Class: Regexp
Relationships & Source Files | |
Namespace Children | |
Exceptions:
| |
Inherits: | Object |
Defined in: | re.c, encoding.c, re.c |
Overview
Regular expressions (regexps) are patterns which describe the contents of a string. They’re used for testing whether a string contains a given pattern, or extracting the portions that match. They are created with the /
pat/
and %r{
pat}
literals or the .new constructor.
A regexp is usually delimited with forward slashes (/
). For example:
/hay/ =~ 'haystack' #=> 0
/y/.match('haystack') #=> #<MatchData "y">
If a string contains the pattern it is said to match. A literal string matches itself.
Here ‘haystack’ does not contain the pattern ‘needle’, so it doesn’t match:
/needle/.match('haystack') #=> nil
Here ‘haystack’ contains the pattern ‘hay’, so it matches:
/hay/.match('haystack') #=> #<MatchData "hay">
Specifically, /st/
requires that the string contains the letter s followed by the letter t, so it matches haystack, also.
Note that any Regexp
matching will raise a ::RuntimeError
if timeout is set and exceeded. See “Timeout”
section in detail.
Regexp Interpolation
A regexp may contain interpolated strings; trivially:
foo = 'bar'
/#{foo}/ # => /bar/
#=~ and #match
Pattern matching may be achieved by using #=~ operator or #match method.
#=~ Operator
#=~ is Ruby’s basic pattern-matching operator. When one operand is a regular expression and the other is a string then the regular expression is used as a pattern to match against the string. (This operator is equivalently defined by Regexp
and ::String
so the order of ::String
and Regexp
do not matter. Other classes may have different implementations of #=~.) If a match is found, the operator returns index of first match in string, otherwise it returns nil
.
/hay/ =~ 'haystack' #=> 0
'haystack' =~ /hay/ #=> 0
/a/ =~ 'haystack' #=> 1
/u/ =~ 'haystack' #=> nil
Using #=~ operator with a ::String
and Regexp
the $~
global variable is set after a successful match. $~
holds a ::MatchData
object. .last_match is equivalent to $~
.
#match Method
The #match method returns a ::MatchData
object:
/st/.match('haystack') #=> #<MatchData "st">
Metacharacters and Escapes
The following are metacharacters (
, )
, [
, ]
, {
, }
, .
, ?
, +
, *
. They have a specific meaning when appearing in a pattern. To match them literally they must be backslash-escaped. To match a backslash literally, backslash-escape it: \\
.
/1 \+ 2 = 3\?/.match('Does 1 + 2 = 3?') #=> #<MatchData "1 + 2 = 3?">
/a\\\\b/.match('a\\\\b') #=> #<MatchData "a\\b">
Patterns behave like double-quoted strings and can contain the same backslash escapes (the meaning of \s
is different, however, see below).
/\s\u{6771 4eac 90fd}/.match("Go to 東京都")
#=> #<MatchData " 東京都">
Arbitrary Ruby expressions can be embedded into patterns with the #{...}
construct.
place = "東京都"
/#{place}/.match("Go to 東京都")
#=> #<MatchData "東京都">
Character Classes
A character class is delimited with square brackets ([
, ]
) and lists characters that may appear at that point in the match. /[ab]/
means a or b, as opposed to /ab/
which means a followed by b.
/W[aeiou]rd/.match("Word") #=> #<MatchData "Word">
Within a character class the hyphen (-
) is a metacharacter denoting an inclusive range of characters. [abcd]
is equivalent to [a-d]
. A range can be followed by another range, so [abcdwxyz]
is equivalent to [a-dw-z]
. The order in which ranges or individual characters appear inside a character class is irrelevant.
/[0-9a-f]/.match('9f') #=> #<MatchData "9">
/[9f]/.match('9f') #=> #<MatchData "9">
If the first character of a character class is a caret (^
) the class is inverted: it matches any character except those named.
/[^a-eg-z]/.match('f') #=> #<MatchData "f">
A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]]
describes the same set as [a-z0-9]
. However, character classes also support the &&
operator which performs set intersection on its arguments. The two can be combined as follows:
/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))
This is equivalent to:
/[abh-w]/
The following metacharacters also behave like character classes:
-
/./
- Any character except a newline. -
/./m
- Any character (them
modifier enables multiline mode) -
/\w/
- A word character ([a-zA-Z0-9_]
) -
/\W/
- A non-word character ([^a-zA-Z0-9_]
). Please take a look at Bug #4044 if using/\W/
with the/i
modifier. -
/\d/
- A digit character ([0-9]
) -
/\D/
- A non-digit character ([^0-9]
) -
/\h/
- A hexdigit character ([0-9a-fA-F]
) -
/\H/
- A non-hexdigit character ([^0-9a-fA-F]
) -
/\s/
- A whitespace character:/[ \t\r\n\f\v]/
-
/\S/
- A non-whitespace character:/[^ \t\r\n\f\v]/
-
/\R/
- A linebreak:\n
,\v
,\f
,\r
\u0085
(NEXT LINE),\u2028
(LINE SEPARATOR),\u2029
(PARAGRAPH SEPARATOR) or\r\n
.
POSIX bracket expressions are also similar to character classes. They provide a portable alternative to the above, with the added benefit that they encompass non-ASCII characters. For instance, /\d/
matches only the ASCII decimal digits (0-9); whereas /[[:digit:]]/
matches any character in the Unicode Nd category.
-
/[[:alnum:]]/
- Alphabetic and numeric character -
/[[:alpha:]]/
- Alphabetic character -
/[[:blank:]]/
- Space or tab -
/[[:cntrl:]]/
- Control character -
/[[:digit:]]/
- Digit -
/[[:graph:]]/
- Non-blank character (excludes spaces, control characters, and similar) -
/[[:lower:]]/
- Lowercase alphabetical character -
/[[:print:]]/
- Like [:graph:], but includes the space character -
/[[:punct:]]/
- Punctuation character -
/[[:space:]]/
- Whitespace character ([:blank:]
, newline, carriage return, etc.) -
/[[:upper:]]/
- Uppercase alphabetical -
/[[:xdigit:]]/
- Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)
Ruby also supports the following non-POSIX character classes:
-
/[[:word:]]/
- A character in one of the following Unicode general categories Letter, Mark, Number, Connector_Punctuation -
/[[:ascii:]]/
- A character in the ASCII character set# U+06F2 is "EXTENDED ARABIC-INDIC DIGIT TWO" /[[:digit:]]/.match("\u06F2") #=> #<MatchData "\u{06F2}"> /[[:upper:]][[:lower:]]/.match("Hello") #=> #<MatchData "He"> /[[:xdigit:]][[:xdigit:]]/.match("A6") #=> #<MatchData "A6">
Repetition
The constructs described so far match a single character. They can be followed by a repetition metacharacter to specify how many times they need to occur. Such metacharacters are called quantifiers.
-
*
- Zero or more times -
+
- One or more times -
?
- Zero or one times (optional) -
{
n}
- Exactly n times -
{
n,}
- n or more times -
{,
m}
- m or less times -
{
n,
m}
- At least n and at most m times
At least one uppercase character (‘H’), at least one lowercase character (‘e’), two ‘l’ characters, then one ‘o’:
"Hello".match(/[[:upper:]][[:lower:]]l{2}o/) #=> #<MatchData "Hello">
Greedy Match
Repetition is greedy by default: as many occurrences as possible are matched while still allowing the overall match to succeed. By contrast, lazy matching makes the minimal amount of matches necessary for overall success. Most greedy metacharacters can be made lazy by following them with ?
. For the {n}
pattern, because it specifies an exact number of characters to match and not a variable number of characters, the ?
metacharacter instead makes the repeated pattern optional.
Both patterns below match the string. The first uses a greedy quantifier so ‘.+’ matches ‘<a><b>’; the second uses a lazy quantifier so ‘.+?’ matches ‘<a>’:
/<.+>/.match("<a><b>") #=> #<MatchData "<a><b>">
/<.+?>/.match("<a><b>") #=> #<MatchData "<a>">
Possessive Match
A quantifier followed by +
matches possessively: once it has matched it does not backtrack. They behave like greedy quantifiers, but having matched they refuse to “give up” their match even if this jeopardises the overall match.
/<.*><.+>/.match("<a><b>") #=> #<MatchData "<a><b>">
/<.*><.>/.match("<a><b>") #=> nil
/<.*><.++>/.match("<a><b>") #=> nil
Capturing
Parentheses can be used for capturing. The text enclosed by the nth group of parentheses can be subsequently referred to with n. Within a pattern use the backreference \n
(e.g. \1
); outside of the pattern use n
(e.g. 1
).
In this example, 'at'
is captured by the first group of parentheses, then referred to later with \1
:
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")
#=> #<MatchData "cat sat in" 1:"at">
#match returns a ::MatchData
object which makes the captured text available with its #[]
method:
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")[1] #=> 'at'
While Ruby supports an arbitrary number of numbered captured groups, only groups 1-9 are supported using the \n
backreference syntax.
Ruby also supports \0
as a special backreference, which references the entire matched string. This is also available at 0
. Note that the \0
backreference cannot be used inside the regexp, as backreferences can only be used after the end of the capture group, and the \0
backreference uses the implicit capture group of the entire match. However, you can use this backreference when doing substitution:
"The cat sat in the hat".gsub(/[csh]at/, '\0s')
# => "The cats sats in the hats"
Named Captures
Capture groups can be referred to by name when defined with the (?<
name>)
or (?'
name')
constructs.
/\$(?<dollars>\d)\.(?<cents>\d)/.match("$3.67")
#=> #<MatchData "$3.67" dollars:"3" cents:"67">
/\$(?<dollars>\d)\.(?<cents>\d)/.match("$3.67")[:dollars] #=> "3"
Named groups can be backreferenced with \k<
name>
, where name is the group name.
/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
#=> #<MatchData "ototo" vowel:"o">
Note: A regexp can’t use named backreferences and numbered backreferences simultaneously. Also, if a named capture is used in a regexp, then parentheses used for grouping which would otherwise result in a unnamed capture are treated as non-capturing.
/(\w)(\w)/.match("ab").captures # => ["a", "b"]
/(\w)(\w)/.match("ab").named_captures # => {}
/(?<c>\w)(\w)/.match("ab").captures # => ["a"]
/(?<c>\w)(\w)/.match("ab").named_captures # => {"c"=>"a"}
When named capture groups are used with a literal regexp on the left-hand side of an expression and the #=~ operator, the captured text is also assigned to local variables with corresponding names.
/\$(?<dollars>\d)\.(?<cents>\d)/ =~ "$3.67" #=> 0
dollars #=> "3"
Grouping
Parentheses also group the terms they enclose, allowing them to be quantified as one atomic whole.
The pattern below matches a vowel followed by 2 word characters:
/[aeiou]\w{2}/.match("Caenorhabditis elegans") #=> #<MatchData "aen">
Whereas the following pattern matches a vowel followed by a word character, twice, i.e. [aeiou]\w[aeiou]\w
: ‘enor’.
/([aeiou]\w){2}/.match("Caenorhabditis elegans")
#=> #<MatchData "enor" 1:"or">
The (?:
…)
construct provides grouping without capturing. That is, it combines the terms it contains into an atomic whole without creating a backreference. This benefits performance at the slight expense of readability.
The first group of parentheses captures ‘n’ and the second ‘ti’. The second group is referred to later with the backreference \2
:
/I(n)ves(ti)ga\2ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"n" 2:"ti">
The first group of parentheses is now made non-capturing with ‘?:’, so it still matches ‘n’, but doesn’t create the backreference. Thus, the backreference \1
now refers to ‘ti’.
/I(?:n)ves(ti)ga\1ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"ti">
Atomic Grouping
Grouping can be made atomic with (?>
pat)
. This causes the subexpression pat to be matched independently of the rest of the expression such that what it matches becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited. In this way pat is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns so as to prevent the regular expression engine from backtracking needlessly.
The "
in the pattern below matches the first character of the string, then .*
matches Quote“. This causes the overall match to fail, so the text matched by .*
is backtracked by one position, which leaves the final character of the string available to match "
/".*"/.match('"Quote"') #=> #<MatchData "\"Quote\"">
If .*
is grouped atomically, it refuses to backtrack Quote“, even though this means that the overall match fails
/"(?>.*)"/.match('"Quote"') #=> nil
Subexpression Calls
The \g<
name>
syntax matches the previous subexpression named name, which can be a group name or number, again. This differs from backreferences in that it re-executes the group rather than simply trying to re-match the same text.
This pattern matches a ( character and assigns it to the paren
group, tries to call that the paren
sub-expression again but fails, then matches a literal ):
/\A(?<paren>\(\g<paren>*\))*\z/ =~ '()'
/\A(?<paren>\(\g<paren>*\))*\z/ =~ '(())' #=> 0
# ^1
# ^2
# ^3
# ^4
# ^5
# ^6
# ^7
# ^8
# ^9
# ^10
-
Matches at the beginning of the string, i.e. before the first character.
-
Enters a named capture group called
paren
-
Matches a literal (, the first character in the string
-
Calls the
paren
group again, i.e. recurses back to the second step -
Re-enters the
paren
group -
Matches a literal (, the second character in the string
-
Try to call
paren
a third time, but fail because doing so would prevent an overall successful match -
Match a literal ), the third character in the string. Marks the end of the second recursive call
-
Match a literal ), the fourth character in the string
-
Match the end of the string
Alternation
The vertical bar metacharacter (|
) combines several expressions into a single one that matches any of the expressions. Each expression is an alternative.
/\w(and|or)\w/.match("Feliformia") #=> #<MatchData "form" 1:"or">
/\w(and|or)\w/.match("furandi") #=> #<MatchData "randi" 1:"and">
/\w(and|or)\w/.match("dissemblance") #=> nil
Character Properties
The \p{}
construct matches characters with the named property, much like POSIX bracket classes.
-
/\p{Alnum}/
- Alphabetic and numeric character -
/\p{Alpha}/
- Alphabetic character -
/\p{Blank}/
- Space or tab -
/\p{Cntrl}/
- Control character -
/\p{Digit}/
- Digit -
/\p{Emoji}/
- Unicode emoji -
/\p{Graph}/
- Non-blank character (excludes spaces, control characters, and similar) -
/\p{Lower}/
- Lowercase alphabetical character -
/\p{Print}/
- Like\p{Graph}
, but includes the space character -
/\p{Punct}/
- Punctuation character -
/\p{Space}/
- Whitespace character ([:blank:]
, newline, carriage return, etc.) -
/\p{Upper}/
- Uppercase alphabetical -
/\p{XDigit}/
- Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F) -
/\p{Word}/
- A member of one of the following Unicode general category Letter, Mark, Number, Connector_Punctuation -
/\p{ASCII}/
- A character in the ASCII character set -
/\p{Any}/
- Any Unicode character (including unassigned characters) -
/\p{Assigned}/
- An assigned character
A Unicode character’s General Category value can also be matched with \p{
Ab}
where Ab is the category’s abbreviation as described below:
-
/\p{L}/
- ‘Letter’ -
/\p{Ll}/
- ‘Letter: Lowercase’ -
/\p{Lm}/
- ‘Letter: Mark’ -
/\p{Lo}/
- ‘Letter: Other’ -
/\p{Lt}/
- ‘Letter: Titlecase’ -
/\p{Lu}/
- ‘Letter: Uppercase -
/\p{Lo}/
- ‘Letter: Other’ -
/\p{M}/
- ‘Mark’ -
/\p{Mn}/
- ‘Mark: Nonspacing’ -
/\p{Mc}/
- ‘Mark: Spacing Combining’ -
/\p{Me}/
- ‘Mark: Enclosing’ -
/\p{N}/
- ‘Number’ -
/\p{Nd}/
- ‘Number: Decimal Digit’ -
/\p{Nl}/
- ‘Number: Letter’ -
/\p{No}/
- ‘Number: Other’ -
/\p{P}/
- ‘Punctuation’ -
/\p{Pc}/
- ‘Punctuation: Connector’ -
/\p{Pd}/
- ‘Punctuation: Dash’ -
/\p{Ps}/
- ‘Punctuation: Open’ -
/\p{Pe}/
- ‘Punctuation: Close’ -
/\p{Pi}/
- ‘Punctuation: Initial Quote’ -
/\p{Pf}/
- ‘Punctuation: Final Quote’ -
/\p{Po}/
- ‘Punctuation: Other’ -
/\p{S}/
- ‘Symbol’ -
/\p{Sm}/
- ‘Symbol: Math’ -
/\p{Sc}/
- ‘Symbol: Currency’ -
/\p{Sc}/
- ‘Symbol: Currency’ -
/\p{Sk}/
- ‘Symbol: Modifier’ -
/\p{So}/
- ‘Symbol: Other’ -
/\p{Z}/
- ‘Separator’ -
/\p{Zs}/
- ‘Separator: Space’ -
/\p{Zl}/
- ‘Separator: Line’ -
/\p{Zp}/
- ‘Separator: Paragraph’ -
/\p{C}/
- ‘Other’ -
/\p{Cc}/
- ‘Other: Control’ -
/\p{Cf}/
- ‘Other: Format’ -
/\p{Cn}/
- ‘Other: Not Assigned’ -
/\p{Co}/
- ‘Other: Private Use’ -
/\p{Cs}/
- ‘Other: Surrogate’
Lastly, \p{}
matches a character’s Unicode script. The following scripts are supported: Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lycian, Lydian, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Saurashtra, Shavian, Sinhala, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai, and Yi.
Unicode codepoint U+06E9 is named “ARABIC PLACE OF SAJDAH” and belongs to the Arabic script:
/\p{Arabic}/.match("\u06E9") #=> #<MatchData "\u06E9">
All character properties can be inverted by prefixing their name with a caret (^
).
Letter ‘A’ is not in the Unicode Ll (Letter; Lowercase) category, so this match succeeds:
/\p{^Ll}/.match("A") #=> #<MatchData "A">
Anchors
Anchors are metacharacter that match the zero-width positions between characters, anchoring the match to a specific position.
-
^
- Matches beginning of line -
$
- Matches end of line -
\A
- Matches beginning of string. -
\Z
- Matches end of string. If string ends with a newline, it matches just before newline -
\z
- Matches end of string -
\G
- Matches first matching position:In methods like String#gsub and String#scan, it changes on each iteration. It initially matches the beginning of subject, and in each following iteration it matches where the last match finished.
" a b c".gsub(/ /, '_') #=> "____a_b_c" " a b c".gsub(/\G /, '_') #=> "____a b c"
In methods like #match and String#match that take an (optional) offset, it matches where the search begins.
"hello, world".match(/,/, 3) #=> #<MatchData ","> "hello, world".match(/\G,/, 3) #=> nil
-
\b
- Matches word boundaries when outside brackets; backspace (0x08) when inside brackets -
\B
- Matches non-word boundaries -
(?=
pat)
- Positive lookahead assertion: ensures that the following characters match pat, but doesn’t include those characters in the matched text -
(?!
pat)
- Negative lookahead assertion: ensures that the following characters do not match pat, but doesn’t include those characters in the matched text -
(?<=
pat)
- Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn’t include those characters in the matched text -
(?<!
pat)
- Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn’t include those characters in the matched text -
\K
- Match reset: the matched content preceding\K
in the regexp is excluded from the result. For example, the following two regexps are almost equivalent:/ab\Kc/ =~ "abc" #=> 0 /(?<=ab)c/ =~ "abc" #=> 2
These match same string and $& equals
"c"
, while the matched position is different.As are the following two regexps:
/(a)\K(b)\Kc/ /(?<=(?<=(a))(b))c/
If a pattern isn’t anchored it can begin at any point in the string:
/real/.match("surrealist") #=> #<MatchData "real">
Anchoring the pattern to the beginning of the string forces the match to start there. ‘real’ doesn’t occur at the beginning of the string, so now the match fails:
/\Areal/.match("surrealist") #=> nil
The match below fails because although ‘Demand’ contains ‘and’, the pattern does not occur at a word boundary.
/\band/.match("Demand")
Whereas in the following example ‘and’ has been anchored to a non-word boundary so instead of matching the first ‘and’ it matches from the fourth letter of ‘demand’ instead:
/\Band.+/.match("Supply and demand curve") #=> #<MatchData "and curve">
The pattern below uses positive lookahead and positive lookbehind to match text appearing in tags without including the tags in the match:
/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favours the <b>bold</b>")
#=> #<MatchData "bold">
Options
The end delimiter for a regexp can be followed by one or more single-letter options which control how the pattern can match.
-
/pat/i
- Ignore case -
/pat/m
- Treat a newline as a character matched by.
-
/pat/x
- Ignore whitespace and comments in the pattern -
/pat/o
- Perform#{}
interpolation only once
i
, m
, and x
can also be applied on the subexpression level with the (?
on-
off)
construct, which enables options on, and disables options off for the expression enclosed by the parentheses:
/a(?i:b)c/.match('aBc') #=> #<MatchData "aBc">
/a(?-i:b)c/i.match('ABC') #=> nil
Additionally, these options can also be toggled for the remainder of the pattern:
/a(?i)bc/.match('abC') #=> #<MatchData "abC">
Options may also be used with .new:
Regexp.new("abc", Regexp::IGNORECASE) #=> /abc/i
Regexp.new("abc", Regexp::MULTILINE) #=> /abc/m
Regexp.new("abc # Comment", Regexp::EXTENDED) #=> /abc # Comment/x
Regexp.new("abc", Regexp::IGNORECASE | Regexp::MULTILINE) #=> /abc/mi
Regexp.new("abc", "i") #=> /abc/i
Regexp.new("abc", "m") #=> /abc/m
Regexp.new("abc # Comment", "x") #=> /abc # Comment/x
Regexp.new("abc", "im") #=> /abc/mi
Free-Spacing Mode and Comments
As mentioned above, the x
option enables free-spacing mode. Literal white space inside the pattern is ignored, and the octothorpe (#
) character introduces a comment until the end of the line. This allows the components of the pattern to be organized in a potentially more readable fashion.
A contrived pattern to match a number with optional decimal places:
float_pat = /\A
[[:digit:]]+ # 1 or more digits before the decimal point
(\. # Decimal point
[[:digit:]]+ # 1 or more digits after the decimal point
)? # The decimal point and following digits are optional
\Z/x
float_pat.match('3.14') #=> #<MatchData "3.14" 1:".14">
There are a number of strategies for matching whitespace:
-
Use a pattern such as
\s
or\p{Space}
. -
Use escaped whitespace such as
\
, i.e. a space preceded by a backslash. -
Use a character class such as
[ ]
.
Comments can be included in a non-x
pattern with the (?#
comment)
construct, where comment is arbitrary text ignored by the regexp engine.
Comments in regexp literals cannot include unescaped terminator characters.
Encoding
Regular expressions are assumed to use the source encoding. This can be overridden with one of the following modifiers.
-
/
pat/u
- UTF-8 -
/
pat/e
- EUC-JP -
/
pat/s
- Windows-31J -
/
pat/n
- ASCII-8BIT
A regexp can be matched against a string when they either share an encoding, or the regexp’s encoding is US-ASCII and the string’s encoding is ASCII-compatible.
If a match between incompatible encodings is attempted an ::Encoding::CompatibilityError
exception is raised.
The #fixed_encoding? predicate indicates whether the regexp has a fixed encoding, that is one incompatible with ASCII. A regexp’s encoding can be explicitly fixed by supplying FIXEDENCODING as the second argument of .new:
r = Regexp.new("a".force_encoding("iso-8859-1"),Regexp::FIXEDENCODING)
r =~ "a\u3042"
# raises Encoding::CompatibilityError: incompatible encoding regexp match
# (ISO-8859-1 regexp with UTF-8 string)
Regexp Global Variables
Pattern matching sets some global variables :
-
$~
is equivalent toRegexp.last_match;
-
$&
contains the complete matched text; -
$`
contains string before match; -
$'
contains string after match; -
$1
,$2
and so on contain text matching first, second, etc capture group; -
$+
contains last capture group.
Example:
m = /s(\w{2}).*(c)/.match('haystack') #=> #<MatchData "stac" 1:"ta" 2:"c">
$~ #=> #<MatchData "stac" 1:"ta" 2:"c">
Regexp.last_match #=> #<MatchData "stac" 1:"ta" 2:"c">
$& #=> "stac"
# same as m[0]
$` #=> "hay"
# same as m.pre_match
$' #=> "k"
# same as m.post_match
$1 #=> "ta"
# same as m[1]
$2 #=> "c"
# same as m[2]
$3 #=> nil
# no third group in pattern
$+ #=> "c"
# same as m[-1]
These global variables are thread-local and method-local variables.
Performance
Certain pathological combinations of constructs can lead to abysmally bad performance.
Consider a string of 25 as, a d, 4 as, and a c.
s = 'a' * 25 + 'd' + 'a' * 4 + 'c'
#=> "aaaaaaaaaaaaaaaaaaaaaaaaadaaaac"
The following patterns match instantly as you would expect:
/(b|a)/ =~ s #=> 0
/(b|a+)/ =~ s #=> 0
/(b|a+)*/ =~ s #=> 0
However, the following pattern takes appreciably longer:
/(b|a+)*c/ =~ s #=> 26
This happens because an atom in the regexp is quantified by both an immediate +
and an enclosing *
with nothing to differentiate which is in control of any particular character. The nondeterminism that results produces super-linear performance. (Consult Mastering Regular Expressions (3rd ed.), pp 222, by Jeffery Friedl, for an in-depth analysis). This particular case can be fixed by use of atomic grouping, which prevents the unnecessary backtracking:
(start = Time.now) && /(b|a+)*c/ =~ s && (Time.now - start)
#=> 24.702736882
(start = Time.now) && /(?>b|a+)*c/ =~ s && (Time.now - start)
#=> 0.000166571
A similar case is typified by the following example, which takes approximately 60 seconds to execute for me:
Match a string of 29 as against a pattern of 29 optional as followed by 29 mandatory as:
Regexp.new('a?' * 29 + 'a' * 29) =~ 'a' * 29
The 29 optional as match the string, but this prevents the 29 mandatory as that follow from matching. Ruby must then backtrack repeatedly so as to satisfy as many of the optional matches as it can while still matching the mandatory 29. It is plain to us that none of the optional matches can succeed, but this fact unfortunately eludes Ruby.
The best way to improve performance is to significantly reduce the amount of backtracking needed. For this case, instead of individually matching 29 optional as, a range of optional as can be matched all at once with a0,29
:
Regexp.new('a{0,29}' + 'a' * 29) =~ 'a' * 29
Timeout
There are two APIs to set timeout. One is .timeout=, which is process-global configuration of timeout for Regexp
matching.
Regexp.timeout = 3
s = 'a' * 25 + 'd' + 'a' * 4 + 'c'
/(b|a+)*c/ =~ s #=> This raises an exception in three seconds
The other is timeout keyword of .new.
re = Regexp.new("(b|a+)*c", timeout: 3)
s = 'a' * 25 + 'd' + 'a' * 4 + 'c'
/(b|a+)*c/ =~ s #=> This raises an exception in three seconds
When using Regexps to process untrusted input, you should use the timeout feature to avoid excessive backtracking. Otherwise, a malicious user can provide input to Regexp
causing Denial-of-Service attack. Note that the timeout is not set by default because an appropriate limit highly depends on an application requirement and context.
Constant Summary
-
EXTENDED =
# File 're.c', line 4759
INT2FIX(ONIG_OPTION_EXTEND)
-
FIXEDENCODING =
# File 're.c', line 4763
INT2FIX(ARG_ENCODING_FIXED)
-
IGNORECASE =
# File 're.c', line 4757
INT2FIX(ONIG_OPTION_IGNORECASE)
-
MULTILINE =
# File 're.c', line 4761
INT2FIX(ONIG_OPTION_MULTILINE)
-
NOENCODING =
# File 're.c', line 4765
INT2FIX(ARG_ENCODING_NONE)
Class Attribute Summary
-
.timeout ⇒ Float?
rw
It returns the current default timeout interval for
Regexp
matching in second. -
.timeout=(float or nil)
rw
It sets the default timeout interval for
Regexp
matching in second.
Class Method Summary
-
.compile
Alias for .new
-
.escape(string) ⇒ String
Alias for .quote.
-
.last_match ⇒ MatchData?
With no argument, returns the value of
$!
, which is the result of the most recent pattern match (see
):Regexp
Global Variables -
.linear_time?(re)
Returns
true
if matching againstre
can be done in linear time to the input string. -
.new(string, options = 0, timeout: nil) ⇒ Regexp
constructor
With argument
string
given, returns a new regexp with the given string and options: -
.escape(string) ⇒ String
(also: .escape)
Returns a new string that escapes any characters that have special meaning in a regular expression:
-
.try_convert(object) ⇒ Regexp?
Returns
object
if it is a regexp: -
.union(*patterns) ⇒ Regexp
Returns a new regexp that is the union of the given patterns:
Instance Attribute Summary
-
#casefold?
readonly
Returns
true
if the case-insensitivity flag inself
is set,false
otherwise: -
#fixed_encoding? ⇒ Boolean
readonly
Returns
false
ifself
is applicable to a string with any ASCII-compatible encoding; otherwise returnstrue
:
Instance Method Summary
-
#==(object) ⇒ Boolean
(also: #eql?)
Returns
true
ifobject
is another Regexp whose pattern, flags, and encoding are the same asself
,false
otherwise: -
#===(string) ⇒ Boolean
Returns
true
ifself
finds a match instring
: -
#=~(string) ⇒ Integer?
Returns the integer index (in characters) of the first match for
self
andstring
, ornil
if none; also sets theRegexp Global Variables
: -
#encoding ⇒ Encoding
Returns the
::Encoding
object that represents the encoding of obj. -
#eql?(object) ⇒ Boolean
Alias for #==.
-
#hash ⇒ Integer
Returns the integer hash value for
self
. -
#inspect ⇒ String
Returns a nicely-formatted string representation of
self
: -
#match(string, offset = 0) ⇒ MatchData?
With no block given, returns the
::MatchData
object that describes the match, if any, ornil
if none; the search begins at the given characteroffset
instring
: -
#match?(string) ⇒ Boolean
Returns
true
orfalse
to indicate whether the regexp is matched or not without updating $~ and other related variables. -
#named_captures ⇒ Hash
Returns a hash representing named captures of
self
(seeNamed Captures
): -
#names ⇒ array_of_names
Returns an array of names of captures (see
Named Captures
): -
#options ⇒ Integer
Returns an integer whose bits show the options set in
self
. -
#source ⇒ String
Returns the original string of
self
: -
#timeout ⇒ Float?
It returns the timeout interval for
Regexp
matching in second. -
#to_s ⇒ String
Returns a string showing the options and string of
self
: -
#~(rxp) ⇒ Integer?
Equivalent to
rxp =~ $_
: - #initialize_copy(re) Internal use only
Constructor Details
.new(string, options = 0, timeout: nil) ⇒ Regexp
.new(regexp, timeout: nil) ⇒ Regexp
Regexp
.new(regexp, timeout: nil) ⇒ Regexp
With argument string
given, returns a new regexp with the given string and options:
r = Regexp.new('foo') # => /foo/
r.source # => "foo"
r. # => 0
Optional argument #options is one of the following:
-
A String of options:
Regexp.new('foo', 'i') # => /foo/i Regexp.new('foo', 'im') # => /foo/im
-
The logical OR of one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, Regexp::MULTILINE, and Regexp::NOENCODING:
Regexp.new('foo', Regexp::IGNORECASE) # => /foo/i Regexp.new('foo', Regexp::EXTENDED) # => /foo/x Regexp.new('foo', Regexp::MULTILINE) # => /foo/m Regexp.new('foo', Regexp::NOENCODING) # => /foo/n flags = Regexp::IGNORECASE | Regexp::EXTENDED | Regexp::MULTILINE Regexp.new('foo', flags) # => /foo/mix
-
nil
orfalse
, which is ignored.
If optional keyword argument .timeout is given, its float value overrides the timeout interval for the class, .timeout. If nil
is passed as +timeout, it uses the timeout interval for the class, .timeout.
With argument regexp
given, returns a new regexp. The source, options, timeout are the same as regexp
. #options and n_flag
arguments are ineffective. The timeout can be overridden by .timeout keyword.
= Regexp::MULTILINE
r = Regexp.new('foo', , timeout: 1.1) # => /foo/m
r2 = Regexp.new(r) # => /foo/m
r2.timeout # => 1.1
r3 = Regexp.new(r, timeout: 3.14) # => /foo/m
r3.timeout # => 3.14
.compile is an alias for new
.
# File 're.c', line 3916
static VALUE rb_reg_initialize_m(int argc, VALUE *argv, VALUE self) { struct reg_init_args args; reg_extract_args(argc, argv, &args); reg_init_args(self, args.str, args.enc, args.flags); set_timeout(&RREGEXP_PTR(self)->timelimit, args.timeout); return self; }
Class Attribute Details
.timeout ⇒ Float? (rw)
It returns the current default timeout interval for Regexp
matching in second. nil
means no default timeout configuration.
# File 're.c', line 4625
static VALUE rb_reg_s_timeout_get(VALUE dummy) { double d = hrtime2double(rb_reg_match_time_limit); if (d == 0.0) return Qnil; return DBL2NUM(d); }
.timeout=(float or nil) (rw)
It sets the default timeout interval for Regexp
matching in second. nil
means no default timeout configuration. This configuration is process-global. If you want to set timeout for each Regexp
, use .timeout keyword for .new.
Regexp.timeout = 1
/^a*b?a*$/ =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
# File 're.c', line 4646
static VALUE rb_reg_s_timeout_set(VALUE dummy, VALUE timeout) { rb_ractor_ensure_main_ractor("can not access Regexp.timeout from non-main Ractors"); set_timeout(&rb_reg_match_time_limit, timeout); return timeout; }
Class Method Details
.compile
Alias for .new
Alias for .quote.
With no argument, returns the value of $!
, which is the result of the most recent pattern match (see
):Regexp
Global Variables
/c(.)t/ =~ 'cat' # => 0
Regexp.last_match # => #<MatchData "cat" 1:"a">
/a/ =~ 'foo' # => nil
Regexp.last_match # => nil
With non-negative integer argument n
, returns the _n_th field in the matchdata, if any, or nil if none:
/c(.)t/ =~ 'cat' # => 0
Regexp.last_match(0) # => "cat"
Regexp.last_match(1) # => "a"
Regexp.last_match(2) # => nil
With negative integer argument n
, counts backwards from the last field:
Regexp.last_match(-1) # => "a"
With string or symbol argument name
, returns the string value for the named capture, if any:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ 'var = val'
Regexp.last_match # => #<MatchData "var = val" lhs:"var"rhs:"val">
Regexp.last_match(:lhs) # => "var"
Regexp.last_match('rhs') # => "val"
Regexp.last_match('foo') # Raises IndexError.
# File 're.c', line 4562
static VALUE rb_reg_s_last_match(int argc, VALUE *argv, VALUE _) { if (rb_check_arity(argc, 0, 1) == 1) { VALUE match = rb_backref_get(); int n; if (NIL_P(match)) return Qnil; n = match_backref_number(match, argv[0]); return rb_reg_nth_match(n, match); } return match_getter(); }
.linear_time?(re)
.linear_time?(string, options = 0)
Returns true
if matching against re
can be done in linear time to the input string.
Regexp.linear_time?(/re/) # => true
Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.
# File 're.c', line 4339
static VALUE rb_reg_s_linear_time_p(int argc, VALUE *argv, VALUE self) { struct reg_init_args args; VALUE re = reg_extract_args(argc, argv, &args); if (NIL_P(re)) { re = reg_init_args(rb_reg_alloc(), args.str, args.enc, args.flags); } return RBOOL(onig_check_linear_time(RREGEXP_PTR(re))); }
.escape(string) ⇒ String Also known as: .escape
Returns a new string that escapes any characters that have special meaning in a regular expression:
s = Regexp.escape('\*?{}.') # => "\\\\\\*\\?\\{\\}\\."
For any string s
, this call returns a ::MatchData
object:
r = Regexp.new(Regexp.escape(s)) # => /\\\\\\\*\\\?\\\{\\\}\\\./
r.match(s) # => #<MatchData "\\\\\\*\\?\\{\\}\\.">
quote
is an alias for .escape.
# File 're.c', line 4111
static VALUE rb_reg_s_quote(VALUE c, VALUE str) { return rb_reg_quote(reg_operand(str, TRUE)); }
.try_convert(object) ⇒ Regexp
?
Returns object
if it is a regexp:
Regexp.try_convert(/re/) # => /re/
Otherwise if object
responds to :to_regexp
, calls object.to_regexp
and returns the result.
Returns nil
if object
does not respond to :to_regexp
.
Regexp.try_convert('re') # => nil
Raises an exception unless object.to_regexp
returns a regexp.
# File 're.c', line 4153
static VALUE rb_reg_s_try_convert(VALUE dummy, VALUE re) { return rb_check_regexp_type(re); }
.union(*patterns) ⇒ Regexp
.union(array_of_patterns) ⇒ Regexp
Regexp
.union(array_of_patterns) ⇒ Regexp
Returns a new regexp that is the union of the given patterns:
r = Regexp.union(%w[cat dog]) # => /cat|dog/
r.match('cat') # => #<MatchData "cat">
r.match('dog') # => #<MatchData "dog">
r.match('cog') # => nil
For each pattern that is a string, Regexp.new(pattern)
is used:
Regexp.union('penzance') # => /penzance/
Regexp.union('a+b*c') # => /a\+b\*c/
Regexp.union('skiing', 'sledding') # => /skiing|sledding/
Regexp.union(['skiing', 'sledding']) # => /skiing|sledding/
For each pattern that is a regexp, it is used as is, including its flags:
Regexp.union(/foo/i, /bar/m, /baz/x)
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
Regexp.union([/foo/i, /bar/m, /baz/x])
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
With no arguments, returns /(?!)/
:
Regexp.union # => /(?!)/
If any regexp pattern contains captures, the behavior is unspecified.
# File 're.c', line 4307
static VALUE rb_reg_s_union_m(VALUE self, VALUE args) { VALUE v; if (RARRAY_LEN(args) == 1 && !NIL_P(v = rb_check_array_type(rb_ary_entry(args, 0)))) { return rb_reg_s_union(self, v); } return rb_reg_s_union(self, args); }
Instance Attribute Details
#casefold? (readonly)
Returns true
if the case-insensitivity flag in self
is set, false
otherwise:
/a/.casefold? # => false
/a/i.casefold? # => true
/(?i:a)/.casefold? # => false
# File 're.c', line 737
static VALUE rb_reg_casefold_p(VALUE re) { rb_reg_check(re); return RBOOL(RREGEXP_PTR(re)->options & ONIG_OPTION_IGNORECASE); }
#fixed_encoding? ⇒ Boolean
(readonly)
Returns false
if self
is applicable to a string with any ASCII-compatible encoding; otherwise returns true
:
r = /a/ # => /a/
r.fixed_encoding? # => false
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2 a".force_encoding("euc-jp")) # => true
r.match?("abc".force_encoding("euc-jp")) # => true
r = /a/u # => /a/
r.fixed_encoding? # => true
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception.
r.match?("abc".force_encoding("euc-jp")) # => true
r = /\u{6666}/ # => /\u{6666}/
r.fixed_encoding? # => true
r.encoding # => #<Encoding:UTF-8>
r.match?("\u{6666} a") # => true
r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception.
r.match?("abc".force_encoding("euc-jp")) # => false
# File 're.c', line 1527
static VALUE rb_reg_fixed_encoding_p(VALUE re) { return RBOOL(FL_TEST(re, KCODE_FIXED)); }
Instance Method Details
#==(object) ⇒ Boolean
Also known as: #eql?
Returns true
if object
is another Regexp whose pattern, flags, and encoding are the same as self
, false
otherwise:
/foo/ == Regexp.new('foo') # => true
/foo/ == /foo/i # => false
/foo/ == Regexp.new('food') # => false
/foo/ == Regexp.new("abc".force_encoding("euc-jp")) # => false
#eql? is an alias for ==
.
# File 're.c', line 3436
VALUE rb_reg_equal(VALUE re1, VALUE re2) { if (re1 == re2) return Qtrue; if (!RB_TYPE_P(re2, T_REGEXP)) return Qfalse; rb_reg_check(re1); rb_reg_check(re2); if (FL_TEST(re1, KCODE_FIXED) != FL_TEST(re2, KCODE_FIXED)) return Qfalse; if (RREGEXP_PTR(re1)->options != RREGEXP_PTR(re2)->options) return Qfalse; if (RREGEXP_SRC_LEN(re1) != RREGEXP_SRC_LEN(re2)) return Qfalse; if (ENCODING_GET(re1) != ENCODING_GET(re2)) return Qfalse; return RBOOL(memcmp(RREGEXP_SRC_PTR(re1), RREGEXP_SRC_PTR(re2), RREGEXP_SRC_LEN(re1)) == 0); }
#===(string) ⇒ Boolean
Returns true
if self
finds a match in string
:
/^[a-z]*$/ === 'HELLO' # => false
/^[A-Z]*$/ === 'HELLO' # => true
This method is called in case statements:
s = 'HELLO'
case s
when /\A[a-z]*\z/; print "Lower case\n"
when /\A[A-Z]*\z/; print "Upper case\n"
else print "Mixed case\n"
end # => "Upper case"
# File 're.c', line 3629
static VALUE rb_reg_eqq(VALUE re, VALUE str) { long start; str = reg_operand(str, FALSE); if (NIL_P(str)) { rb_backref_set(Qnil); return Qfalse; } start = rb_reg_search(re, str, 0, 0); return RBOOL(start >= 0); }
#=~(string) ⇒ Integer?
Returns the integer index (in characters) of the first match for self
and string
, or nil
if none; also sets the Regexp Global Variables
:
/at/ =~ 'input data' # => 7
$~ # => #<MatchData "at">
/ax/ =~ 'input data' # => nil
$~ # => nil
Assigns named captures to local variables of the same names if and only if self
:
-
Is a regexp literal; see
Regexp Literals
. -
Does not contain interpolations; see
Regexp Interpolation
. -
Is at the left of the expression.
Example:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ ' x = y '
p lhs # => "x"
p rhs # => "y"
Assigns nil
if not matched:
/(?<lhs>\w)\s*=\s*(?<rhs>\w)/ =~ ' x = '
p lhs # => nil
p rhs # => nil
Does not make local variable assignments if self
is not a regexp literal:
r = /(?<foo>\w)\s*=\s*(?<foo>\w)/
r =~ ' x = y '
p foo # Undefined local variable
p # Undefined local variable
The assignment does not occur if the regexp is not at the left:
' x = y ' =~ /(?<foo>\w)\s*=\s*(?<foo>\w)/
p foo, foo # Undefined local variables
A regexp interpolation, #{}
, also disables the assignment:
r = /(?<foo>\w+)/
/(?<foo>\w+)\s*=\s*#{r}/ =~ 'x = y'
p foo # Undefined local variable
# File 're.c', line 3600
VALUE rb_reg_match(VALUE re, VALUE str) { long pos = reg_match_pos(re, &str, 0, NULL); if (pos < 0) return Qnil; pos = rb_str_sublen(str, pos); return LONG2FIX(pos); }
#encoding ⇒ Encoding
Returns the ::Encoding
object that represents the encoding of obj.
# File 'encoding.c', line 1159
VALUE rb_obj_encoding(VALUE obj) { int idx = rb_enc_get_index(obj); if (idx < 0) { rb_raise(rb_eTypeError, "unknown encoding"); } return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK); }
#==(object) ⇒ Boolean
#eql?(object) ⇒ Boolean
Boolean
#eql?(object) ⇒ Boolean
Alias for #==.
#hash ⇒ Integer
Returns the integer hash value for self
.
Related: Object#hash.
# File 're.c', line 3401
VALUE rb_reg_hash(VALUE re) { st_index_t hashval = reg_hash(re); return ST2FIX(hashval); }
#initialize_copy(re)
# File 're.c', line 4353
static VALUE rb_reg_init_copy(VALUE copy, VALUE re) { if (!OBJ_INIT_COPY(copy, re)) return copy; rb_reg_check(re); return rb_reg_init_str(copy, RREGEXP_SRC(re), rb_reg_options(re)); }
#inspect ⇒ String
Returns a nicely-formatted string representation of self
:
/ab+c/ix.inspect # => "/ab+c/ix"
Related: #to_s.
# File 're.c', line 520
static VALUE rb_reg_inspect(VALUE re) { if (!RREGEXP_PTR(re) || !RREGEXP_SRC(re) || !RREGEXP_SRC_PTR(re)) { return rb_any_to_s(re); } return rb_reg_desc(RREGEXP_SRC_PTR(re), RREGEXP_SRC_LEN(re), re); }
With no block given, returns the ::MatchData
object that describes the match, if any, or nil
if none; the search begins at the given character offset
in string
:
/abra/.match('abracadabra') # => #<MatchData "abra">
/abra/.match('abracadabra', 4) # => #<MatchData "abra">
/abra/.match('abracadabra', 8) # => nil
/abra/.match('abracadabra', 800) # => nil
string = "\u{5d0 5d1 5e8 5d0}cadabra"
/abra/.match(string, 7) #=> #<MatchData "abra">
/abra/.match(string, 8) #=> nil
/abra/.match(string.b, 8) #=> #<MatchData "abra">
With a block given, calls the block if and only if a match is found; returns the block’s value:
/abra/.match('abracadabra') {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 4) {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 8) {|matchdata| p matchdata }
# => nil
/abra/.match('abracadabra', 8) {|marchdata| fail 'Cannot happen' }
# => nil
Output (from the first two blocks above):
#<MatchData "abra">
#<MatchData "abra">
/(.)(.)(.)/.match("abc")[2] # => "b"
/(.)(.)/.match("abc", 1)[2] # => "c"
# File 're.c', line 3716
static VALUE rb_reg_match_m(int argc, VALUE *argv, VALUE re) { VALUE result = Qnil, str, initpos; long pos; if (rb_scan_args(argc, argv, "11", &str, &initpos) == 2) { pos = NUM2LONG(initpos); } else { pos = 0; } pos = reg_match_pos(re, &str, pos, &result); if (pos < 0) { rb_backref_set(Qnil); return Qnil; } rb_match_busy(result); if (!NIL_P(result) && rb_block_given_p()) { return rb_yield(result); } return result; }
#match?(string) ⇒ Boolean
#match?(string, offset = 0) ⇒ Boolean
Boolean
#match?(string, offset = 0) ⇒ Boolean
Returns true
or false
to indicate whether the regexp is matched or not without updating $~ and other related variables. If the second parameter is present, it specifies the position in the string to begin the search.
/R.../.match?("Ruby") # => true
/R.../.match?("Ruby", 1) # => false
/P.../.match?("Ruby") # => false
$& # => nil
# File 're.c', line 3757
static VALUE rb_reg_match_m_p(int argc, VALUE *argv, VALUE re) { long pos = rb_check_arity(argc, 1, 2) > 1 ? NUM2LONG(argv[1]) : 0; return rb_reg_match_p(re, argv[0], pos); }
#named_captures ⇒ Hash
Returns a hash representing named captures of self
(see Named Captures
):
-
Each key is the name of a named capture.
-
Each value is an array of integer indexes for that named capture.
Examples:
/(?<foo>.)(?<bar>.)/.named_captures # => {"foo"=>[1], "bar"=>[2]}
/(?<foo>.)(?<foo>.)/.named_captures # => {"foo"=>[1, 2]}
/(.)(.)/.named_captures # => {}
# File 're.c', line 855
static VALUE rb_reg_named_captures(VALUE re) { regex_t *reg = (rb_reg_check(re), RREGEXP_PTR(re)); VALUE hash = rb_hash_new_with_size(onig_number_of_names(reg)); onig_foreach_name(reg, reg_named_captures_iter, (void*)hash); return hash; }
#names ⇒ array_of_names
Returns an array of names of captures (see Named Captures
):
/(?<foo>.)(?<bar>.)(?<baz>.)/.names # => ["foo", "bar", "baz"]
/(?<foo>.)(?<foo>.)/.names # => ["foo"]
/(.)(.)/.names # => []
# File 're.c', line 811
static VALUE rb_reg_names(VALUE re) { VALUE ary; rb_reg_check(re); ary = rb_ary_new_capa(onig_number_of_names(RREGEXP_PTR(re))); onig_foreach_name(RREGEXP_PTR(re), reg_names_iter, (void*)ary); return ary; }
#options ⇒ Integer
Returns an integer whose bits show the options set in self
.
The option bits are:
Regexp::IGNORECASE # => 1
Regexp::EXTENDED # => 2
Regexp::MULTILINE # => 4
Examples:
/foo/. # => 0
/foo/i. # => 1
/foo/x. # => 2
/foo/m. # => 4
/foo/mix. # => 7
Note that additional bits may be set in the returned integer; these are maintained internally internally in self
, are ignored if passed to .new, and may be ignored by the caller:
Returns the set of bits corresponding to the options used when creating this regexp (see .new for details). Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to .new:
r = /\xa1\xa2/e # => /\xa1\xa2/
r.source # => "\\xa1\\xa2"
r. # => 16
Regexp.new(r.source, r. ) # => /\xa1\xa2/
# File 're.c', line 782
static VALUE rb_reg_options_m(VALUE re) { int options = rb_reg_options(re); return INT2NUM(options); }
#source ⇒ String
Returns the original string of self
:
/ab+c/ix.source # => "ab+c"
Regexp
escape sequences are retained:
/\x20\+/.source # => "\\x20\\+"
Lexer escape characters are not retained:
/\//.source # => "/"
# File 're.c', line 499
static VALUE rb_reg_source(VALUE re) { VALUE str; rb_reg_check(re); str = rb_str_dup(RREGEXP_SRC(re)); return str; }
#timeout ⇒ Float?
It returns the timeout interval for Regexp
matching in second. nil
means no default timeout configuration.
This configuration is per-object. The global configuration set by .timeout= is ignored if per-object configuration is set.
re = Regexp.new("^a*b?a*$", timeout: 1)
re.timeout #=> 1.0
re =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
# File 're.c', line 4671
static VALUE rb_reg_timeout_get(VALUE re) { rb_reg_check(re); double d = hrtime2double(RREGEXP_PTR(re)->timelimit); if (d == 0.0) return Qnil; return DBL2NUM(d); }
#to_s ⇒ String
Returns a string showing the options and string of self
:
r0 = /ab+c/ix
s0 = r0.to_s # => "(?ix-m:ab+c)"
The returned string may be used as an argument to .new, or as interpolated text for a
:Regexp
literal
r1 = Regexp.new(s0) # => /(?ix-m:ab+c)/
r2 = /#{s0}/ # => /(?ix-m:ab+c)/
Note that r1
and r2
are not equal to r0
because their original strings are different:
r0 == r1 # => false
r0.source # => "ab+c"
r1.source # => "(?ix-m:ab+c)"
Related: #inspect.
# File 're.c', line 558
static VALUE rb_reg_to_s(VALUE re) { return rb_reg_str_with_term(re, '/'); }
#~(rxp) ⇒ Integer?
Equivalent to rxp =~ $_
:
$_ = "input data"
~ /at/ # => 7
# File 're.c', line 3655
VALUE rb_reg_match2(VALUE re) { long start; VALUE line = rb_lastline_get(); if (!RB_TYPE_P(line, T_STRING)) { rb_backref_set(Qnil); return Qnil; } start = rb_reg_search(re, line, 0, 0); if (start < 0) { return Qnil; } start = rb_str_sublen(line, start); return LONG2FIX(start); }