Class: Rational
Relationships & Source Files | |
Namespace Children | |
Classes:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
::Numeric
|
|
Instance Chain:
self,
::Numeric ,
::Comparable
|
|
Inherits: | Numeric |
Defined in: | rational.c |
Overview
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. ::Integer
a equals rational a/1 mathematically.
You can create a Rational object explicitly with:
-
A
rational literal
.
You can convert certain objects to Rationals with:
-
Method
#Rational
.
Examples
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3) # Reduced.
3.to_r #=> (3/1)
2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Instance Attribute Summary
-
#negative? ⇒ Boolean
readonly
Returns
true
ifrat
is less than 0. -
#positive? ⇒ Boolean
readonly
Returns
true
ifrat
is greater than 0.
::Numeric
- Inherited
#finite? | Returns |
#infinite? | Returns |
#integer? | Returns |
#negative? | Returns |
#nonzero? | Returns |
#positive? | Returns |
#real? | Returns |
#zero? | Returns |
Instance Method Summary
-
#*(numeric) ⇒ Numeric
Performs multiplication.
- #**
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#- ⇒ Rational
Negates
rat
. -
#/(numeric) ⇒ Numeric
(also: #quo)
Performs division.
-
#<=>(numeric) ⇒ 1, ...
Returns -1, 0, or +1 depending on whether
rational
is less than, equal to, or greater thannumeric
. -
#==(object) ⇒ Boolean
Returns
true
ifrat
equalsobject
numerically. -
#abs ⇒ Rational
(also: #magnitude)
Returns the absolute value of
rat
. -
#ceil([ndigits]) ⇒ Integer, Rational
Returns the smallest number greater than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a
::Float
. -
#floor([ndigits]) ⇒ Integer, Rational
Returns the largest number less than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). - #hash
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Rational
Alias for #abs.
-
#numerator ⇒ Integer
Returns the numerator.
-
#quo(numeric) ⇒ Numeric
Alias for #/.
-
#rationalize ⇒ self
Returns a simpler approximation of the value if the optional argument
eps
is given (rat-|eps| <= result <= rat+|eps|), self otherwise. -
#round([ndigits] [, half: mode]) ⇒ Integer, Rational
Returns
rat
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#to_f ⇒ Float
Returns the value as a
::Float
. -
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate([ndigits]) ⇒ Integer, Rational
Returns
rat
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). - #coerce(other) Internal use only
- #marshal_dump private Internal use only
::Numeric
- Inherited
#% | Returns |
#+@ | Returns |
#-@ | Unary Minus—Returns the receiver, negated. |
#<=> | Returns zero if |
#abs | Returns the absolute value of |
#abs2 | Returns square of self. |
#angle | Alias for Numeric#arg. |
#arg | Returns 0 if the value is positive, pi otherwise. |
#ceil | Returns the smallest number that is greater than or equal to |
#clone | Returns |
#coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
#conj | Alias for Numeric#conjugate. |
#conjugate | Returns self. |
#denominator | Returns the denominator (always positive). |
#div | |
#divmod | Returns a 2-element array |
#dup | Returns |
#eql? | Returns |
#fdiv | Returns the quotient |
#floor | Returns the largest number that is less than or equal to |
#i | Returns |
#imag | Alias for Numeric#imaginary. |
#imaginary | Returns zero. |
#magnitude | Alias for Numeric#abs. |
#modulo | Alias for Numeric#%. |
#numerator | Returns the numerator. |
#phase | Alias for Numeric#arg. |
#polar | Returns an array; [num.abs, num.arg]. |
#quo | Returns the most exact division (rational for integers, float for floats). |
#real | Returns self. |
#rect | Returns an array; [num, 0]. |
#rectangular | Alias for Numeric#rect. |
#remainder | Returns the remainder after dividing |
#round | Returns |
#step | Generates a sequence of numbers; with a block given, traverses the sequence. |
#to_c | Returns the value as a complex. |
#to_int | Returns |
#truncate | Returns |
#singleton_method_added | Trap attempts to add methods to |
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Instance Attribute Details
#negative? ⇒ Boolean
(readonly)
Returns true
if rat
is less than 0.
# File 'rational.c', line 1218
static VALUE nurat_negative_p(VALUE self) { get_dat1(self); return RBOOL(INT_NEGATIVE_P(dat->num)); }
#positive? ⇒ Boolean
(readonly)
Returns true
if rat
is greater than 0.
# File 'rational.c', line 1205
static VALUE nurat_positive_p(VALUE self) { get_dat1(self); return RBOOL(INT_POSITIVE_P(dat->num)); }
Instance Method Details
#*(numeric) ⇒ Numeric
Performs multiplication.
Rational(2, 3) * Rational(2, 3) #=> (4/9)
Rational(900) * Rational(1) #=> (900/1)
Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
Rational(9, 8) * 4 #=> (9/2)
Rational(20, 9) * 9.8 #=> 21.77777777777778
# File 'rational.c', line 859
VALUE rb_rational_mul(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '*'); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '*'); } } else { return rb_num_coerce_bin(self, other, '*'); } }
#**
[ GitHub ]#+(numeric) ⇒ Numeric
Performs addition.
Rational(2, 3) + Rational(2, 3) #=> (4/3)
Rational(900) + Rational(1) #=> (901/1)
Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
Rational(9, 8) + 4 #=> (41/8)
Rational(20, 9) + 9.8 #=> 12.022222222222222
# File 'rational.c', line 722
VALUE rb_rational_plus(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_rational_new_no_reduce2(CLASS_OF(self), rb_int_plus(dat->num, rb_int_mul(other, dat->den)), dat->den); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '+'); } } else { return rb_num_coerce_bin(self, other, '+'); } }
#-(numeric) ⇒ Numeric
Performs subtraction.
Rational(2, 3) - Rational(2, 3) #=> (0/1)
Rational(900) - Rational(1) #=> (899/1)
Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
Rational(9, 8) - 4 #=> (-23/8)
Rational(20, 9) - 9.8 #=> -7.577777777777778
# File 'rational.c', line 763
VALUE rb_rational_minus(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_rational_new_no_reduce2(CLASS_OF(self), rb_int_minus(dat->num, rb_int_mul(other, dat->den)), dat->den); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '-'); } } else { return rb_num_coerce_bin(self, other, '-'); } }
#- ⇒ Rational
Negates rat
.
# File 'rational.c', line 609
VALUE rb_rational_uminus(VALUE self) { const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0); get_dat1(self); (void)unused; return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den); }
Also known as: #quo
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
# File 'rational.c', line 901
VALUE rb_rational_div(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } } else if (RB_FLOAT_TYPE_P(other)) { VALUE v = nurat_to_f(self); return rb_flo_div_flo(v, other); } else if (RB_TYPE_P(other, T_RATIONAL)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } } else { return rb_num_coerce_bin(self, other, '/'); } }
#<=>(numeric) ⇒ 1
, ...
Returns -1, 0, or +1 depending on whether rational
is less than, equal to, or greater than numeric
.
nil
is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2, 3) <=> Rational(1, 3) #=> 1
Rational(1, 3) <=> 1 #=> -1
Rational(1, 3) <=> 0.3 #=> 1
Rational(1, 3) <=> "0.3" #=> nil
# File 'rational.c', line 1073
VALUE rb_rational_cmp(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (dat->den == LONG2FIX(1)) return rb_int_cmp(dat->num, other); /* c14n */ other = f_rational_new_bang1(CLASS_OF(self), other); /* FALLTHROUGH */ } case T_RATIONAL: { VALUE num1, num2; get_dat2(self, other); if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); } else { num1 = rb_int_mul(adat->num, bdat->den); num2 = rb_int_mul(bdat->num, adat->den); } return rb_int_cmp(rb_int_minus(num1, num2), ZERO); } case T_FLOAT: return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other)); default: return rb_num_coerce_cmp(self, other, idCmp); } }
#==(object) ⇒ Boolean
Returns true
if rat
equals object
numerically.
Rational(2, 3) == Rational(2, 3) #=> true
Rational(5) == 5 #=> true
Rational(0) == 0.0 #=> true
Rational('1/3') == 0.33 #=> false
Rational('1/2') == '1/2' #=> false
# File 'rational.c', line 1126
static VALUE nurat_eqeq_p(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { get_dat1(self); if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) { if (INT_ZERO_P(dat->num) && INT_ZERO_P(other)) return Qtrue; if (!FIXNUM_P(dat->den)) return Qfalse; if (FIX2LONG(dat->den) != 1) return Qfalse; return rb_int_equal(dat->num, other); } else { const double d = nurat_to_double(self); return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other)))); } } else if (RB_FLOAT_TYPE_P(other)) { const double d = nurat_to_double(self); return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other)))); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num)) return Qtrue; return RBOOL(rb_int_equal(adat->num, bdat->num) && rb_int_equal(adat->den, bdat->den)); } } else { return rb_equal(other, self); } }
#abs ⇒ Rational
#magnitude ⇒ Rational
Also known as: #magnitude
Rational
#magnitude ⇒ Rational
Returns the absolute value of rat
.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
#magnitude is an alias for abs
.
# File 'rational.c', line 1238
VALUE rb_rational_abs(VALUE self) { get_dat1(self); if (INT_NEGATIVE_P(dat->num)) { VALUE num = rb_int_abs(dat->num); return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den); } return self; }
#ceil([ndigits]) ⇒ Integer, Rational
Returns the smallest number greater than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').ceil(+1).to_f #=> -123.4
Rational('-123.456').ceil(-1) #=> -120
# File 'rational.c', line 1464
static VALUE nurat_ceil_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_ceil); }
#coerce(other)
# File 'rational.c', line 1168
static VALUE nurat_coerce(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self); } else if (RB_FLOAT_TYPE_P(other)) { return rb_assoc_new(other, nurat_to_f(self)); } else if (RB_TYPE_P(other, T_RATIONAL)) { return rb_assoc_new(other, self); } else if (RB_TYPE_P(other, T_COMPLEX)) { if (!k_exact_zero_p(RCOMPLEX(other)->imag)) return rb_assoc_new(other, rb_Complex(self, INT2FIX(0))); other = RCOMPLEX(other)->real; if (RB_FLOAT_TYPE_P(other)) { other = float_to_r(other); RBASIC_SET_CLASS(other, CLASS_OF(self)); } else { other = f_rational_new_bang1(CLASS_OF(self), other); } return rb_assoc_new(other, self); } rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_obj_classname(other), rb_obj_classname(self)); return Qnil; }
#denominator ⇒ Integer
Returns the denominator (always positive).
Rational(7).denominator #=> 1
Rational(7, 1).denominator #=> 1
Rational(9, -4).denominator #=> 4
Rational(-2, -10).denominator #=> 5
# File 'rational.c', line 596
static VALUE nurat_denominator(VALUE self) { get_dat1(self); return dat->den; }
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a ::Float
.
Rational(2, 3).fdiv(1) #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
Rational(2).fdiv(3) #=> 0.6666666666666666
# File 'rational.c', line 949
static VALUE nurat_fdiv(VALUE self, VALUE other) { VALUE div; if (f_zero_p(other)) return rb_rational_div(self, rb_float_new(0.0)); if (FIXNUM_P(other) && other == LONG2FIX(1)) return nurat_to_f(self); div = rb_rational_div(self, other); if (RB_TYPE_P(div, T_RATIONAL)) return nurat_to_f(div); if (RB_FLOAT_TYPE_P(div)) return div; return rb_funcall(div, idTo_f, 0); }
#floor([ndigits]) ⇒ Integer, Rational
Returns the largest number less than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').floor(+1).to_f #=> -123.5
Rational('-123.456').floor(-1) #=> -130
# File 'rational.c', line 1434
static VALUE nurat_floor_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_floor); }
#hash
[ GitHub ]# File 'rational.c', line 1771
static VALUE nurat_hash(VALUE self) { return ST2FIX(rb_rational_hash(self)); }
#inspect ⇒ String
Returns the value as a string for inspection.
Rational(2).inspect #=> "(2/1)"
Rational(-8, 6).inspect #=> "(-4/3)"
Rational('1/2').inspect #=> "(1/2)"
# File 'rational.c', line 1817
static VALUE nurat_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, f_inspect)); rb_str_cat2(s, ")"); return s; }
#abs ⇒ Rational
#magnitude ⇒ Rational
Rational
#magnitude ⇒ Rational
Alias for #abs.
#marshal_dump (private)
# File 'rational.c', line 1856
static VALUE nurat_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->num, dat->den); rb_copy_generic_ivar(a, self); return a; }
#numerator ⇒ Integer
Returns the numerator.
Rational(7).numerator #=> 7
Rational(7, 1).numerator #=> 7
Rational(9, -4).numerator #=> -9
Rational(-2, -10).numerator #=> 1
# File 'rational.c', line 578
static VALUE nurat_numerator(VALUE self) { get_dat1(self); return dat->num; }
Alias for #/.
#rationalize ⇒ self
#rationalize(eps) ⇒ Rational
self
#rationalize(eps) ⇒ Rational
Returns a simpler approximation of the value if the optional argument eps
is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
r = Rational(5033165, 16777216)
r.rationalize #=> (5033165/16777216)
r.rationalize(Rational('0.01')) #=> (3/10)
r.rationalize(Rational('0.1')) #=> (1/3)
# File 'rational.c', line 1724
static VALUE nurat_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; VALUE rat = self; get_dat1(self); if (rb_check_arity(argc, 0, 1) == 0) return self; e = f_abs(argv[0]); if (INT_NEGATIVE_P(dat->num)) { rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den); } a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e); b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e); if (f_eqeq_p(a, b)) return self; nurat_rationalize_internal(a, b, &p, &q); if (rat != self) { RATIONAL_SET_NUM(rat, rb_int_uminus(p)); RATIONAL_SET_DEN(rat, q); return rat; } return f_rational_new2(CLASS_OF(self), p, q); }
#round([ndigits] [, half: mode]) ⇒ Integer, Rational
Returns rat
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').round(+1).to_f #=> -123.5
Rational('-123.456').round(-1) #=> -120
The optional half
keyword argument is available similar to Float#round.
Rational(25, 100).round(1, half: :up) #=> (3/10)
Rational(25, 100).round(1, half: :down) #=> (1/5)
Rational(25, 100).round(1, half: :even) #=> (1/5)
Rational(35, 100).round(1, half: :up) #=> (2/5)
Rational(35, 100).round(1, half: :down) #=> (3/10)
Rational(35, 100).round(1, half: :even) #=> (2/5)
Rational(-25, 100).round(1, half: :up) #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)
# File 'rational.c', line 1537
static VALUE nurat_round_n(int argc, VALUE *argv, VALUE self) { VALUE opt; enum ruby_num_rounding_mode mode = ( argc = rb_scan_args(argc, argv, "*:", NULL, &opt), rb_num_get_rounding_option(opt)); VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round); return f_round_common(argc, argv, self, round_func); }
#to_f ⇒ Float
Returns the value as a ::Float
.
Rational(2).to_f #=> 2.0
Rational(9, 4).to_f #=> 2.25
Rational(-3, 4).to_f #=> -0.75
Rational(20, 3).to_f #=> 6.666666666666667
# File 'rational.c', line 1575
static VALUE nurat_to_f(VALUE self) { return DBL2NUM(nurat_to_double(self)); }
#to_i ⇒ Integer
Returns the truncated value as an integer.
Equivalent to #truncate.
Rational(2, 3).to_i #=> 0
Rational(3).to_i #=> 3
Rational(300.6).to_i #=> 300
Rational(98, 71).to_i #=> 1
Rational(-31, 2).to_i #=> -15
# File 'rational.c', line 1277
static VALUE nurat_truncate(VALUE self) { get_dat1(self); if (INT_NEGATIVE_P(dat->num)) return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); return rb_int_idiv(dat->num, dat->den); }
#to_r ⇒ self
Returns self.
Rational(2).to_r #=> (2/1)
Rational(-8, 6).to_r #=> (-4/3)
# File 'rational.c', line 1590
static VALUE nurat_to_r(VALUE self) { return self; }
#to_s ⇒ String
Returns the value as a string.
Rational(2).to_s #=> "2/1"
Rational(-8, 6).to_s #=> "-4/3"
Rational('1/2').to_s #=> "1/2"
# File 'rational.c', line 1801
static VALUE nurat_to_s(VALUE self) { return f_format(self, f_to_s); }
#truncate([ndigits]) ⇒ Integer, Rational
Returns rat
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').truncate(+1).to_f #=> -123.4
Rational('-123.456').truncate(-1) #=> -120
# File 'rational.c', line 1494
static VALUE nurat_truncate_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_truncate); }