123456789_123456789_123456789_123456789_123456789_

Class: Float

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Class Chain:
self, ::Numeric
Instance Chain:
Inherits: Numeric
Defined in: numeric.c,
complex.c,
numeric.rb,
rational.c

Overview

A Float object represents a sometimes-inexact real number using the native architecture’s double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

You can create a Float object explicitly with:

  • A floating-point literal.

You can convert certain objects to Floats with:

  • Method #Float.

What’s Here

First, what’s elsewhere. Class Float:

  • Inherits from class Numeric.

Here, class Float provides methods for:

  • Querying

  • Comparing

  • Converting

Querying

  • #finite?: Returns whether self is finite.

  • #hash: Returns the integer hash code for self.

  • #infinite?: Returns whether self is infinite.

  • #nan?: Returns whether self is a NaN (not-a-number).

Comparing

  • #<: Returns whether self is less than the given value.

  • #<=: Returns whether self is less than or equal to the given value.

  • #<=>: Returns a number indicating whether self is less than, equal to, or greater than the given value.

  • #== (aliased as #=== and #eql?): Returns whether self is equal to the given value.

  • #>: Returns whether self is greater than the given value.

  • #>=: Returns whether self is greater than or equal to the given value.

Converting

  • #% (aliased as #modulo): Returns self modulo the given value.

  • #*: Returns the product of self and the given value.

  • #**: Returns the value of self raised to the power of the given value.

  • #+: Returns the sum of self and the given value.

  • #-: Returns the difference of self and the given value.

  • #/: Returns the quotient of self and the given value.

  • #ceil: Returns the smallest number greater than or equal to self.

  • #coerce: Returns a 2-element array containing the given value converted to a Float

    and {self}
  • #divmod: Returns a 2-element array containing the quotient and remainder results of dividing self by the given value.

  • #fdiv: Returns the Float result of dividing self by the given value.

  • #floor: Returns the greatest number smaller than or equal to self.

  • #next_float: Returns the next-larger representable Float.

  • #prev_float: Returns the next-smaller representable Float.

  • #quo: Returns the quotient from dividing self by the given value.

  • #round: Returns self rounded to the nearest value, to a given precision.

  • #to_i (aliased as #to_int): Returns self truncated to an ::Integer.

  • #to_s (aliased as #inspect): Returns a string containing the place-value representation of self in the given radix.

  • #truncate: Returns self truncated to a given precision.

Constant Summary

  • DIG =

    The minimum number of significant decimal digits in a double-precision floating point.

    Usually defaults to 15.

    # File 'numeric.c', line 6316
    INT2FIX(DBL_DIG)
  • EPSILON =

    The difference between 1 and the smallest double-precision floating point number greater than 1.

    Usually defaults to 2.2204460492503131e-16.

    # File 'numeric.c', line 6368
    DBL2NUM(DBL_EPSILON)
  • INFINITY =

    An expression representing positive infinity.

    # File 'numeric.c', line 6372
    DBL2NUM(HUGE_VAL)
  • MANT_DIG =

    The number of base digits for the double data type.

    Usually defaults to 53.

    # File 'numeric.c', line 6309
    INT2FIX(DBL_MANT_DIG)
  • MAX =

    The largest possible integer in a double-precision floating point number.

    Usually defaults to 1.7976931348623157e+308.

    # File 'numeric.c', line 6361
    DBL2NUM(DBL_MAX)
  • MAX_10_EXP =

    The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to 308.

    # File 'numeric.c', line 6344
    INT2FIX(DBL_MAX_10_EXP)
  • MAX_EXP =

    The largest possible exponent value in a double-precision floating point.

    Usually defaults to 1024.

    # File 'numeric.c', line 6330
    INT2FIX(DBL_MAX_EXP)
  • MIN =

    :MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

    # File 'numeric.c', line 6355
    The smallest positive normalized number in a double-precision floating point.
    
    Usually defaults to 2.2250738585072014e-308.
    
    If the platform supports denormalized numbers,
    there are numbers between zero and Float
  • MIN_10_EXP =

    The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to -307.

    # File 'numeric.c', line 6337
    INT2FIX(DBL_MIN_10_EXP)
  • MIN_EXP =

    The smallest possible exponent value in a double-precision floating point.

    Usually defaults to -1021.

    # File 'numeric.c', line 6323
    INT2FIX(DBL_MIN_EXP)
  • NAN =

    An expression representing a value which is “not a number”.

    # File 'numeric.c', line 6376
    DBL2NUM(nan(""))
  • RADIX =

    The base of the floating point, or number of unique digits used to represent the number.

    Usually defaults to 2 on most systems, which would represent a base-10 decimal.

    # File 'numeric.c', line 6303
    INT2FIX(FLT_RADIX)

Instance Attribute Summary

::Numeric - Inherited

#finite?

Returns true if num is a finite number, otherwise returns false.

#infinite?

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

#integer?

Returns true if num is an ::Integer.

#negative?

Returns true if self is less than 0, false otherwise.

#nonzero?

Returns self if self is not a zero value, nil otherwise; uses method #zero? for the evaluation.

#positive?

Returns true if self is greater than 0, false otherwise.

#real?

Returns true if num is a real number (i.e.

#zero?

Returns true if zero has a zero value, false otherwise.

Instance Method Summary

::Numeric - Inherited

#%

Returns self modulo other as a real number.

#+@

Returns self.

#-@

Unary Minus—Returns the receiver, negated.

#<=>

Returns zero if self is the same as other, nil otherwise.

#abs

Returns the absolute value of self.

#abs2

Returns square of self.

#angle

Alias for Numeric#arg.

#arg

Returns 0 if the value is positive, pi otherwise.

#ceil

Returns the smallest number that is greater than or equal to self with a precision of digits decimal digits.

#clone

Returns self.

#coerce

Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.

#conj
#conjugate

Returns self.

#denominator

Returns the denominator (always positive).

#div

Returns the quotient self/other as an integer (via #floor), using method #/ in the derived class of self.

#divmod

Returns a 2-element array [q, r], where.

#dup

Returns self.

#eql?

Returns true if self and other are the same type and have equal values.

#fdiv

Returns the quotient self/other as a float, using method #/ in the derived class of self.

#floor

Returns the largest number that is less than or equal to self with a precision of digits decimal digits.

#i

Returns Complex(0, self):

#imag
#imaginary

Returns zero.

#magnitude

Alias for Numeric#abs.

#modulo

Alias for Numeric#%.

#numerator

Returns the numerator.

#phase

Alias for Numeric#arg.

#polar

Returns an array; [num.abs, num.arg].

#quo

Returns the most exact division (rational for integers, float for floats).

#real

Returns self.

#rect

Returns an array; [num, 0].

#rectangular

Alias for Numeric#rect.

#remainder

Returns the remainder after dividing self by other.

#round

Returns self rounded to the nearest value with a precision of digits decimal digits.

#step

Generates a sequence of numbers; with a block given, traverses the sequence.

#to_c

Returns the value as a complex.

#to_int

Returns self as an integer; converts using method #to_i in the derived class.

#truncate

Returns self truncated (toward zero) to a precision of digits decimal digits.

#singleton_method_added

Trap attempts to add methods to ::Numeric objects.

::Comparable - Included

#<

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0.

#<=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0.

#==

Compares two objects based on the receiver’s #<=> method, returning true if it returns 0.

#>

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0.

#>=

Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0.

#between?

Returns false if obj #<=> min is less than zero or if obj #<=> max is greater than zero, true otherwise.

#clamp

In (min, max) form, returns min if obj #<=> min is less than zero, max if obj #<=> max is greater than zero, and obj otherwise.

Instance Attribute Details

#finite?Boolean (readonly)

Returns true if self is not Infinity, -Infinity, or NaN, false otherwise:

f = 2.0      # => 2.0
f.finite?    # => true
f = 1.0/0.0  # => Infinity
f.finite?    # => false
f = -1.0/0.0 # => -Infinity
f.finite?    # => false
f = 0.0/0.0  # => NaN
f.finite?    # => false
[ GitHub ]

  
# File 'numeric.c', line 2020

VALUE
rb_flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return RBOOL(isfinite(value));
}

#infinite?Boolean (readonly)

Returns:

  • 1, if self is Infinity.

  • -1 if self is -Infinity.

  • nil, otherwise.

Examples:

f = 1.0/0.0  # => Infinity
f.infinite?  # => 1
f = -1.0/0.0 # => -Infinity
f.infinite?  # => -1
f = 1.0      # => 1.0
f.infinite?  # => nil
f = 0.0/0.0  # => NaN
f.infinite?  # => nil
[ GitHub ]

  
# File 'numeric.c', line 1990

VALUE
rb_flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
        return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}

#nan?Boolean (readonly)

Returns true if self is a NaN, false otherwise.

f = -1.0     #=> -1.0
f.nan?       #=> false
f = 0.0/0.0  #=> NaN
f.nan?       #=> true
[ GitHub ]

  
# File 'numeric.c', line 1959

static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return RBOOL(isnan(value));
}

#negative?Boolean (readonly)

Returns true if float is less than 0.

[ GitHub ]

  
# File 'numeric.rb', line 400

def negative?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) < 0.0)'
end

#positive?Boolean (readonly)

Returns true if float is greater than 0.

[ GitHub ]

  
# File 'numeric.rb', line 389

def positive?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) > 0.0)'
end

#zero?Boolean (readonly)

Returns true if float is 0.0.

[ GitHub ]

  
# File 'numeric.rb', line 378

def zero?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(FLOAT_ZERO_P(self))'
end

Instance Method Details

#%(other) ⇒ Float Also known as: #modulo

Returns self modulo other as a float.

For float f and real number r, these expressions are equivalent:

f % r
f-r*(f/r).floor
f.divmod(r)[1]

See Numeric#divmod.

Examples:

10.0 % 2              # => 0.0
10.0 % 3              # => 1.0
10.0 % 4              # => 2.0

10.0 % -2             # => 0.0
10.0 % -3             # => -2.0
10.0 % -4             # => -2.0

10.0 % 4.0            # => 2.0
10.0 % Rational(4, 1) # => 2.0

#modulo is an alias for %.

[ GitHub ]

  
# File 'numeric.c', line 1414

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (FIXNUM_P(y)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#*(other) ⇒ Numeric

Returns a new Float which is the product of self and other:

f = 3.14
f * 2              # => 6.28
f * 2.0            # => 6.28
f * Rational(1, 2) # => 1.57
f * Complex(2, 0)  # => (6.28+0.0i)
[ GitHub ]

  
# File 'numeric.c', line 1231

VALUE
rb_float_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '*');
    }
}

#**(other) ⇒ Numeric

Raises self to the power of other:

f = 3.14
f ** 2              # => 9.8596
f ** -2             # => 0.1014239928597509
f ** 2.1            # => 11.054834900588839
f ** Rational(2, 1) # => 9.8596
f ** Complex(2, 0)  # => (9.8596+0i)
[ GitHub ]

  
# File 'numeric.c', line 1508

VALUE
rb_float_pow(VALUE x, VALUE y)
{
    double dx, dy;
    if (y == INT2FIX(2)) {
        dx = RFLOAT_VALUE(x);
        return DBL2NUM(dx * dx);
    }
    else if (FIXNUM_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = RFLOAT_VALUE(y);
        if (dx < 0 && dy != round(dy))
            return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
    }
    else {
        return rb_num_coerce_bin(x, y, idPow);
    }
    return DBL2NUM(pow(dx, dy));
}

#+(other) ⇒ Numeric

Returns a new Float which is the sum of self and other:

f = 3.14
f + 1                 # => 4.140000000000001
f + 1.0               # => 4.140000000000001
f + Rational(1, 1)    # => 4.140000000000001
f + Complex(1, 0)     # => (4.140000000000001+0i)
[ GitHub ]

  
# File 'numeric.c', line 1170

VALUE
rb_float_plus(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Numeric

Returns a new Float which is the difference of self and other:

f = 3.14
f - 1                 # => 2.14
f - 1.0               # => 2.14
f - Rational(1, 1)    # => 2.14
f - Complex(1, 0)     # => (2.14+0i)
[ GitHub ]

  
# File 'numeric.c', line 1201

VALUE
rb_float_minus(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '-');
    }
}

#-Float

Returns float, negated.

[ GitHub ]

  
# File 'numeric.rb', line 367

def -@
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_uminus(self)'
end

#/(other) ⇒ Numeric

Returns a new Float which is the result of dividing self by other:

f = 3.14
f / 2              # => 1.57
f / 2.0            # => 1.57
f / Rational(2, 1) # => 1.57
f / Complex(2, 0)  # => (1.57+0.0i)
[ GitHub ]

  
# File 'numeric.c', line 1286

VALUE
rb_float_div(VALUE x, VALUE y)
{
    double num = RFLOAT_VALUE(x);
    double den;
    double ret;

    if (FIXNUM_P(y)) {
        den = FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        den = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        den = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '/');
    }

    ret = double_div_double(num, den);
    return DBL2NUM(ret);
}

#<(other) ⇒ Boolean

Returns true if self is numerically less than other:

2.0 < 3              # => true
2.0 < 3.0            # => true
2.0 < Rational(3, 1) # => true
2.0 < 2.0            # => false

Float::NAN < Float::NAN returns an implementation-dependent value.

[ GitHub ]

  
# File 'numeric.c', line 1836

static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) < 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '<');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a < b);
}

#<=(other) ⇒ Boolean

Returns true if self is numerically less than or equal to other:

2.0 <= 3              # => true
2.0 <= 3.0            # => true
2.0 <= Rational(3, 1) # => true
2.0 <= 2.0            # => true
2.0 <= 1.0            # => false

Float::NAN <= Float::NAN returns an implementation-dependent value.

[ GitHub ]

  
# File 'numeric.c', line 1879

static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) <= 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idLE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a <= b);
}

#<=>(other) ⇒ 1, ...

Returns a value that depends on the numeric relation between self and other:

  • -1, if self is less than other.

  • 0, if self is equal to other.

  • 1, if self is greater than other.

  • nil, if the two values are incommensurate.

Examples:

2.0 <=> 2              # => 0
  2.0 <=> 2.0            # => 0
  2.0 <=> Rational(2, 1) # => 0
  2.0 <=> Complex(2, 0)  # => 0
  2.0 <=> 1.9            # => 1
  2.0 <=> 2.1            # => -1
  2.0 <=> 'foo'          # => nil

This is the basis for the tests in the ::Comparable module.

Float::NAN <=> Float::NAN returns an implementation-dependent value.

[ GitHub ]

  
# File 'numeric.c', line 1698

static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return LONG2FIX(-FIX2LONG(rel));
        return rel;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
    }
    else {
        if (isinf(a) && !UNDEF_P(i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0))) {
            if (RTEST(i)) {
                int j = rb_cmpint(i, x, y);
                j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
                return INT2FIX(j);
            }
            if (a > 0.0) return INT2FIX(1);
            return INT2FIX(-1);
        }
        return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}

#==

[ GitHub ]

#===

[ GitHub ]

#>(other) ⇒ Boolean

Returns true if self is numerically greater than other:

2.0 > 1              # => true
2.0 > 1.0            # => true
2.0 > Rational(1, 2) # => true
2.0 > 2.0            # => false

Float::NAN > Float::NAN returns an implementation-dependent value.

[ GitHub ]

  
# File 'numeric.c', line 1751

VALUE
rb_float_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) > 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '>');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a > b);
}

#>=(other) ⇒ Boolean

Returns true if self is numerically greater than or equal to other:

2.0 >= 1              # => true
2.0 >= 1.0            # => true
2.0 >= Rational(1, 2) # => true
2.0 >= 2.0            # => true
2.0 >= 2.1            # => false

Float::NAN >= Float::NAN returns an implementation-dependent value.

[ GitHub ]

  
# File 'numeric.c', line 1794

static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) >= 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idGE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a >= b);
}

#absFloat #magnitudeFloat

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
34.56.abs      #=> 34.56

#magnitude is an alias for abs.

[ GitHub ]

  
# File 'numeric.rb', line 351

def abs
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_abs(self)'
end

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#arg0, Float #angle0, Float #phase0, Float
Also known as: #angle, #phase

Returns 0 if the value is positive, pi otherwise.

[ GitHub ]

  
# File 'complex.c', line 2244

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
        return self;
    if (f_tpositive_p(self))
        return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#ceil(ndigits = 0) ⇒ Float, Integer

Returns the smallest number greater than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.ceil(1) # => 12345.7
f.ceil(3) # => 12345.679
f = -12345.6789
f.ceil(1) # => -12345.6
f.ceil(3) # => -12345.678

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.ceil(0)  # => 12346
f.ceil(-3) # => 13000
f = -12345.6789
f.ceil(0)  # => -12345
f.ceil(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(2.1 / 0.7).ceil  #=> 4 (!)

Related: #floor.

[ GitHub ]

  
# File 'numeric.c', line 2245

static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
    int ndigits = flo_ndigits(argc, argv);
    return rb_float_ceil(num, ndigits);
}

#coerce(other) ⇒ Array

Returns a 2-element array containing other converted to a Float and self:

f = 3.14                 # => 3.14
f.coerce(2)              # => [2.0, 3.14]
f.coerce(2.0)            # => [2.0, 3.14]
f.coerce(Rational(1, 2)) # => [0.5, 3.14]
f.coerce(Complex(1, 0))  # => [1.0, 3.14]

Raises an exception if a type conversion fails.

[ GitHub ]

  
# File 'numeric.c', line 1144

static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}

#denominatorInteger

Returns the denominator (always positive). The result is machine dependent.

See also #numerator.

[ GitHub ]

  
# File 'rational.c', line 2094

VALUE
rb_float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (!isfinite(d))
        return INT2FIX(1);
    r = float_to_r(self);
    return nurat_denominator(r);
}

#divmod(other) ⇒ Array

Returns a 2-element array [q, r], where

q = (self/other).floor      # Quotient
r = self % other            # Remainder

Examples:

11.0.divmod(4)              # => [2, 3.0]
11.0.divmod(-4)             # => [-3, -1.0]
-11.0.divmod(4)             # => [-3, 1.0]
-11.0.divmod(-4)            # => [2, -3.0]

12.0.divmod(4)              # => [3, 0.0]
12.0.divmod(-4)             # => [-3, 0.0]
-12.0.divmod(4)             # => [-3, -0.0]
-12.0.divmod(-4)            # => [3, -0.0]

13.0.divmod(4.0)            # => [3, 1.0]
13.0.divmod(Rational(4, 1)) # => [3, 1.0]
[ GitHub ]

  
# File 'numeric.c', line 1469

static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (FIXNUM_P(y)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, id_divmod);
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}

#eql?Boolean

[ GitHub ]

#quo(other) ⇒ Numeric #fdiv(other) ⇒ Numeric

Alias for #quo.

#floor(ndigits = 0) ⇒ Float, Integer

Returns the largest number less than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.floor(1) # => 12345.6
f.floor(3) # => 12345.678
f = -12345.6789
f.floor(1) # => -12345.7
f.floor(3) # => -12345.679

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.floor(0)  # => 12345
f.floor(-3) # => 12000
f = -12345.6789
f.floor(0)  # => -12346
f.floor(-3) # => -13000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).floor  #=> 2 (!)

Related: #ceil.

[ GitHub ]

  
# File 'numeric.c', line 2202

static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
    int ndigits = flo_ndigits(argc, argv);
    return rb_float_floor(num, ndigits);
}

#hashInteger

Returns the integer hash value for self.

See also Object#hash.

[ GitHub ]

  
# File 'numeric.c', line 1648

static VALUE
flo_hash(VALUE num)
{
    return rb_dbl_hash(RFLOAT_VALUE(num));
}

#to_sString #inspectString

Alias for #to_s.

#magnitude

[ GitHub ]

  
# File 'numeric.rb', line 356

def magnitude
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_abs(self)'
end

#%(other) ⇒ Float #modulo(other) ⇒ Float

Alias for #%.

#next_floatFloat

Returns the next-larger representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.next_float:

f = 0.0      # 0x0000000000000000
f.next_float # 0x0000000000000001

f = 0.01     # 0x3f847ae147ae147b
f.next_float # 0x3f847ae147ae147c

In the remaining examples here, the output is shown in the usual way (result #to_s):

0.01.next_float    # => 0.010000000000000002
1.0.next_float     # => 1.0000000000000002
100.0.next_float   # => 100.00000000000001

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }

Output:

 0 0x1ae147ae147bp-7 0.01
 1 0x1ae147ae147cp-7 0.010000000000000002
 2 0x1ae147ae147dp-7 0.010000000000000004
 3 0x1ae147ae147ep-7 0.010000000000000005

f = 0.0; 100.times { f += 0.1 }
f                           # => 9.99999999999998       # should be 10.0 in the ideal world.
10-f                        # => 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10          # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) # => 11.0                   # the error is 11 ulp.
(10-f)/(10*Float::EPSILON)  # => 8.8                    # approximation of the above.
"%a" % 10                   # => "0x1.4p+3"
"%a" % f                    # => "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Related: #prev_float

[ GitHub ]

  
# File 'numeric.c', line 2081

static VALUE
flo_next_float(VALUE vx)
{
    return flo_nextafter(vx, HUGE_VAL);
}

#numeratorInteger

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

See also #denominator.

[ GitHub ]

  
# File 'rational.c', line 2074

VALUE
rb_float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (!isfinite(d))
        return self;
    r = float_to_r(self);
    return nurat_numerator(r);
}

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#prev_floatFloat

Returns the next-smaller representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.pev_float:

f = 5e-324   # 0x0000000000000001
f.prev_float # 0x0000000000000000

f = 0.01     # 0x3f847ae147ae147b
f.prev_float # 0x3f847ae147ae147a

In the remaining examples here, the output is shown in the usual way (result #to_s):

0.01.prev_float   # => 0.009999999999999998
1.0.prev_float    # => 0.9999999999999999
100.0.prev_float  # => 99.99999999999999

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }

Output:

0 0x1ae147ae147bp-7 0.01
1 0x1ae147ae147ap-7 0.009999999999999998
2 0x1ae147ae1479p-7 0.009999999999999997
3 0x1ae147ae1478p-7 0.009999999999999995

Related: #next_float.

[ GitHub ]

  
# File 'numeric.c', line 2122

static VALUE
flo_prev_float(VALUE vx)
{
    return flo_nextafter(vx, -HUGE_VAL);
}

#quo(other) ⇒ Numeric Also known as: #fdiv

Returns the quotient from dividing self by other:

f = 3.14
f.quo(2)              # => 1.57
f.quo(-2)             # => -1.57
f.quo(Rational(2, 1)) # => 1.57
f.quo(Complex(2, 0))  # => (1.57+0.0i)

#fdiv is an alias for quo.

[ GitHub ]

  
# File 'numeric.c', line 1326

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return num_funcall1(x, '/', y);
}

#rationalize([eps]) ⇒ Rational

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See also #to_r.

[ GitHub ]

  
# File 'rational.c', line 2276

static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE rat;
    int neg = d < 0.0;
    if (neg) self = DBL2NUM(-d);

    if (rb_check_arity(argc, 0, 1)) {
        rat = rb_flt_rationalize_with_prec(self, argv[0]);
    }
    else {
        rat = rb_flt_rationalize(self);
    }
    if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
    return rat;
}

#round(ndigits = 0, half: :up]) ⇒ Integer, Float

Returns self rounded to the nearest value with a precision of ndigits decimal digits.

When ndigits is non-negative, returns a float with ndigits after the decimal point (as available):

f = 12345.6789
f.round(1) # => 12345.7
f.round(3) # => 12345.679
f = -12345.6789
f.round(1) # => -12345.7
f.round(3) # => -12345.679

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.round(0)  # => 12346
f.round(-3) # => 12000
f = -12345.6789
f.round(0)  # => -12346
f.round(-3) # => -12000

If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:

  • :up or nil: round away from zero:

    2.5.round(half: :up)      # => 3
    3.5.round(half: :up)      # => 4
    (-2.5).round(half: :up)   # => -3
  • :down: round toward zero:

    2.5.round(half: :down)    # => 2
    3.5.round(half: :down)    # => 3
    (-2.5).round(half: :down) # => -2
  • :even: round toward the candidate whose last nonzero digit is even:

    2.5.round(half: :even)    # => 2
    3.5.round(half: :even)    # => 4
    (-2.5).round(half: :even) # => -2

Raises and exception if the value for half is invalid.

Related: #truncate.

[ GitHub ]

  
# File 'numeric.c', line 2503

static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    double number, f, x;
    VALUE nd, opt;
    int ndigits = 0;
    enum ruby_num_rounding_mode mode;

    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
        ndigits = NUM2INT(nd);
    }
    mode = rb_num_get_rounding_option(opt);
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits < 0) {
        return rb_int_round(flo_to_i(num), ndigits, mode);
    }
    if (ndigits == 0) {
        x = ROUND_CALL(mode, round, (number, 1.0));
        return dbl2ival(x);
    }
    if (isfinite(number)) {
        int binexp;
        frexp(number, &binexp);
        if (float_round_overflow(ndigits, binexp)) return num;
        if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
        if (ndigits > 14) {
            /* In this case, pow(10, ndigits) may not be accurate. */
            return rb_flo_round_by_rational(argc, argv, num);
        }
        f = pow(10, ndigits);
        x = ROUND_CALL(mode, round, (number, f));
        return DBL2NUM(x / f);
    }
    return num;
}

#to_fself

Since float is already a Float, returns self.

[ GitHub ]

  
# File 'numeric.rb', line 334

def to_f
  self
end

#to_iInteger Also known as: #to_int

Returns self truncated to an ::Integer.

1.2.to_i    # => 1
(-1.2).to_i # => -1

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).to_i  # => 2 (!)

#to_int is an alias for to_i.

[ GitHub ]

  
# File 'numeric.c', line 2596

static VALUE
flo_to_i(VALUE num)
{
    double f = RFLOAT_VALUE(num);

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    return dbl2ival(f);
}

#to_iInteger #to_intInteger

Alias for #to_i.

#to_rRational

Returns the value as a rational.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)
0.3.to_r    #=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn’t the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn’t so.

0.3.to_r   == 3/10r  #=> false
"0.3".to_r == 3/10r  #=> true

See also #rationalize.

[ GitHub ]

  
# File 'rational.c', line 2191

static VALUE
float_to_r(VALUE self)
{
    VALUE f;
    int n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    if (n == 0)
        return rb_rational_new1(f);
    if (n > 0)
        return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
    n = -n;
    return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
#else
    f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
    if (RB_TYPE_P(f, T_RATIONAL))
        return f;
    return rb_rational_new1(f);
#endif
}

#to_sString Also known as: #inspect

Returns a string containing a representation of self; depending of the value of self, the string representation may contain:

  • A fixed-point number.

  • A number in “scientific notation” (containing an exponent).

  • ‘Infinity’.

  • ‘-Infinity’.

  • ‘NaN’ (indicating not-a-number).

    3.14.to_s # => “3.14” (10.1**50).to_s # => “1.644631821843879e+50” (10.1**500).to_s # => “Infinity” (-10.1**500).to_s # => “-Infinity” (0.0/0.0).to_s # => “NaN”

[ GitHub ]

  
# File 'numeric.c', line 1053

static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + roomof(decimal_mant, CHAR_BIT) + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value)) {
        static const char minf[] = "-Infinity";
        const int pos = (value > 0); /* skip "-" */
        return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
    }
    else if (isnan(value))
        return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
        if (decpt < digs) {
            memmove(buf + decpt + 1, buf + decpt, digs - decpt);
            buf[decpt] = '.';
            rb_str_cat(s, buf, digs + 1);
        }
        else if (decpt <= DBL_DIG) {
            long len;
            char *ptr;
            rb_str_cat(s, buf, digs);
            rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
            ptr = RSTRING_PTR(s) + len;
            if (decpt > digs) {
                memset(ptr, '0', decpt - digs);
                ptr += decpt - digs;
            }
            memcpy(ptr, ".0", 2);
        }
        else {
            goto exp;
        }
    }
    else if (decpt > -4) {
        long len;
        char *ptr;
        rb_str_cat(s, "0.", 2);
        rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
        ptr = RSTRING_PTR(s);
        memset(ptr += len, '0', -decpt);
        memcpy(ptr -= decpt, buf, digs);
    }
    else {
        goto exp;
    }
    return s;

  exp:
    if (digs > 1) {
        memmove(buf + 2, buf + 1, digs - 1);
    }
    else {
        buf[2] = '0';
        digs++;
    }
    buf[1] = '.';
    rb_str_cat(s, buf, digs + 1);
    rb_str_catf(s, "e%+03d", decpt - 1);
    return s;
}

#truncate(ndigits = 0) ⇒ Float, Integer

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.truncate(1) # => 12345.6
f.truncate(3) # => 12345.678
f = -12345.6789
f.truncate(1) # => -12345.6
f.truncate(3) # => -12345.678

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.truncate(0)  # => 12345
f.truncate(-3) # => 12000
f = -12345.6789
f.truncate(0)  # => -12345
f.truncate(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).truncate  #=> 2 (!)

Related: #round.

[ GitHub ]

  
# File 'numeric.c', line 2642

static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
    if (signbit(RFLOAT_VALUE(num)))
        return flo_ceil(argc, argv, num);
    else
        return flo_floor(argc, argv, num);
}