# Don't capture the year.
re = /(?:\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"02" 2:"04">
Backreferences

A group match may also be referenced within the regexp itself; such a reference is called a backreference:

/[csh](..) [csh]\1 in/.match('The cat sat in the hat')
# => #<MatchData "cat sat in" 1:"at">

This table shows how each subexpression in the regexp above matches a substring in the target string:

| Subexpression in Regexp   | Matching Substring in Target String |
|---------------------------|-------------------------------------|
|       First '[csh]'       |            Character 'c'            |
|          '(..)'           |        First substring 'at'         |
|      First space ' '      |      First space character ' '      |
|       Second '[csh]'      |            Character 's'            |
| '\1' (backreference 'at') |        Second substring 'at'        |
|           ' in'           |            Substring ' in'          |

A regexp may contain any number of groups:

  • For a large number of groups:

    • The ordinary \n notation applies only for n in range (1..9).

    • The MatchData[n] notation applies for any non-negative n.

  • \0 is a special backreference, referring to the entire matched string; it may not be used within the regexp itself, but may be used outside it (for example, in a substitution method call):

    'The cat sat in the hat'.gsub(/[csh]at/, '\0s')
    # => "The cats sats in the hats"
Named Captures

As seen above, a capture can be referred to by its number. A capture can also have a name, prefixed as ?<name> or ?'name', and the name (symbolized) may be used as an index in MatchData[]:

md = /\$(?<dollars>\d)\.(?'cents'\d)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3" cents:"67">
md[:dollars]  # => "3"
md[:cents]    # => "67"
# The capture numbers are still valid.
md[2]         # => "67"

When a regexp contains a named capture, there are no unnamed captures:

/\$(?<dollars>\d)\.(\d)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3">

A named group may be backreferenced as \k<name>:

/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
# => #<MatchData "ototo" vowel:"o">

When (and only when) a regexp contains named capture groups and appears before the #=~ operator, the captured substrings are assigned to local variables with corresponding names:

/\$(?<dollars>\d)\.(?<cents>\d)/ =~ '$3.67'
dollars # => "3"
cents   # => "67"

Method #named_captures returns a hash of the capture names and substrings; method #names returns an array of the capture names.

Atomic Grouping

A group may be made atomic with (?>subexpression).

This causes the subexpression to be matched independently of the rest of the expression, so that the matched substring becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited.

In this way subexpression is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns to prevent needless backtracking .

Example (without atomic grouping):

/".*"/.match('"Quote"') # => #<MatchData "\"Quote\"">

Analysis:

  1. The leading subexpression " in the pattern matches the first character " in the target string.

  2. The next subexpression .* matches the next substring Quote“ (including the trailing double-quote).

  3. Now there is nothing left in the target string to match the trailing subexpression " in the pattern; this would cause the overall match to fail.

  4. The matched substring is backtracked by one position: Quote.

  5. The final subexpression " now matches the final substring ", and the overall match succeeds.

If subexpression .* is grouped atomically, the backtracking is disabled, and the overall match fails:

/"(?>.*)"/.match('"Quote"') # => nil

Atomic grouping can affect performance; see Atomic Group.

Subexpression Calls

As seen above, a backreference number (\n) or name (\k<name>) gives access to a captured substring; the corresponding regexp subexpression may also be accessed, via the number (\gn) or name (\g<name>):

/\A(?<paren>\(\g<paren>*\))*\z/.match('(())')
# ^1
#      ^2
#           ^3
#                 ^4
#      ^5
#           ^6
#                      ^7
#                       ^8
#                       ^9
#                           ^10

The pattern:

  1. Matches at the beginning of the string, i.e. before the first character.

  2. Enters a named group paren.

  3. Matches the first character in the string, '('.

  4. Calls the paren group again, i.e. recurses back to the second step.

  5. Re-enters the paren group.

  6. Matches the second character in the string, '('.

  7. Attempts to call paren a third time, but fails because doing so would prevent an overall successful match.

  8. Matches the third character in the string, ')'; marks the end of the second recursive call

  9. Matches the fourth character in the string, ')'.

  10. Matches the end of the string.

See Subexpression calls.

Conditionals

The conditional construct takes the form (?(cond)yes|no), where:

  • cond may be a capture number or name.

  • The match to be applied is yes if cond is captured; otherwise the match to be applied is no.

  • If not needed, |no may be omitted.

Examples:

re = /\A(foo)?(?(1)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" 1:"foo" 2:"T" 3:nil>
re.match('F')    # => #<MatchData "F" 1:nil 2:nil 3:"F">
re.match('fooF') # => nil
re.match('T')    # => nil

re = /\A(?<xyzzy>foo)?(?(<xyzzy>)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" xyzzy:"foo">
re.match('F')    # => #<MatchData "F" xyzzy:nil>
re.match('fooF') # => nil
re.match('T')    # => nil
Absence Operator

The absence operator is a special group that matches anything which does not match the contained subexpressions.

/(?~real)/.match('surrealist') # => #<MatchData "surrea">
/(?~real)ist/.match('surrealist') # => #<MatchData "ealist">
/sur(?~real)ist/.match('surrealist') # => nil

Unicode

Unicode Properties

The /\p{property_name}/ construct (with lowercase p) matches characters using a Unicode property name, much like a character class; property Alpha specifies alphabetic characters:

/\p{Alpha}/.match('a') # => #<MatchData "a">
/\p{Alpha}/.match('1') # => nil

A property can be inverted by prefixing the name with a caret character (^):

/\p{^Alpha}/.match('1') # => #<MatchData "1">
/\p{^Alpha}/.match('a') # => nil

Or by using \P (uppercase P):

/\P{Alpha}/.match('1') # => #<MatchData "1">
/\P{Alpha}/.match('a') # => nil

See Unicode Properties for regexps based on the numerous properties.

Some commonly-used properties correspond to POSIX bracket expressions:

  • /\p{Alnum}/: Alphabetic and numeric character

  • /\p{Alpha}/: Alphabetic character

  • /\p{Blank}/: Space or tab

  • /\p{Cntrl}/: Control character

  • /\p{Digit}/: Digit characters, and similar)

  • /\p{Lower}/: Lowercase alphabetical character

  • /\p{Print}/: Like \p{Graph}, but includes the space character

  • /\p{Punct}/: Punctuation character

  • /\p{Space}/: Whitespace character ([:blank:], newline, carriage return, etc.)

  • /\p{Upper}/: Uppercase alphabetical

  • /\p{XDigit}/: Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)

These are also commonly used:

  • /\p{Emoji}/: Unicode emoji.

  • /\p{Graph}/: Characters excluding /\p{Cntrl}/ and /\p{Space}/. Note that invisible characters under the Unicode “Format” category are included.

  • /\p{Word}/: A member in one of these Unicode character categories (see below) or having one of these Unicode properties:

    • Unicode categories:

      • Mark (M).

      • Decimal Number (Nd)

      • Connector Punctuation (Pc).

    • Unicode properties:

      • Alpha

      • Join_Control

  • /\p{ASCII}/: A character in the ASCII character set.

  • /\p{Any}/: Any Unicode character (including unassigned characters).

  • /\p{Assigned}/: An assigned character.

Unicode Character Categories

A Unicode character category name:

  • May be either its full name or its abbreviated name.

  • Is case-insensitive.

  • Treats a space, a hyphen, and an underscore as equivalent.

Examples:

/\p{lu}/                # => /\p{lu}/
/\p{LU}/                # => /\p{LU}/
/\p{Uppercase Letter}/  # => /\p{Uppercase Letter}/
/\p{Uppercase_Letter}/  # => /\p{Uppercase_Letter}/
/\p{UPPERCASE-LETTER}/  # => /\p{UPPERCASE-LETTER}/

Below are the Unicode character category abbreviations and names. Enumerations of characters in each category are at the links.

Letters:

Marks:

Numbers:

Punctuation:

Unicode Scripts and Blocks

Among the Unicode properties are:

POSIX Bracket Expressions

A POSIX bracket expression is also similar to a character class. These expressions provide a portable alternative to the above, with the added benefit of encompassing non-ASCII characters:

  • /\d/ matches only ASCII decimal digits 0 through 9.

  • /[[:digit:]]/ matches any character in the Unicode Decimal Number (Nd) category; see below.

The POSIX bracket expressions:

  • /[[:digit:]]/: Matches a Unicode digit:

    /[[:digit:]]/.match('9')       # => #<MatchData "9">
    /[[:digit:]]/.match("\u1fbf9") # => #<MatchData "9">
  • /[[:xdigit:]]/: Matches a digit allowed in a hexadecimal number; equivalent to [0-9a-fA-F].

  • /[[:upper:]]/: Matches a Unicode uppercase letter:

    /[[:upper:]]/.match('A')      # => #<MatchData "A">
    /[[:upper:]]/.match("\u00c6") # => #<MatchData "Æ">
  • /[[:lower:]]/: Matches a Unicode lowercase letter:

    /[[:lower:]]/.match('a')      # => #<MatchData "a">
    /[[:lower:]]/.match("\u01fd") # => #<MatchData "ǽ">
  • /[[:alpha:]]/: Matches /[[:upper:]]/ or /[[:lower:]]/.

  • /[[:alnum:]]/: Matches /[[:alpha:]]/ or /[[:digit:]]/.

  • /[[:space:]]/: Matches Unicode space character:

    /[[:space:]]/.match(' ')      # => #<MatchData " ">
    /[[:space:]]/.match("\u2005") # => #<MatchData " ">
  • /[[:blank:]]/: Matches /[[:space:]]/ or tab character:

    /[[:blank:]]/.match(' ')      # => #<MatchData " ">
    /[[:blank:]]/.match("\u2005") # => #<MatchData " ">
    /[[:blank:]]/.match("\t")     # => #<MatchData "\t">
  • /[[:cntrl:]]/: Matches Unicode control character:

    /[[:cntrl:]]/.match("\u0000") # => #<MatchData "\u0000">
    /[[:cntrl:]]/.match("\u009f") # => #<MatchData "\u009F">
  • /[[:graph:]]/: Matches any character except /[[:space:]]/ or /[[:cntrl:]]/.

  • /[[:print:]]/: Matches /[[:graph:]]/ or space character.

  • /[[:punct:]]/: Matches any (Unicode punctuation character}[www.compart.com/en/unicode/category/Po]:

Ruby also supports these (non-POSIX) bracket expressions:

  • /[[:ascii:]]/: Matches a character in the ASCII character set.

  • /[[:word:]]/: Matches a character in one of these Unicode character categories or having one of these Unicode properties:

    • Unicode categories:

      • Mark (M).

      • Decimal Number (Nd)

      • Connector Punctuation (Pc).

    • Unicode properties:

      • Alpha

      • Join_Control

Comments

A comment may be included in a regexp pattern using the (?#comment) construct, where comment is a substring that is to be ignored. arbitrary text ignored by the regexp engine:

/foo(?#Ignore me)bar/.match('foobar') # => #<MatchData "foobar">

The comment may not include an unescaped terminator character.

See also Extended Mode.

Modes

Each of these modifiers sets a mode for the regexp:

  • i: /pattern/i sets Case-Insensitive Mode.

  • m: /pattern/m sets Multiline Mode.

  • x: /pattern/x sets Extended Mode.

  • o: /pattern/o sets Interpolation Mode.

Any, all, or none of these may be applied.

Modifiers i, m, and x may be applied to subexpressions:

  • (?modifier) turns the mode “on” for ensuing subexpressions

  • (?-modifier) turns the mode “off” for ensuing subexpressions

  • (?modifier:subexp) turns the mode “on” for subexp within the group

  • (?-modifier:subexp) turns the mode “off” for subexp within the group

Example:

re = /(?i)te(?-i)st/
re.match('test') # => #<MatchData "test">
re.match('TEst') # => #<MatchData "TEst">
re.match('TEST') # => nil
re.match('teST') # => nil

re = /t(?i:e)st/
re.match('test') # => #<MatchData "test">
re.match('tEst') # => #<MatchData "tEst">
re.match('tEST') # => nil

Method #options returns an integer whose value showing the settings for case-insensitivity mode, multiline mode, and extended mode.

Case-Insensitive Mode

By default, a regexp is case-sensitive:

/foo/.match('FOO')  # => nil

Modifier i enables case-insensitive mode:

/foo/i.match('FOO')
# => #<MatchData "FOO">

Method #casefold? returns whether the mode is case-insensitive.

Multiline Mode

The multiline-mode in Ruby is what is commonly called a “dot-all mode”:

  • Without the m modifier, the subexpression . does not match newlines:

    /a.c/.match("a\nc")  # => nil
  • With the modifier, it does match:

    /a.c/m.match("a\nc") # => #<MatchData "a\nc">

Unlike other languages, the modifier m does not affect the anchors ^ and $. These anchors always match at line-boundaries in Ruby.

Extended Mode

Modifier x enables extended mode, which means that:

  • Literal white space in the pattern is to be ignored.

  • Character # marks the remainder of its containing line as a comment, which is also to be ignored for matching purposes.

In extended mode, whitespace and comments may be used to form a self-documented regexp.

Regexp not in extended mode (matches some Roman numerals):

pattern = '^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'
re = /#{pattern}/
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Regexp in extended mode:

pattern = <<-EOT
  ^                   # beginning of string
  M{0,3}              # thousands - 0 to 3 Ms
  (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs),
                      #            or 500-800 (D, followed by 0 to 3 Cs)
  (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs),
                      #        or 50-80 (L, followed by 0 to 3 Xs)
  (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is),
                      #        or 5-8 (V, followed by 0 to 3 Is)
  $                   # end of string
EOT
re = /#{pattern}/x
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Interpolation Mode

Modifier o means that the first time a literal regexp with interpolations is encountered, the generated Regexp object is saved and used for all future evaluations of that literal regexp. Without modifier o, the generated Regexp is not saved, so each evaluation of the literal regexp generates a new Regexp object.

Without modifier o:

def letters; sleep 5; /[A-Z][a-z]/; end
words = %w[abc def xyz]
start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/) }
Time.now - start # => 15.0174892

With modifier o:

start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/o) }
Time.now - start # => 5.0010866

Note that if the literal regexp does not have interpolations, the o behavior is the default.

Encodings

By default, a regexp with only US-ASCII characters has US-ASCII encoding:

re = /foo/
re.source.encoding # => #<Encoding:US-ASCII>
re.encoding        # => #<Encoding:US-ASCII>

A regular expression containing non-US-ASCII characters is assumed to use the source encoding. This can be overridden with one of the following modifiers.

  • /pat/n: US-ASCII if only containing US-ASCII characters, otherwise ASCII-8BIT:

    /foo/n.encoding     # => #<Encoding:US-ASCII>
    /foo\xff/n.encoding # => #<Encoding:ASCII-8BIT>
    /foo\x7f/n.encoding # => #<Encoding:US-ASCII>
  • /pat/u: UTF-8

    /foo/u.encoding # => #<Encoding:UTF-8>
  • /pat/e: EUC-JP

    /foo/e.encoding # => #<Encoding:EUC-JP>
  • /pat/s: Windows-31J

    /foo/s.encoding # => #<Encoding:Windows-31J>

A regexp can be matched against a target string when either:

  • They have the same encoding.

  • The regexp’s encoding is a fixed encoding and the string contains only ASCII characters. Method Regexp#fixed_encoding? returns whether the regexp has a fixed encoding.

If a match between incompatible encodings is attempted an ::Encoding::CompatibilityError exception is raised.

Example:

re = eval("# encoding: ISO-8859-1\n/foo\\xff?/")
re.encoding                 # => #<Encoding:ISO-8859-1>
re =~ "foo".encode("UTF-8") # => 0
re =~ "foo\u0100"           # Raises Encoding::CompatibilityError

The encoding may be explicitly fixed by including FIXEDENCODING in the second argument for .new:

# Regexp with encoding ISO-8859-1.
re = Regexp.new("a".force_encoding('iso-8859-1'), Regexp::FIXEDENCODING)
re.encoding  # => #<Encoding:ISO-8859-1>
# Target string with encoding UTF-8.
s = "a\u3042"
s.encoding   # => #<Encoding:UTF-8>
re.match(s)  # Raises Encoding::CompatibilityError.

Timeouts

When either a regexp source or a target string comes from untrusted input, malicious values could become a denial-of-service attack; to prevent such an attack, it is wise to set a timeout.

Regexp has two timeout values:

  • A class default timeout, used for a regexp whose instance timeout is nil; this default is initially nil, and may be set by method Regexp.timeout=:

    Regexp.timeout # => nil
    Regexp.timeout = 3.0
    Regexp.timeout # => 3.0
  • An instance timeout, which defaults to nil and may be set in .new:

    re = Regexp.new('foo', timeout: 5.0)
    re.timeout # => 5.0

When regexp.timeout is nil, the timeout “falls through” to Regexp.timeout; when regexp.timeout is non-nil, that value controls timing out:

| regexp.timeout Value | Regexp.timeout Value |            Result           |
|----------------------|----------------------|-----------------------------|
|         nil          |          nil         |       Never times out.      |
|         nil          |         Float        | Times out in Float seconds. |
|        Float         |          Any         | Times out in Float seconds. |

Optimization

For certain values of the pattern and target string, matching time can grow polynomially or exponentially in relation to the input size; the potential vulnerability arising from this is the regular expression denial-of-service (ReDoS) attack.

Regexp matching can apply an optimization to prevent ReDoS attacks. When the optimization is applied, matching time increases linearly (not polynomially or exponentially) in relation to the input size, and a ReDoS attach is not possible.

This optimization is applied if the pattern meets these criteria:

  • No backreferences.

  • No subexpression calls.

  • No nested lookaround anchors or atomic groups.

  • No nested quantifiers with counting (i.e. no nested {n}, {min,}, {,max}, or {min,max} style quantifiers)

You can use method .linear_time? to determine whether a pattern meets these criteria:

Regexp.linear_time?(/a*/)     # => true
Regexp.linear_time?('a*')     # => true
Regexp.linear_time?(/(a*)\1/) # => false

However, an untrusted source may not be safe even if the method returns true, because the optimization uses memoization (which may invoke large memory consumption).

References

Read (online PDF books):

Explore, test (interactive online editor):

Constant Summary

Class Attribute Summary

Class Method Summary

Instance Attribute Summary

  • #casefold? readonly

    Returns true if the case-insensitivity flag in self is set, false otherwise:

  • #fixed_encoding? ⇒ Boolean readonly

    Returns false if self is applicable to a string with any ASCII-compatible encoding; otherwise returns true:

Instance Method Summary

Constructor Details

.new(string, options = 0, timeout: nil) ⇒ Regexp .new(regexp, timeout: nil) ⇒ Regexp

With argument string given, returns a new regexp with the given string and options:

r = Regexp.new('foo') # => /foo/
r.source              # => "foo"
r.options             # => 0

Optional argument #options is one of the following:

  • A String of options:

    Regexp.new('foo', 'i')  # => /foo/i
    Regexp.new('foo', 'im') # => /foo/im
  • The bit-wise OR of one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, Regexp::MULTILINE, and Regexp::NOENCODING:

    Regexp.new('foo', Regexp::IGNORECASE) # => /foo/i
    Regexp.new('foo', Regexp::EXTENDED)   # => /foo/x
    Regexp.new('foo', Regexp::MULTILINE)  # => /foo/m
    Regexp.new('foo', Regexp::NOENCODING)  # => /foo/n
    flags = Regexp::IGNORECASE | Regexp::EXTENDED |  Regexp::MULTILINE
    Regexp.new('foo', flags)              # => /foo/mix
  • nil or false, which is ignored.

  • Any other truthy value, in which case the regexp will be case-insensitive.

If optional keyword argument .timeout is given, its float value overrides the timeout interval for the class, .timeout. If nil is passed as +timeout, it uses the timeout interval for the class, .timeout.

With argument regexp given, returns a new regexp. The source, options, timeout are the same as regexp. #options and n_flag arguments are ineffective. The timeout can be overridden by .timeout keyword.

options = Regexp::MULTILINE
r = Regexp.new('foo', options, timeout: 1.1) # => /foo/m
r2 = Regexp.new(r)                           # => /foo/m
r2.timeout                                   # => 1.1
r3 = Regexp.new(r, timeout: 3.14)            # => /foo/m
r3.timeout                                   # => 3.14
[ GitHub ]

  
# File 're.c', line 4004

static VALUE
rb_reg_initialize_m(int argc, VALUE *argv, VALUE self)
{
    struct reg_init_args args;
    VALUE re = reg_extract_args(argc, argv, &args);

    if (NIL_P(re)) {
        reg_init_args(self, args.str, args.enc, args.flags);
    }
    else {
        reg_copy(self, re);
    }

    set_timeout(&RREGEXP_PTR(self)->timelimit, args.timeout);

    return self;
}

Class Attribute Details

.timeoutFloat? (rw)

It returns the current default timeout interval for Regexp matching in second. nil means no default timeout configuration.

[ GitHub ]

  
# File 're.c', line 4704

static VALUE
rb_reg_s_timeout_get(VALUE dummy)
{
    double d = hrtime2double(rb_reg_match_time_limit);
    if (d == 0.0) return Qnil;
    return DBL2NUM(d);
}

.timeout=(float or nil) (rw)

It sets the default timeout interval for Regexp matching in second. nil means no default timeout configuration. This configuration is process-global. If you want to set timeout for each Regexp, use .timeout keyword for .new.

Regexp.timeout = 1
/^a*b?a*$/ =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
[ GitHub ]

  
# File 're.c', line 4725

static VALUE
rb_reg_s_timeout_set(VALUE dummy, VALUE timeout)
{
    rb_ractor_ensure_main_ractor("can not access Regexp.timeout from non-main Ractors");

    set_timeout(&rb_reg_match_time_limit, timeout);

    return timeout;
}

Class Method Details

.compile

Alias for .new

[ GitHub ]

.escape(string) ⇒ String .escape(string) ⇒ String

Alias for .quote.

.last_matchMatchData? .last_match(n) ⇒ String? .last_match(name) ⇒ String?

With no argument, returns the value of $~, which is the result of the most recent pattern match (see Regexp global variables):

/c(.)t/ =~ 'cat'  # => 0
Regexp.last_match # => #<MatchData "cat" 1:"a">
/a/ =~ 'foo'      # => nil
Regexp.last_match # => nil

With non-negative integer argument n, returns the _n_th field in the matchdata, if any, or nil if none:

/c(.)t/ =~ 'cat'     # => 0
Regexp.last_match(0) # => "cat"
Regexp.last_match(1) # => "a"
Regexp.last_match(2) # => nil

With negative integer argument n, counts backwards from the last field:

Regexp.last_match(-1)       # => "a"

With string or symbol argument name, returns the string value for the named capture, if any:

/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ 'var = val'
Regexp.last_match        # => #<MatchData "var = val" lhs:"var"rhs:"val">
Regexp.last_match(:lhs)  # => "var"
Regexp.last_match('rhs') # => "val"
Regexp.last_match('foo') # Raises IndexError.
[ GitHub ]

  
# File 're.c', line 4642

static VALUE
rb_reg_s_last_match(int argc, VALUE *argv, VALUE _)
{
    if (rb_check_arity(argc, 0, 1) == 1) {
        VALUE match = rb_backref_get();
        int n;
        if (NIL_P(match)) return Qnil;
        n = match_backref_number(match, argv[0]);
        return rb_reg_nth_match(n, match);
    }
    return match_getter();
}

.linear_time?(re) .linear_time?(string, options = 0)

Returns true if matching against re can be done in linear time to the input string.

Regexp.linear_time?(/re/) # => true

Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.

(*1): doi.org/10.1109/SP40001.2021.00032

[ GitHub ]

  
# File 're.c', line 4419

static VALUE
rb_reg_s_linear_time_p(int argc, VALUE *argv, VALUE self)
{
    struct reg_init_args args;
    VALUE re = reg_extract_args(argc, argv, &args);

    if (NIL_P(re)) {
        re = reg_init_args(rb_reg_alloc(), args.str, args.enc, args.flags);
    }

    return RBOOL(onig_check_linear_time(RREGEXP_PTR(re)));
}

.escape(string) ⇒ String Also known as: .escape

Returns a new string that escapes any characters that have special meaning in a regular expression:

s = Regexp.escape('\*?{}.')      # => "\\\\\\*\\?\\{\\}\\."

For any string s, this call returns a ::MatchData object:

r = Regexp.new(Regexp.escape(s)) # => /\\\\\\\*\\\?\\\{\\\}\\\./
r.match(s)                       # => #<MatchData "\\\\\\*\\?\\{\\}\\.">
[ GitHub ]

  
# File 're.c', line 4191

static VALUE
rb_reg_s_quote(VALUE c, VALUE str)
{
    return rb_reg_quote(reg_operand(str, TRUE));
}

.try_convert(object) ⇒ Regexp?

Returns object if it is a regexp:

Regexp.try_convert(/re/) # => /re/

Otherwise if object responds to :to_regexp, calls object.to_regexp and returns the result.

Returns nil if object does not respond to :to_regexp.

Regexp.try_convert('re') # => nil

Raises an exception unless object.to_regexp returns a regexp.

[ GitHub ]

  
# File 're.c', line 4233

static VALUE
rb_reg_s_try_convert(VALUE dummy, VALUE re)
{
    return rb_check_regexp_type(re);
}

.union(*patterns) ⇒ Regexp .union(array_of_patterns) ⇒ Regexp

Returns a new regexp that is the union of the given patterns:

r = Regexp.union(%w[cat dog])      # => /cat|dog/
r.match('cat')      # => #<MatchData "cat">
r.match('dog')      # => #<MatchData "dog">
r.match('cog')      # => nil

For each pattern that is a string, Regexp.new(pattern) is used:

Regexp.union('penzance')             # => /penzance/
Regexp.union('a+b*c')                # => /a\+b\*c/
Regexp.union('skiing', 'sledding')   # => /skiing|sledding/
Regexp.union(['skiing', 'sledding']) # => /skiing|sledding/

For each pattern that is a regexp, it is used as is, including its flags:

Regexp.union(/foo/i, /bar/m, /baz/x)
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
Regexp.union([/foo/i, /bar/m, /baz/x])
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/

With no arguments, returns /(?!)/:

Regexp.union # => /(?!)/

If any regexp pattern contains captures, the behavior is unspecified.

[ GitHub ]

  
# File 're.c', line 4387

static VALUE
rb_reg_s_union_m(VALUE self, VALUE args)
{
    VALUE v;
    if (RARRAY_LEN(args) == 1 &&
        !NIL_P(v = rb_check_array_type(rb_ary_entry(args, 0)))) {
        return rb_reg_s_union(self, v);
    }
    return rb_reg_s_union(self, args);
}

Instance Attribute Details

#casefold? (readonly)

Returns true if the case-insensitivity flag in self is set, false otherwise:

/a/.casefold?           # => false
/a/i.casefold?          # => true
/(?i:a)/.casefold?      # => false
[ GitHub ]

  
# File 're.c', line 744

static VALUE
rb_reg_casefold_p(VALUE re)
{
    rb_reg_check(re);
    return RBOOL(RREGEXP_PTR(re)->options & ONIG_OPTION_IGNORECASE);
}

#fixed_encoding?Boolean (readonly)

Returns false if self is applicable to a string with any ASCII-compatible encoding; otherwise returns true:

r = /a/                                          # => /a/
r.fixed_encoding?                               # => false
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2 a".force_encoding("euc-jp")) # => true
r.match?("abc".force_encoding("euc-jp"))        # => true

r = /a/u                                        # => /a/
r.fixed_encoding?                               # => true
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2".force_encoding("euc-jp"))   # Raises exception.
r.match?("abc".force_encoding("euc-jp"))        # => true

r = /\u{6666}/                                  # => /\u{6666}/
r.fixed_encoding?                               # => true
r.encoding                                      # => #<Encoding:UTF-8>
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2".force_encoding("euc-jp"))   # Raises exception.
r.match?("abc".force_encoding("euc-jp"))        # => false
[ GitHub ]

  
# File 're.c', line 1564

static VALUE
rb_reg_fixed_encoding_p(VALUE re)
{
    return RBOOL(FL_TEST(re, KCODE_FIXED));
}

Instance Method Details

#==(object) ⇒ Boolean Also known as: #eql?

Returns true if object is another Regexp whose pattern, flags, and encoding are the same as self, false otherwise:

/foo/ == Regexp.new('foo')                          # => true
/foo/ == /foo/i                                     # => false
/foo/ == Regexp.new('food')                         # => false
/foo/ == Regexp.new("abc".force_encoding("euc-jp")) # => false
[ GitHub ]

  
# File 're.c', line 3533

VALUE
rb_reg_equal(VALUE re1, VALUE re2)
{
    if (re1 == re2) return Qtrue;
    if (!RB_TYPE_P(re2, T_REGEXP)) return Qfalse;
    rb_reg_check(re1); rb_reg_check(re2);
    if (FL_TEST(re1, KCODE_FIXED) != FL_TEST(re2, KCODE_FIXED)) return Qfalse;
    if (RREGEXP_PTR(re1)->options != RREGEXP_PTR(re2)->options) return Qfalse;
    if (RREGEXP_SRC_LEN(re1) != RREGEXP_SRC_LEN(re2)) return Qfalse;
    if (ENCODING_GET(re1) != ENCODING_GET(re2)) return Qfalse;
    return RBOOL(memcmp(RREGEXP_SRC_PTR(re1), RREGEXP_SRC_PTR(re2), RREGEXP_SRC_LEN(re1)) == 0);
}

#===(string) ⇒ Boolean

Returns true if self finds a match in string:

/^[a-z]*$/ === 'HELLO' # => false
/^[A-Z]*$/ === 'HELLO' # => true

This method is called in case statements:

s = 'HELLO'
case s
when /\A[a-z]*\z/; print "Lower case\n"
when /\A[A-Z]*\z/; print "Upper case\n"
else               print "Mixed case\n"
end # => "Upper case"
[ GitHub ]

  
# File 're.c', line 3723

static VALUE
rb_reg_eqq(VALUE re, VALUE str)
{
    long start;

    str = reg_operand(str, FALSE);
    if (NIL_P(str)) {
        rb_backref_set(Qnil);
        return Qfalse;
    }
    start = rb_reg_search(re, str, 0, 0);
    return RBOOL(start >= 0);
}

#=~(string) ⇒ Integer?

Returns the integer index (in characters) of the first match for self and string, or nil if none; also sets the Regexp global variables:

/at/ =~ 'input data' # => 7
$~                   # => #<MatchData "at">
/ax/ =~ 'input data' # => nil
$~                   # => nil

Assigns named captures to local variables of the same names if and only if self:

  • Is a regexp literal; see Regexp Literals.

  • Does not contain interpolations; see Regexp interpolation.

  • Is at the left of the expression.

Example:

/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ '  x = y  '
p lhs # => "x"
p rhs # => "y"

Assigns nil if not matched:

/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ '  x = '
p lhs # => nil
p rhs # => nil

Does not make local variable assignments if self is not a regexp literal:

r = /(?<foo>\w)\s*=\s*(?<foo>\w)/
r =~ '  x = y  '
p foo # Undefined local variable
p bar # Undefined local variable

The assignment does not occur if the regexp is not at the left:

'  x = y  ' =~ /(?<foo>\w)\s*=\s*(?<foo>\w)/
p foo, foo # Undefined local variables

A regexp interpolation, #{}, also disables the assignment:

r = /(?<foo>\w+)/
/(?<foo>\w+)\s*=\s*#{r}/ =~ 'x = y'
p foo # Undefined local variable
[ GitHub ]

  
# File 're.c', line 3694

VALUE
rb_reg_match(VALUE re, VALUE str)
{
    long pos = reg_match_pos(re, &str, 0, NULL);
    if (pos < 0) return Qnil;
    pos = rb_str_sublen(str, pos);
    return LONG2FIX(pos);
}

#encodingEncoding

Returns the ::Encoding object that represents the encoding of obj.

[ GitHub ]

  
# File 'encoding.c', line 1162

VALUE
rb_obj_encoding(VALUE obj)
{
    int idx = rb_enc_get_index(obj);
    if (idx < 0) {
        rb_raise(rb_eTypeError, "unknown encoding");
    }
    return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK);
}

#==(object) ⇒ Boolean #eql?(object) ⇒ Boolean

Alias for #==.

#hashInteger

Returns the integer hash value for self.

Related: Object#hash.

[ GitHub ]

  
# File 're.c', line 3500

VALUE
rb_reg_hash(VALUE re)
{
    st_index_t hashval = reg_hash(re);
    return ST2FIX(hashval);
}

#initialize_copy(re)

This method is for internal use only.
[ GitHub ]

  
# File 're.c', line 4433

static VALUE
rb_reg_init_copy(VALUE copy, VALUE re)
{
    if (!OBJ_INIT_COPY(copy, re)) return copy;
    rb_reg_check(re);
    return reg_copy(copy, re);
}

#inspectString

Returns a nicely-formatted string representation of self:

/ab+c/ix.inspect # => "/ab+c/ix"

Related: #to_s.

[ GitHub ]

  
# File 're.c', line 526

static VALUE
rb_reg_inspect(VALUE re)
{
    if (!RREGEXP_PTR(re) || !RREGEXP_SRC(re) || !RREGEXP_SRC_PTR(re)) {
        return rb_any_to_s(re);
    }
    return rb_reg_desc(re);
}

#match(string, offset = 0) ⇒ MatchData? #match(string, offset = 0) {|matchdata| ... } ⇒ Object

With no block given, returns the ::MatchData object that describes the match, if any, or nil if none; the search begins at the given character offset in string:

/abra/.match('abracadabra')      # => #<MatchData "abra">
/abra/.match('abracadabra', 4)   # => #<MatchData "abra">
/abra/.match('abracadabra', 8)   # => nil
/abra/.match('abracadabra', 800) # => nil

string = "\u{5d0 5d1 5e8 5d0}cadabra"
/abra/.match(string, 7)          #=> #<MatchData "abra">
/abra/.match(string, 8)          #=> nil
/abra/.match(string.b, 8)        #=> #<MatchData "abra">

With a block given, calls the block if and only if a match is found; returns the block’s value:

/abra/.match('abracadabra') {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 4) {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 8) {|matchdata| p matchdata }
# => nil
/abra/.match('abracadabra', 8) {|marchdata| fail 'Cannot happen' }
# => nil

Output (from the first two blocks above):

#<MatchData "abra">
#<MatchData "abra">

 /(.)(.)(.)/.match("abc")[2] # => "b"
 /(.)(.)/.match("abc", 1)[2] # => "c"
[ GitHub ]

  
# File 're.c', line 3810

static VALUE
rb_reg_match_m(int argc, VALUE *argv, VALUE re)
{
    VALUE result = Qnil, str, initpos;
    long pos;

    if (rb_scan_args(argc, argv, "11", &str, &initpos) == 2) {
        pos = NUM2LONG(initpos);
    }
    else {
        pos = 0;
    }

    pos = reg_match_pos(re, &str, pos, &result);
    if (pos < 0) {
        rb_backref_set(Qnil);
        return Qnil;
    }
    rb_match_busy(result);
    if (!NIL_P(result) && rb_block_given_p()) {
        return rb_yield(result);
    }
    return result;
}

#match?(string) ⇒ Boolean #match?(string, offset = 0) ⇒ Boolean

Returns true or false to indicate whether the regexp is matched or not without updating $~ and other related variables. If the second parameter is present, it specifies the position in the string to begin the search.

/R.../.match?("Ruby")    # => true
/R.../.match?("Ruby", 1) # => false
/P.../.match?("Ruby")    # => false
$&                       # => nil
[ GitHub ]

  
# File 're.c', line 3851

static VALUE
rb_reg_match_m_p(int argc, VALUE *argv, VALUE re)
{
    long pos = rb_check_arity(argc, 1, 2) > 1 ? NUM2LONG(argv[1]) : 0;
    return rb_reg_match_p(re, argv[0], pos);
}

#named_capturesHash

Returns a hash representing named captures of self (see Named Captures):

  • Each key is the name of a named capture.

  • Each value is an array of integer indexes for that named capture.

Examples:

/(?<foo>.)(?<bar>.)/.named_captures # => {"foo"=>[1], "bar"=>[2]}
/(?<foo>.)(?<foo>.)/.named_captures # => {"foo"=>[1, 2]}
/(.)(.)/.named_captures             # => {}
[ GitHub ]

  
# File 're.c', line 862

static VALUE
rb_reg_named_captures(VALUE re)
{
    regex_t *reg = (rb_reg_check(re), RREGEXP_PTR(re));
    VALUE hash = rb_hash_new_with_size(onig_number_of_names(reg));
    onig_foreach_name(reg, reg_named_captures_iter, (void*)hash);
    return hash;
}

#namesarray_of_names

Returns an array of names of captures (see Named Captures):

/(?<foo>.)(?<bar>.)(?<baz>.)/.names # => ["foo", "bar", "baz"]
/(?<foo>.)(?<foo>.)/.names          # => ["foo"]
/(.)(.)/.names                      # => []
[ GitHub ]

  
# File 're.c', line 818

static VALUE
rb_reg_names(VALUE re)
{
    VALUE ary;
    rb_reg_check(re);
    ary = rb_ary_new_capa(onig_number_of_names(RREGEXP_PTR(re)));
    onig_foreach_name(RREGEXP_PTR(re), reg_names_iter, (void*)ary);
    return ary;
}

#optionsInteger

Returns an integer whose bits show the options set in self.

The option bits are:

Regexp::IGNORECASE # => 1
Regexp::EXTENDED   # => 2
Regexp::MULTILINE  # => 4

Examples:

/foo/.options    # => 0
/foo/i.options   # => 1
/foo/x.options   # => 2
/foo/m.options   # => 4
/foo/mix.options # => 7

Note that additional bits may be set in the returned integer; these are maintained internally in self, are ignored if passed to .new, and may be ignored by the caller:

Returns the set of bits corresponding to the options used when creating this regexp (see .new for details). Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to .new:

r = /\xa1\xa2/e                 # => /\xa1\xa2/
r.source                        # => "\\xa1\\xa2"
r.options                       # => 16
Regexp.new(r.source, r.options) # => /\xa1\xa2/
[ GitHub ]

  
# File 're.c', line 789

static VALUE
rb_reg_options_m(VALUE re)
{
    int options = rb_reg_options(re);
    return INT2NUM(options);
}

#sourceString

Returns the original string of self:

/ab+c/ix.source # => "ab+c"

Regexp escape sequences are retained:

/\x20\+/.source  # => "\\x20\\+"

Lexer escape characters are not retained:

/\//.source  # => "/"
[ GitHub ]

  
# File 're.c', line 505

static VALUE
rb_reg_source(VALUE re)
{
    VALUE str;

    rb_reg_check(re);
    str = rb_str_dup(RREGEXP_SRC(re));
    return str;
}

#timeoutFloat?

It returns the timeout interval for Regexp matching in second. nil means no default timeout configuration.

This configuration is per-object. The global configuration set by .timeout= is ignored if per-object configuration is set.

re = Regexp.new("^a*b?a*$", timeout: 1)
re.timeout               #=> 1.0
re =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
[ GitHub ]

  
# File 're.c', line 4750

static VALUE
rb_reg_timeout_get(VALUE re)
{
    rb_reg_check(re);
    double d = hrtime2double(RREGEXP_PTR(re)->timelimit);
    if (d == 0.0) return Qnil;
    return DBL2NUM(d);
}

#to_sString

Returns a string showing the options and string of self:

r0 = /ab+c/ix
s0 = r0.to_s # => "(?ix-m:ab+c)"

The returned string may be used as an argument to .new, or as interpolated text for a Regexp interpolation:

r1 = Regexp.new(s0) # => /(?ix-m:ab+c)/
r2 = /#{s0}/        # => /(?ix-m:ab+c)/

Note that r1 and r2 are not equal to r0 because their original strings are different:

r0 == r1  # => false
r0.source # => "ab+c"
r1.source # => "(?ix-m:ab+c)"

Related: #inspect.

[ GitHub ]

  
# File 're.c', line 564

static VALUE
rb_reg_to_s(VALUE re)
{
    return rb_reg_str_with_term(re, '/');
}

#~(rxp) ⇒ Integer?

Equivalent to rxp =~ $_:

$_ = "input data"
~ /at/ # => 7
[ GitHub ]

  
# File 're.c', line 3749

VALUE
rb_reg_match2(VALUE re)
{
    long start;
    VALUE line = rb_lastline_get();

    if (!RB_TYPE_P(line, T_STRING)) {
        rb_backref_set(Qnil);
        return Qnil;
    }

    start = rb_reg_search(re, line, 0, 0);
    if (start < 0) {
        return Qnil;
    }
    start = rb_str_sublen(line, start);
    return LONG2FIX(start);
}