Class: Module
Relationships & Source Files | |
Extension / Inclusion / Inheritance Descendants | |
Subclasses:
|
|
Inherits: | Object |
Defined in: | class.c, eval.c, load.c, object.c, proc.c, variable.c, vm_eval.c, vm_method.c |
Overview
A Module is a collection of methods and constants. The methods in a module may be instance methods or module methods. Instance methods appear as methods in a class when the module is included, module methods do not. Conversely, module methods may be called without creating an encapsulating object, while instance methods may not. (See #module_function.)
In the descriptions that follow, the parameter sym refers to a symbol, which is either a quoted string or a ::Symbol
(such as :name
).
module Mod
include Math
CONST = 1
def meth
# ...
end
end
Mod.class #=> Module
Mod.constants #=> [:CONST, :PI, :E]
Mod.instance_methods #=> [:meth]
Class Method Summary
-
.constants ⇒ Array
In the first form, returns an array of the names of all constants accessible from the point of call.
-
.nesting ⇒ Array
Returns the list of
Modules
nested at the point of call. -
.new ⇒ mod
constructor
Creates a new anonymous module.
-
.used_modules ⇒ Array
Returns an array of all modules used in the current scope.
-
.used_refinements ⇒ Array
Returns an array of all modules used in the current scope.
Instance Attribute Summary
-
#singleton_class? ⇒ Boolean
readonly
Returns
true
if mod is a singleton class orfalse
if it is an ordinary class or module.
Instance Method Summary
-
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other.
-
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other.
-
#<=>(other_module) ⇒ 1, ...
Comparison—Returns -1, 0, +1 or nil depending on whether
module
includesother_module
, they are the same, or ifmodule
is included byother_module
. -
#==(other) ⇒ Boolean
Alias for Object#eql?.
-
#===(obj) ⇒ Boolean
Case Equality—Returns
true
if obj is an instance of mod or an instance of one of mod’s descendants. -
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other.
-
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same.
-
#alias_method(new_name, old_name) ⇒ Symbol
Makes new_name a new copy of the method old_name.
-
#ancestors ⇒ Array
Returns a list of modules included/prepended in mod (including mod itself).
-
#attr(name, ...) ⇒ Array
The first form is equivalent to #attr_reader.
-
#attr_accessor(symbol, ...) ⇒ Array
Defines a named attribute for this module, where the name is symbol.
id2name
, creating an instance variable (@name
) and a corresponding access method to read it. -
#attr_reader(symbol, ...) ⇒ Array
Creates instance variables and corresponding methods that return the value of each instance variable.
-
#attr_writer(symbol, ...) ⇒ Array
Creates an accessor method to allow assignment to the attribute symbol
.id2name
. -
#autoload(const, filename) ⇒ nil
Registers filename to be loaded (using Kernel::require) the first time that const (which may be a
::String
or a symbol) is accessed in the namespace of mod. -
#autoload?(name, inherit = true) ⇒ String?
Returns filename to be loaded if name is registered as #autoload in the namespace of mod or one of its ancestors.
-
#class_eval(string [, filename [, lineno]]) ⇒ Object
(also: #module_eval)
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#class_exec(arg...) {|var...| ... } ⇒ Object
(also: #module_exec)
Evaluates the given block in the context of the class/module.
-
#class_variable_defined?(symbol) ⇒ Boolean
Returns
true
if the given class variable is defined in obj. -
#class_variable_get(symbol) ⇒ Object
Returns the value of the given class variable (or throws a
::NameError
exception). -
#class_variable_set(symbol, obj) ⇒ Object
Sets the class variable named by symbol to the given object.
-
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod.
-
#const_defined?(sym, inherit = true) ⇒ Boolean
Says whether mod or its ancestors have a constant with the given name:
-
#const_get(sym, inherit = true) ⇒ Object
Checks for a constant with the given name in mod.
-
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod.
-
#const_set(sym, obj) ⇒ Object
Sets the named constant to the given object, returning that object.
-
#const_source_location(sym, inherit = true) ⇒ Array, Integer
Returns the Ruby source filename and line number containing the definition of the constant specified.
-
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod.
-
#define_method(symbol, method) ⇒ Symbol
Defines an instance method in the receiver.
-
#deprecate_constant(symbol, ...) ⇒ mod
Makes a list of existing constants deprecated.
-
#freeze ⇒ mod
Prevents further modifications to mod.
-
#include(module, ...) ⇒ self
Invokes #append_features on each parameter in reverse order.
-
#include?(module) ⇒ Boolean
Returns
true
if module is included or prepended in mod or one of mod’s ancestors. -
#included_modules ⇒ Array
Returns the list of modules included or prepended in mod or one of mod’s ancestors.
-
#inspect ⇒ String
Alias for #to_s.
-
#instance_method(symbol) ⇒ unbound_method
Returns an
::UnboundMethod
representing the given instance method in mod. -
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver.
-
#method_defined?(symbol, inherit = true) ⇒ Boolean
Returns
true
if the named method is defined by mod. -
#module_eval(string [, filename [, lineno]]) ⇒ Object
Alias for #class_eval.
-
#module_exec(arg...) {|var...| ... } ⇒ Object
Alias for #class_exec.
-
#name ⇒ String
Returns the name of the module mod.
-
#prepend(module, ...) ⇒ self
Invokes #prepend_features on each parameter in reverse order.
-
#private_class_method(symbol, ...) ⇒ mod
Makes existing class methods private.
-
#private_constant(symbol, ...) ⇒ mod
Makes a list of existing constants private.
-
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod.
-
#private_method_defined?(symbol, inherit = true) ⇒ Boolean
Returns
true
if the named private method is defined by mod. -
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod.
-
#protected_method_defined?(symbol, inherit = true) ⇒ Boolean
Returns
true
if the named protected method is defined mod. -
#public_class_method(symbol, ...) ⇒ mod
Makes a list of existing class methods public.
-
#public_constant(symbol, ...) ⇒ mod
Makes a list of existing constants public.
-
#public_instance_method(symbol) ⇒ unbound_method
Similar to instance_method, searches public method only.
-
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod.
-
#public_method_defined?(symbol, inherit = true) ⇒ Boolean
Returns
true
if the named public method is defined by mod. -
#refinements ⇒ Array
Returns an array of modules defined within the receiver.
-
#remove_class_variable(sym) ⇒ Object
Removes the named class variable from the receiver, returning that variable’s value.
-
#remove_method(symbol) ⇒ self
Removes the method identified by symbol from the current class.
-
#to_s ⇒ String
(also: #inspect)
Returns a string representing this module or class.
-
#undef_method(symbol) ⇒ self
Prevents the current class from responding to calls to the named method.
-
#undefined_instance_methods ⇒ Array
Returns a list of the undefined instance methods defined in mod.
-
#append_features(mod) ⇒ mod
private
When this module is included in another, Ruby calls #append_features in this module, passing it the receiving module in mod.
-
#const_added(const_name)
private
Invoked as a callback whenever a constant is assigned on the receiver.
-
#extend_object(obj) ⇒ Object
private
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods).
-
#extended(othermod)
private
The equivalent of #included, but for extended modules.
-
#included(othermod)
private
Callback invoked whenever the receiver is included in another module or class.
-
#method_added(method_name)
private
Invoked as a callback whenever an instance method is added to the receiver.
-
#method_removed(method_name)
private
Invoked as a callback whenever an instance method is removed from the receiver.
-
#method_undefined(method_name)
private
Invoked as a callback whenever an instance method is undefined from the receiver.
-
#module_function ⇒ nil
private
Creates module functions for the named methods.
-
#prepend_features(mod) ⇒ mod
private
When this module is prepended in another, Ruby calls #prepend_features in this module, passing it the receiving module in mod.
-
#prepended(othermod)
private
The equivalent of #included, but for prepended modules.
-
#private ⇒ nil
private
With no arguments, sets the default visibility for subsequently defined methods to private.
-
#protected ⇒ nil
private
With no arguments, sets the default visibility for subsequently defined methods to protected.
-
#public ⇒ nil
private
With no arguments, sets the default visibility for subsequently defined methods to public.
-
#refine(mod) ⇒ Module
private
Refine mod in the receiver.
-
#remove_const(sym) ⇒ Object
private
Removes the definition of the given constant, returning that constant’s previous value.
-
#ruby2_keywords(method_name, ...) ⇒ nil
private
For the given method names, marks the method as passing keywords through a normal argument splat.
-
#using(module) ⇒ self
private
Import class refinements from module into the current class or module definition.
- #initialize_clone(*args) Internal use only
- #initialize_copy(orig) Internal use only
Constructor Details
.new ⇒ mod
.new {|mod| ... } ⇒ mod
mod
.new {|mod| ... } ⇒ mod
Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like #module_eval.
fred = Module.new do
def meth1
"hello"
end
def meth2
"bye"
end
end
a = "my string"
a.extend(fred) #=> "my string"
a.meth1 #=> "hello"
a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
# File 'object.c', line 1831
static VALUE rb_mod_initialize(VALUE module) { return rb_mod_initialize_exec(module); }
Class Method Details
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4)
# => [:ARGF, :ARGV, :ArgumentError, :Array]
Module.constants.include?(:SEEK_SET) # => false
class IO
Module.constants.include?(:SEEK_SET) # => true
end
The second form calls the instance method constants
.
# File 'eval.c', line 394
static VALUE rb_mod_s_constants(int argc, VALUE *argv, VALUE mod) { const rb_cref_t *cref = rb_vm_cref(); VALUE klass; VALUE cbase = 0; void *data = 0; if (argc > 0 || mod != rb_cModule) { return rb_mod_constants(argc, argv, mod); } while (cref) { klass = CREF_CLASS(cref); if (!CREF_PUSHED_BY_EVAL(cref) && !NIL_P(klass)) { data = rb_mod_const_at(CREF_CLASS(cref), data); if (!cbase) { cbase = klass; } } cref = CREF_NEXT(cref); } if (cbase) { data = rb_mod_const_of(cbase, data); } return rb_const_list(data); }
.nesting ⇒ Array
Returns the list of Modules
nested at the point of call.
module M1
module M2
$a = Module.nesting
end
end
$a #=> [M1::M2, M1]
$a[0].name #=> "M1::M2"
# File 'eval.c', line 355
static VALUE rb_mod_nesting(VALUE _) { VALUE ary = rb_ary_new(); const rb_cref_t *cref = rb_vm_cref(); while (cref && CREF_NEXT(cref)) { VALUE klass = CREF_CLASS(cref); if (!CREF_PUSHED_BY_EVAL(cref) && !NIL_P(klass)) { rb_ary_push(ary, klass); } cref = CREF_NEXT(cref); } return ary; }
.used_modules ⇒ Array
# File 'eval.c', line 1560
static VALUE rb_mod_s_used_modules(VALUE _) { const rb_cref_t *cref = rb_vm_cref(); VALUE ary = rb_ary_new(); while (cref) { if (!NIL_P(CREF_REFINEMENTS(cref))) { rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary); } cref = CREF_NEXT(cref); } return rb_funcall(ary, rb_intern("uniq"), 0); }
.used_refinements ⇒ Array
# File 'eval.c', line 1611
static VALUE rb_mod_s_used_refinements(VALUE _) { const rb_cref_t *cref = rb_vm_cref(); VALUE ary = rb_ary_new(); while (cref) { if (!NIL_P(CREF_REFINEMENTS(cref))) { rb_hash_foreach(CREF_REFINEMENTS(cref), used_refinements_i, ary); } cref = CREF_NEXT(cref); } return ary; }
Instance Attribute Details
#singleton_class? ⇒ Boolean
(readonly)
Returns true
if mod is a singleton class or false
if it is an ordinary class or module.
class C
end
C.singleton_class? #=> false
C.singleton_class.singleton_class? #=> true
# File 'object.c', line 2931
static VALUE rb_mod_singleton_p(VALUE klass) { return RBOOL(RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON)); }
Instance Method Details
#<(other) ⇒ true
, ...
Returns true if mod is a subclass of other. Returns false
if mod is the same as other or mod is an ancestor of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)
# File 'object.c', line 1723
static VALUE rb_mod_lt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_class_inherited_p(mod, arg); }
#<=(other) ⇒ true
, ...
Returns true if mod is a subclass of other or is the same as other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)
# File 'object.c', line 1669
VALUE rb_class_inherited_p(VALUE mod, VALUE arg) { if (mod == arg) return Qtrue; if (RB_TYPE_P(arg, T_CLASS) && RB_TYPE_P(mod, T_CLASS)) { // comparison between classes size_t mod_depth = RCLASS_SUPERCLASS_DEPTH(mod); size_t arg_depth = RCLASS_SUPERCLASS_DEPTH(arg); if (arg_depth < mod_depth) { // check if mod < arg return RCLASS_SUPERCLASSES(mod)[arg_depth] == arg ? Qtrue : Qnil; } else if (arg_depth > mod_depth) { // check if mod > arg return RCLASS_SUPERCLASSES(arg)[mod_depth] == mod ? Qfalse : Qnil; } else { // Depths match, and we know they aren't equal: no relation return Qnil; } } else { if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) { rb_raise(rb_eTypeError, "compared with non class/module"); } if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) { return Qtrue; } /* not mod < arg; check if mod > arg */ if (class_search_ancestor(arg, mod)) { return Qfalse; } return Qnil; } }
#<=>(other_module) ⇒ 1
, ...
Comparison—Returns -1, 0, +1 or nil depending on whether module
includes other_module
, they are the same, or if module
is included by other_module
.
Returns nil
if module
has no relationship with other_module
, if other_module
is not a module, or if the two values are incomparable.
# File 'object.c', line 1785
static VALUE rb_mod_cmp(VALUE mod, VALUE arg) { VALUE cmp; if (mod == arg) return INT2FIX(0); if (!CLASS_OR_MODULE_P(arg)) { return Qnil; } cmp = rb_class_inherited_p(mod, arg); if (NIL_P(cmp)) return Qnil; if (cmp) { return INT2FIX(-1); } return INT2FIX(1); }
#==(other) ⇒ Boolean
Alias for Object#eql?. Equality — At the ::Object
level, #==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike #==
, the #equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The #eql?
method returns true
if obj
and other
refer to the same hash key. This is used by ::Hash
to test members for equality. For any pair of objects where #eql?
returns true
, the #hash
value of both objects must be equal. So any subclass that overrides #eql?
should also override #hash
appropriately.
For objects of class ::Object
, #eql?
is synonymous with #==
. Subclasses normally continue this tradition by aliasing #eql?
to their overridden #==
method, but there are exceptions. ::Numeric
types, for example, perform type conversion across #==
, but not across #eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
#===(obj) ⇒ Boolean
Case Equality—Returns true
if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case
statements to classify objects by class.
# File 'object.c', line 1652
static VALUE rb_mod_eqq(VALUE mod, VALUE arg) { return rb_obj_is_kind_of(arg, mod); }
#>(other) ⇒ true
, ...
Returns true if mod is an ancestor of other. Returns false
if mod is the same as other or mod is a descendant of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)
# File 'object.c', line 1766
static VALUE rb_mod_gt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_mod_ge(mod, arg); }
#>=(other) ⇒ true
, ...
Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)
# File 'object.c', line 1743
static VALUE rb_mod_ge(VALUE mod, VALUE arg) { if (!CLASS_OR_MODULE_P(arg)) { rb_raise(rb_eTypeError, "compared with non class/module"); } return rb_class_inherited_p(arg, mod); }
#alias_method(new_name, old_name) ⇒ Symbol
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod
alias_method :orig_exit, :exit #=> :orig_exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)
end
end
include Mod
exit(99)
produces:
Exiting with code 99
# File 'vm_method.c', line 2222
static VALUE rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname) { ID oldid = rb_check_id(&oldname); if (!oldid) { rb_print_undef_str(mod, oldname); } VALUE id = rb_to_id(newname); rb_alias(mod, id, oldid); return ID2SYM(id); }
#ancestors ⇒ Array
Returns a list of modules included/prepended in mod (including mod itself).
module Mod
include Math
include Comparable
prepend Enumerable
end
Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors #=> [Math]
Enumerable.ancestors #=> [Enumerable]
# File 'class.c', line 1520
VALUE rb_mod_ancestors(VALUE mod) { VALUE p, ary = rb_ary_new(); VALUE refined_class = Qnil; if (BUILTIN_TYPE(mod) == T_MODULE && FL_TEST(mod, RMODULE_IS_REFINEMENT)) { refined_class = rb_refinement_module_get_refined_class(mod); } for (p = mod; p; p = RCLASS_SUPER(p)) { if (p == refined_class) break; if (p != RCLASS_ORIGIN(p)) continue; if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, METACLASS_OF(p)); } else { rb_ary_push(ary, p); } } return ary; }
#append_features(mod) ⇒ mod
(private)
When this module is included in another, Ruby calls #append_features
in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also #include.
# File 'eval.c', line 1122
static VALUE rb_mod_append_features(VALUE module, VALUE include) { if (!CLASS_OR_MODULE_P(include)) { Check_Type(include, T_CLASS); } rb_include_module(include, module); return module; }
The first form is equivalent to #attr_reader. The second form is equivalent to attr_accessor(name)
but deprecated. The last form is equivalent to attr_reader(name)
but deprecated. Returns an array of defined method names as symbols.
# File 'object.c', line 2189
VALUE rb_mod_attr(int argc, VALUE *argv, VALUE klass) { if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) { ID id = id_for_attr(klass, argv[0]); VALUE names = rb_ary_new(); rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "optional boolean argument is obsoleted"); rb_attr(klass, id, 1, RTEST(argv[1]), TRUE); rb_ary_push(names, ID2SYM(id)); if (argv[1] == Qtrue) rb_ary_push(names, ID2SYM(rb_id_attrset(id))); return names; } return rb_mod_attr_reader(argc, argv, klass); }
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute. ::String
arguments are converted to symbols. Returns an array of defined method names as symbols.
module Mod
attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
# File 'object.c', line 2248
static VALUE rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass) { int i; VALUE names = rb_ary_new2(argc * 2); for (i=0; i<argc; i++) { ID id = id_for_attr(klass, argv[i]); rb_attr(klass, id, TRUE, TRUE, TRUE); rb_ary_push(names, ID2SYM(id)); rb_ary_push(names, ID2SYM(rb_id_attrset(id))); } return names; }
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr
:name” on each name in turn. ::String
arguments are converted to symbols. Returns an array of defined method names as symbols.
# File 'object.c', line 2160
static VALUE rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass) { int i; VALUE names = rb_ary_new2(argc); for (i=0; i<argc; i++) { ID id = id_for_attr(klass, argv[i]); rb_attr(klass, id, TRUE, FALSE, TRUE); rb_ary_push(names, ID2SYM(id)); } return names; }
Creates an accessor method to allow assignment to the attribute symbol.id2name
. ::String
arguments are converted to symbols. Returns an array of defined method names as symbols.
# File 'object.c', line 2216
static VALUE rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass) { int i; VALUE names = rb_ary_new2(argc); for (i=0; i<argc; i++) { ID id = id_for_attr(klass, argv[i]); rb_attr(klass, id, FALSE, TRUE, TRUE); rb_ary_push(names, ID2SYM(rb_id_attrset(id))); } return names; }
#autoload(const, filename) ⇒ nil
Registers filename to be loaded (using Kernel::require)
the first time that _const_ (which may be a String or
a symbol) is accessed in the namespace of _mod_.
module A
end
A.autoload(:B, "b")
A::B.doit # autoloads "b"
If const in mod is defined as autoload, the file name to be loaded is replaced with filename. If const is defined but not as autoload, does nothing.
# File 'load.c', line 1388
static VALUE rb_mod_autoload(VALUE mod, VALUE sym, VALUE file) { ID id = rb_to_id(sym); FilePathValue(file); rb_autoload_str(mod, id, file); return Qnil; }
#autoload?(name, inherit = true) ⇒ String?
Returns filename to be loaded if name is registered as #autoload in the namespace of mod or one of its ancestors.
module A
end
A.autoload(:B, "b")
A.autoload?(:B) #=> "b"
If inherit
is false, the lookup only checks the autoloads in the receiver:
class A
autoload :CONST, "const.rb"
end
class B < A
end
B.autoload?(:CONST) #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false) #=> nil, not found in B itself
# File 'load.c', line 1424
static VALUE rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod) { int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]); VALUE sym = argv[0]; ID id = rb_check_id(&sym); if (!id) { return Qnil; } return rb_autoload_at_p(mod, id, recur); }
#class_eval(string [, filename [, lineno]]) ⇒ Object
#class_eval {|mod| ... } ⇒ Object
#module_eval(string [, filename [, lineno]]) ⇒ Object
#module_eval {|mod| ... } ⇒ Object
Also known as: #module_eval
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. #module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
# File 'vm_eval.c', line 2144
static VALUE rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod) { return specific_eval(argc, argv, mod, FALSE, RB_PASS_CALLED_KEYWORDS); }
Also known as: #module_exec
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
# File 'vm_eval.c', line 2178
static VALUE rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod) { return yield_under(mod, FALSE, argc, argv, RB_PASS_CALLED_KEYWORDS); }
#class_variable_defined?(symbol) ⇒ Boolean
#class_variable_defined?(string) ⇒ Boolean
Boolean
#class_variable_defined?(string) ⇒ Boolean
Returns true
if the given class variable is defined in obj. ::String
arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_defined?(:@@foo) #=> true
Fred.class_variable_defined?(:@@bar) #=> false
# File 'object.c', line 2907
static VALUE rb_mod_cvar_defined(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, class); if (!id) { return Qfalse; } return rb_cvar_defined(obj, id); }
Returns the value of the given class variable (or throws a ::NameError
exception). The @@
part of the variable name should be included for regular class variables. ::String
arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_get(:@@foo) #=> 99
# File 'object.c', line 2850
static VALUE rb_mod_cvar_get(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, class); if (!id) { rb_name_err_raise("uninitialized class variable %1$s in %2$s", obj, iv); } return rb_cvar_get(obj, id); }
Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.
class Fred
@@foo = 99
def foo
@@foo
end
end
Fred.class_variable_set(:@@foo, 101) #=> 101
Fred.new.foo #=> 101
# File 'object.c', line 2882
static VALUE rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val) { ID id = id_for_var(obj, iv, class); if (!id) id = rb_intern_str(iv); rb_cvar_set(obj, id, val); return val; }
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One
@@var1 = 1
end
class Two < One
@@var2 = 2
end
One.class_variables #=> [:@@var1]
Two.class_variables #=> [:@@var2, :@@var1]
Two.class_variables(false) #=> [:@@var2]
# File 'variable.c', line 3877
VALUE rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod) { bool inherit = true; st_table *tbl; if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]); if (inherit) { tbl = mod_cvar_of(mod, 0); } else { tbl = mod_cvar_at(mod, 0); } return cvar_list(tbl); }
#const_added(const_name) (private)
Invoked as a callback whenever a constant is assigned on the receiver
module Chatty
def self.const_added(const_name)
super
puts "Added #{const_name.inspect}"
end
FOO = 1
end
produces:
Added :FOO
#const_defined?(sym, inherit = true) ⇒ Boolean
#const_defined?(str, inherit = true) ⇒ Boolean
Boolean
#const_defined?(str, inherit = true) ⇒ Boolean
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself
Float.const_defined?("String") #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally ::Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin
autoload :User, 'admin/user'
end
Admin.const_defined?(:User) #=> true
If the constant is not found the callback #const_missing is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a ::NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
# File 'object.c', line 2477
static VALUE rb_mod_const_defined(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return Qfalse; return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { goto wrong_name; } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else { return Qfalse; } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } #if 0 mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE); if (UNDEF_P(mod)) return Qfalse; #else if (!RTEST(recur)) { if (!rb_const_defined_at(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get_at(mod, id); } else if (beglen == 0) { if (!rb_const_defined(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get(mod, id); } else { if (!rb_const_defined_from(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get_from(mod, id); } #endif if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } } return Qtrue; wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); UNREACHABLE_RETURN(Qundef); }
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and ::Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a ::NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end
Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo
class Bar
VAL = 10
end
class Baz < Bar; end
end
Object.const_get 'Foo::Baz::VAL' # => 10
Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a ::NameError
will be raised with a warning “wrong constant name”.
Object.const_get 'foobar' #=> NameError: wrong constant name foobar
# File 'object.c', line 2304
static VALUE rb_mod_const_get(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return rb_const_missing(mod, name); return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { goto wrong_name; } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) { part = rb_str_intern(part); mod = rb_const_missing(mod, part); continue; } else { rb_mod_const_missing(mod, part); } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } #if 0 mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE); #else if (!RTEST(recur)) { mod = rb_const_get_at(mod, id); } else if (beglen == 0) { mod = rb_const_get(mod, id); } else { mod = rb_const_get_from(mod, id); } #endif } return mod; wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); UNREACHABLE_RETURN(Qundef); }
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name)
name # return the constant name as Symbol
end
Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel.autoload and #autoload.
def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"
end
# File 'variable.c', line 2082
VALUE rb_mod_const_missing(VALUE klass, VALUE name) { VALUE ref = GET_EC()->private_const_reference; rb_vm_pop_cfunc_frame(); if (ref) { rb_name_err_raise("private constant %2$s::%1$s referenced", ref, name); } uninitialized_constant(klass, name); UNREACHABLE_RETURN(Qnil); }
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a ::NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
# File 'object.c', line 2426
static VALUE rb_mod_const_set(VALUE mod, VALUE name, VALUE value) { ID id = id_for_var(mod, name, const); if (!id) id = rb_intern_str(name); rb_const_set(mod, id, value); return value; }
Returns the Ruby source filename and line number containing the definition of the constant specified. If the named constant is not found, nil
is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.
inherit specifies whether to lookup in mod.ancestors
(true
by default).
# test.rb:
class A # line 1
C1 = 1
C2 = 2
end
module M # line 6
C3 = 3
end
class B < A # line 10
include M
C4 = 4
end
class A # continuation of A definition
C2 = 8 # constant redefinition; warned yet allowed
end
p B.const_source_location('C4') # => ["test.rb", 12]
p B.const_source_location('C3') # => ["test.rb", 7]
p B.const_source_location('C1') # => ["test.rb", 2]
p B.const_source_location('C3', false) # => nil -- don't lookup in ancestors
p A.const_source_location('C2') # => ["test.rb", 16] -- actual (last) definition place
p Object.const_source_location('B') # => ["test.rb", 10] -- top-level constant could be looked through Object
p Object.const_source_location('A') # => ["test.rb", 1] -- class reopening is NOT considered new definition
p B.const_source_location('A') # => ["test.rb", 1] -- because Object is in ancestors
p M.const_source_location('A') # => ["test.rb", 1] -- Object is not ancestor, but additionally checked for modules
p Object.const_source_location('A::C1') # => ["test.rb", 2] -- nesting is supported
p Object.const_source_location('String') # => [] -- constant is defined in C code
# File 'object.c', line 2637
static VALUE rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod) { VALUE name, recur, loc = Qnil; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return Qnil; return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { goto wrong_name; } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else { return Qnil; } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } if (p < pend) { if (RTEST(recur)) { mod = rb_const_get(mod, id); } else { mod = rb_const_get_at(mod, id); } if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } } else { if (RTEST(recur)) { loc = rb_const_source_location(mod, id); } else { loc = rb_const_source_location_at(mod, id); } break; } recur = Qfalse; } return loc; wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); UNREACHABLE_RETURN(Qundef); }
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false
.
The implementation makes no guarantees about the order in which the constants are yielded.
IO.constants.include?(:SYNC) #=> true
IO.constants(false).include?(:SYNC) #=> false
Also see #const_defined?.
# File 'variable.c', line 3147
VALUE rb_mod_constants(int argc, const VALUE *argv, VALUE mod) { bool inherit = true; if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]); if (inherit) { return rb_const_list(rb_mod_const_of(mod, 0)); } else { return rb_local_constants(mod); } }
Defines an instance method in the receiver. The method parameter can be a ::Proc
, a ::Method
or an ::UnboundMethod
object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using #instance_eval
.
class A
def fred
puts "In Fred"
end
def create_method(name, &block)
self.class.define_method(name, &block)
end
define_method(:wilma) { puts "Charge it!" }
define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
define_method(:, instance_method(:fred))
end
a = B.new
a.
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty
produces:
In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>
# File 'proc.c', line 2321
static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod); const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE}; const rb_scope_visibility_t *scope_visi = &default_scope_visi; if (cref) { scope_visi = CREF_SCOPE_VISI(cref); } return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi); }
#deprecate_constant(symbol, ...) ⇒ mod
Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.
module HTTP
NotFound = Exception.new
NOT_FOUND = NotFound # previous version of the library used this name
deprecate_constant :NOT_FOUND
end
HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated
# File 'variable.c', line 3563
VALUE rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj) { set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED); return obj; }
#extend_object(obj) ⇒ Object (private)
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.
module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"
else
puts "Picky added to #{o.class}"
super
end
end
end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky
produces:
Picky added to Array
Can't add Picky to a String
# File 'eval.c', line 1725
static VALUE rb_mod_extend_object(VALUE mod, VALUE obj) { rb_extend_object(obj, mod); return obj; }
#extended(othermod) (private)
The equivalent of #included, but for extended modules.
module A
def self.extended(mod)
puts "#{self} extended in #{mod}"
end
end
module Enumerable
extend A
end
# => prints "A extended in Enumerable"
#freeze ⇒ mod
Prevents further modifications to mod.
This method returns self.
# File 'object.c', line 1635
static VALUE rb_mod_freeze(VALUE mod) { rb_class_name(mod); return rb_obj_freeze(mod); }
#include(module, ...) ⇒ self
Invokes #append_features on each parameter in reverse order.
# File 'eval.c', line 1140
static VALUE rb_mod_include(int argc, VALUE *argv, VALUE module) { int i; ID id_append_features, id_included; CONST_ID(id_append_features, "append_features"); CONST_ID(id_included, "included"); if (BUILTIN_TYPE(module) == T_MODULE && FL_TEST(module, RMODULE_IS_REFINEMENT)) { rb_raise(rb_eTypeError, "Refinement#include has been removed"); } rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); for (i = 0; i < argc; i++) { Check_Type(argv[i], T_MODULE); if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) { rb_raise(rb_eTypeError, "Cannot include refinement"); } } while (argc--) { rb_funcall(argv[argc], id_append_features, 1, module); rb_funcall(argv[argc], id_included, 1, module); } return module; }
#include?(module) ⇒ Boolean
Returns true
if module is included or prepended in mod or one of mod’s ancestors.
module A
end
class B
include A
end
class C < B
end
B.include?(A) #=> true
C.include?(A) #=> true
A.include?(A) #=> false
# File 'class.c', line 1488
VALUE rb_mod_include_p(VALUE mod, VALUE mod2) { VALUE p; Check_Type(mod2, T_MODULE); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) { if (METACLASS_OF(p) == mod2) return Qtrue; } } return Qfalse; }
#included(othermod) (private)
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to #append_features if your code wants to perform some action when a module is included in another.
module A
def A.included(mod)
puts "#{self} included in #{mod}"
end
end
module Enumerable
include A
end
# => prints "A included in Enumerable"
#included_modules ⇒ Array
# File 'class.c', line 1452
VALUE rb_mod_included_modules(VALUE mod) { VALUE ary = rb_ary_new(); VALUE p; VALUE origin = RCLASS_ORIGIN(mod); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) { VALUE m = METACLASS_OF(p); if (RB_TYPE_P(m, T_MODULE)) rb_ary_push(ary, m); } } return ary; }
#initialize_clone(*args)
# File 'object.c', line 1847
static VALUE rb_mod_initialize_clone(int argc, VALUE* argv, VALUE clone) { VALUE ret, orig, opts; rb_scan_args(argc, argv, "1:", &orig, &opts); ret = rb_obj_init_clone(argc, argv, clone); if (OBJ_FROZEN(orig)) rb_class_name(clone); return ret; }
#initialize_copy(orig)
# File 'class.c', line 497
VALUE rb_mod_init_copy(VALUE clone, VALUE orig) { switch (BUILTIN_TYPE(clone)) { case T_CLASS: case T_ICLASS: class_init_copy_check(clone, orig); break; case T_MODULE: rb_module_check_initializable(clone); break; default: break; } if (!OBJ_INIT_COPY(clone, orig)) return clone; /* cloned flag is refer at constant inline cache * see vm_get_const_key_cref() in vm_insnhelper.c */ FL_SET(clone, RCLASS_CLONED); FL_SET(orig , RCLASS_CLONED); if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) { RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig)); rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone); } RCLASS_ALLOCATOR(clone) = RCLASS_ALLOCATOR(orig); copy_tables(clone, orig); if (RCLASS_M_TBL(orig)) { struct clone_method_arg arg; arg.old_klass = orig; arg.new_klass = clone; RCLASS_M_TBL_INIT(clone); rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg); } if (RCLASS_ORIGIN(orig) == orig) { RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig)); } else { VALUE p = RCLASS_SUPER(orig); VALUE orig_origin = RCLASS_ORIGIN(orig); VALUE prev_clone_p = clone; VALUE origin_stack = rb_ary_hidden_new(2); VALUE origin[2]; VALUE clone_p = 0; long origin_len; int add_subclass; VALUE clone_origin; ensure_origin(clone); clone_origin = RCLASS_ORIGIN(clone); while (p && p != orig_origin) { if (BUILTIN_TYPE(p) != T_ICLASS) { rb_bug("non iclass between module/class and origin"); } clone_p = class_alloc(RBASIC(p)->flags, METACLASS_OF(p)); RCLASS_SET_SUPER(prev_clone_p, clone_p); prev_clone_p = clone_p; RCLASS_M_TBL(clone_p) = RCLASS_M_TBL(p); RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p); RCLASS_ALLOCATOR(clone_p) = RCLASS_ALLOCATOR(p); if (RB_TYPE_P(clone, T_CLASS)) { RCLASS_SET_INCLUDER(clone_p, clone); } add_subclass = TRUE; if (p != RCLASS_ORIGIN(p)) { origin[0] = clone_p; origin[1] = RCLASS_ORIGIN(p); rb_ary_cat(origin_stack, origin, 2); } else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 && RARRAY_AREF(origin_stack, origin_len - 1) == p) { RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p); RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p); rb_ary_resize(origin_stack, origin_len); add_subclass = FALSE; } if (add_subclass) { rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p); } p = RCLASS_SUPER(p); } if (p == orig_origin) { if (clone_p) { RCLASS_SET_SUPER(clone_p, clone_origin); RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin)); } copy_tables(clone_origin, orig_origin); if (RCLASS_M_TBL(orig_origin)) { struct clone_method_arg arg; arg.old_klass = orig; arg.new_klass = clone; RCLASS_M_TBL_INIT(clone_origin); rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg); } } else { rb_bug("no origin for class that has origin"); } rb_class_update_superclasses(clone); } return clone; }
Alias for #to_s.
#instance_method(symbol) ⇒ unbound_method
Returns an ::UnboundMethod
representing the given instance method in mod.
class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end
Dispatcher = {
"a" => instance_method(:do_a),
"d" => instance_method(:do_d),
"e" => instance_method(:do_e),
"v" => instance_method(:do_v)
}
def interpret(string)
string.each_char {|b| Dispatcher[b].bind(self).call }
end
end
interpreter = Interpreter.new
interpreter.interpret('dave')
produces:
Hello there, Dave!
# File 'proc.c', line 2186
static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE); }
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false
, the methods of any ancestors are not included.
module A
def method1() end
end
class B
include A
def method2() end
end
class C < B
def method3() end
end
A.instance_methods(false) #=> [:method1]
B.instance_methods(false) #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false) #=> [:method3]
C.instance_methods.include?(:method2) #=> true
Note that method visibility changes in the current class, as well as aliases, are considered as methods of the current class by this method:
class C < B
alias method4 method2
protected :method2
end
C.instance_methods(false).sort #=> [:method2, :method3, :method4]
# File 'class.c', line 1839
VALUE rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_i); }
#method_added(method_name) (private)
Invoked as a callback whenever an instance method is added to the receiver.
module Chatty
def self.method_added(method_name)
puts "Adding #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
end
produces:
Adding :some_instance_method
#method_defined?(symbol, inherit = true) ⇒ Boolean
#method_defined?(string, inherit = true) ⇒ Boolean
Boolean
#method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. ::String
arguments are converted to symbols.
module A
def method1() end
def protected_method1() end
protected :protected_method1
end
class B
def method2() end
def private_method2() end
private :private_method2
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.method_defined? "method1" #=> true
C.method_defined? "method2" #=> true
C.method_defined? "method2", true #=> true
C.method_defined? "method2", false #=> false
C.method_defined? "method3" #=> true
C.method_defined? "protected_method1" #=> true
C.method_defined? "method4" #=> false
C.method_defined? "private_method2" #=> false
# File 'vm_method.c', line 1911
static VALUE rb_mod_method_defined(int argc, VALUE *argv, VALUE mod) { rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv); return RBOOL(visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED); }
#method_removed(method_name) (private)
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty
def self.method_removed(method_name)
puts "Removing #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
class << self
remove_method :some_class_method
end
remove_method :some_instance_method
end
produces:
Removing :some_instance_method
#method_undefined(method_name) (private)
Invoked as a callback whenever an instance method is undefined from the receiver.
module Chatty
def self.method_undefined(method_name)
puts "Undefining #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
class << self
undef_method :some_class_method
end
undef_method :some_instance_method
end
produces:
Undefining :some_instance_method
Alias for #class_eval.
Alias for #class_exec.
#module_function ⇒ nil
(private)
#module_function(method_name) ⇒ method_name
#module_function(method_name, method_name, ...) ⇒ Array
nil
(private)
#module_function(method_name) ⇒ method_name
#module_function(method_name, method_name, ...) ⇒ Array
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module
functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. ::String
arguments are converted to symbols. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.
module Mod
def one
"This is one"
end
module_function :one
end
class Cls
include Mod
def call_one
one
end
end
Mod.one #=> "This is one"
c = Cls.new
c.call_one #=> "This is one"
module Mod
def one
"This is the new one"
end
end
Mod.one #=> "This is one"
c.call_one #=> "This is the new one"
# File 'vm_method.c', line 2633
static VALUE rb_mod_modfunc(int argc, VALUE *argv, VALUE module) { int i; ID id; const rb_method_entry_t *me; if (!RB_TYPE_P(module, T_MODULE)) { rb_raise(rb_eTypeError, "module_function must be called for modules"); } if (argc == 0) { rb_scope_module_func_set(); return Qnil; } set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE); for (i = 0; i < argc; i++) { VALUE m = module; id = rb_to_id(argv[i]); for (;;) { me = search_method(m, id, 0); if (me == 0) { me = search_method(rb_cObject, id, 0); } if (UNDEFINED_METHOD_ENTRY_P(me)) { rb_print_undef(module, id, METHOD_VISI_UNDEF); } if (me->def->type != VM_METHOD_TYPE_ZSUPER) { break; /* normal case: need not to follow 'super' link */ } m = RCLASS_SUPER(m); if (!m) break; } rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC); } if (argc == 1) { return argv[0]; } return rb_ary_new_from_values(argc, argv); }
#name ⇒ String
Returns the name of the module mod. Returns nil for anonymous modules.
# File 'variable.c', line 136
VALUE rb_mod_name(VALUE mod) { int permanent; return classname(mod, &permanent); }
#prepend(module, ...) ⇒ self
Invokes #prepend_features on each parameter in reverse order.
# File 'eval.c', line 1197
static VALUE rb_mod_prepend(int argc, VALUE *argv, VALUE module) { int i; ID id_prepend_features, id_prepended; if (BUILTIN_TYPE(module) == T_MODULE && FL_TEST(module, RMODULE_IS_REFINEMENT)) { rb_raise(rb_eTypeError, "Refinement#prepend has been removed"); } CONST_ID(id_prepend_features, "prepend_features"); CONST_ID(id_prepended, "prepended"); rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); for (i = 0; i < argc; i++) { Check_Type(argv[i], T_MODULE); if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) { rb_raise(rb_eTypeError, "Cannot prepend refinement"); } } while (argc--) { rb_funcall(argv[argc], id_prepend_features, 1, module); rb_funcall(argv[argc], id_prepended, 1, module); } return module; }
#prepend_features(mod) ⇒ mod
(private)
When this module is prepended in another, Ruby calls #prepend_features
in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also #prepend.
# File 'eval.c', line 1179
static VALUE rb_mod_prepend_features(VALUE module, VALUE prepend) { if (!CLASS_OR_MODULE_P(prepend)) { Check_Type(prepend, T_CLASS); } rb_prepend_module(prepend, module); return module; }
#prepended(othermod) (private)
The equivalent of #included, but for prepended modules.
module A
def self.prepended(mod)
puts "#{self} prepended to #{mod}"
end
end
module Enumerable
prepend A
end
# => prints "A prepended to Enumerable"
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. ::String
arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.
module Mod
def a() end
def b() end
private
def c() end
private :a
end
Mod.private_instance_methods #=> [:a, :c]
Note that to show a private method on RDoc, use :doc:
.
# File 'vm_method.c', line 2372
static VALUE rb_mod_private(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE); }
#private_class_method(symbol, ...) ⇒ mod
#private_class_method(string, ...) ⇒ mod
#private_class_method(array) ⇒ mod
mod
#private_class_method(string, ...) ⇒ mod
#private_class_method(array) ⇒ mod
Makes existing class methods private. Often used to hide the default constructor .new.
::String
arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted.
class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me
end
end
# File 'vm_method.c', line 2530
static VALUE rb_mod_private_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE); return obj; }
#private_constant(symbol, ...) ⇒ mod
Makes a list of existing constants private.
# File 'variable.c', line 3523
VALUE rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj) { set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK); return obj; }
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
module Mod
def method1() end
private :method1
def method2() end
end
Mod.instance_methods #=> [:method2]
Mod.private_instance_methods #=> [:method1]
# File 'class.c', line 1877
VALUE rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i); }
#private_method_defined?(symbol, inherit = true) ⇒ Boolean
#private_method_defined?(string, inherit = true) ⇒ Boolean
Boolean
#private_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named private method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. ::String
arguments are converted to symbols.
module A
def method1() end
end
class B
private
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.private_method_defined? "method1" #=> false
C.private_method_defined? "method2" #=> true
C.private_method_defined? "method2", true #=> true
C.private_method_defined? "method2", false #=> false
C.method_defined? "method2" #=> false
# File 'vm_method.c', line 1990
static VALUE rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod) { return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE); }
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. ::String
arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.
If a method has protected visibility, it is callable only where self
of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java’s protected method. Usually #private should be used.
Note that a protected method is slow because it can’t use inline cache.
To show a private method on RDoc, use :doc:
instead of this.
# File 'vm_method.c', line 2338
static VALUE rb_mod_protected(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED); }
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
# File 'class.c', line 1854
VALUE rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i); }
#protected_method_defined?(symbol, inherit = true) ⇒ Boolean
#protected_method_defined?(string, inherit = true) ⇒ Boolean
Boolean
#protected_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named protected method is defined mod. If inherit is set, the lookup will also search mod’s ancestors. ::String
arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.protected_method_defined? "method1" #=> false
C.protected_method_defined? "method2" #=> true
C.protected_method_defined? "method2", true #=> true
C.protected_method_defined? "method2", false #=> false
C.method_defined? "method2" #=> true
# File 'vm_method.c', line 2026
static VALUE rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod) { return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED); }
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. ::String
arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.
# File 'vm_method.c', line 2306
static VALUE rb_mod_public(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC); }
#public_class_method(symbol, ...) ⇒ mod
#public_class_method(string, ...) ⇒ mod
#public_class_method(array) ⇒ mod
mod
#public_class_method(string, ...) ⇒ mod
#public_class_method(array) ⇒ mod
Makes a list of existing class methods public.
::String
arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted.
# File 'vm_method.c', line 2502
static VALUE rb_mod_public_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC); return obj; }
#public_constant(symbol, ...) ⇒ mod
Makes a list of existing constants public.
# File 'variable.c', line 3537
VALUE rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj) { set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK); return obj; }
#public_instance_method(symbol) ⇒ unbound_method
Similar to instance_method, searches public method only.
# File 'proc.c', line 2203
static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE); }
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
# File 'class.c', line 1892
VALUE rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i); }
#public_method_defined?(symbol, inherit = true) ⇒ Boolean
#public_method_defined?(string, inherit = true) ⇒ Boolean
Boolean
#public_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named public method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. ::String
arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.public_method_defined? "method1" #=> true
C.public_method_defined? "method1", true #=> true
C.public_method_defined? "method1", false #=> true
C.public_method_defined? "method2" #=> false
C.method_defined? "method2" #=> true
# File 'vm_method.c', line 1954
static VALUE rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod) { return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC); }
#refine(mod) ⇒ Module
(private)
Refine mod in the receiver.
Returns a module, where refined methods are defined.
# File 'eval.c', line 1401
static VALUE rb_mod_refine(VALUE module, VALUE klass) { VALUE refinement; ID id_refinements, id_activated_refinements, id_refined_class, id_defined_at; VALUE refinements, activated_refinements; rb_thread_t *th = GET_THREAD(); VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp); if (block_handler == VM_BLOCK_HANDLER_NONE) { rb_raise(rb_eArgError, "no block given"); } if (vm_block_handler_type(block_handler) != block_handler_type_iseq) { rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine"); } ensure_class_or_module(klass); CONST_ID(id_refinements, "__refinements__"); refinements = rb_attr_get(module, id_refinements); if (NIL_P(refinements)) { refinements = hidden_identity_hash_new(); rb_ivar_set(module, id_refinements, refinements); } CONST_ID(id_activated_refinements, "__activated_refinements__"); activated_refinements = rb_attr_get(module, id_activated_refinements); if (NIL_P(activated_refinements)) { activated_refinements = hidden_identity_hash_new(); rb_ivar_set(module, id_activated_refinements, activated_refinements); } refinement = rb_hash_lookup(refinements, klass); if (NIL_P(refinement)) { VALUE superclass = refinement_superclass(klass); refinement = rb_refinement_new(); RCLASS_SET_SUPER(refinement, superclass); RUBY_ASSERT(BUILTIN_TYPE(refinement) == T_MODULE); FL_SET(refinement, RMODULE_IS_REFINEMENT); CONST_ID(id_refined_class, "__refined_class__"); rb_ivar_set(refinement, id_refined_class, klass); CONST_ID(id_defined_at, "__defined_at__"); rb_ivar_set(refinement, id_defined_at, module); rb_hash_aset(refinements, klass, refinement); add_activated_refinement(activated_refinements, klass, refinement); } rb_yield_refine_block(refinement, activated_refinements); return refinement; }
#refinements ⇒ Array
# File 'eval.c', line 1509
static VALUE mod_refinements(VALUE self) { ID id_refinements; VALUE refinements; CONST_ID(id_refinements, "__refinements__"); refinements = rb_attr_get(self, id_refinements); if (NIL_P(refinements)) { return rb_ary_new(); } return rb_hash_values(refinements); }
#remove_class_variable(sym) ⇒ Object
Removes the named class variable from the receiver, returning that variable’s value.
class Example
@@var = 99
puts remove_class_variable(:@@var)
p(defined? @@var)
end
produces:
99
nil
# File 'variable.c', line 3912
VALUE rb_mod_remove_cvar(VALUE mod, VALUE name) { const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s"); st_data_t val; if (!id) { goto not_defined; } rb_check_frozen(mod); val = rb_ivar_delete(mod, id, Qundef); if (!UNDEF_P(val)) { return (VALUE)val; } if (rb_cvar_defined(mod, id)) { rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id)); } not_defined: rb_name_err_raise("class variable %1$s not defined for %2$s", mod, name); UNREACHABLE_RETURN(Qundef); }
#remove_const(sym) ⇒ Object (private)
Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.
# File 'variable.c', line 2987
VALUE rb_mod_remove_const(VALUE mod, VALUE name) { const ID id = id_for_var(mod, name, a, constant); if (!id) { undefined_constant(mod, name); } return rb_const_remove(mod, id); }
#remove_method(symbol) ⇒ self
#remove_method(string) ⇒ self
self
#remove_method(string) ⇒ self
Removes the method identified by symbol from the current class. For an example, see #undef_method. ::String
arguments are converted to symbols.
# File 'vm_method.c', line 1584
static VALUE rb_mod_remove_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { VALUE v = argv[i]; ID id = rb_check_id(&v); if (!id) { rb_name_err_raise("method `%1$s' not defined in %2$s", mod, v); } remove_method(mod, id); } return mod; }
#ruby2_keywords(method_name, ...) ⇒ nil
(private)
For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args
) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.
This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 3.0. See www.ruby-lang.org/en/news/2019/12/12/separation-of-positional-and-keyword-arguments-in-ruby-3-0/ for details on why ruby2_keywords
exists and when and how to use it.
This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it:
module Mod
def foo(meth, *args, &block)
send(:"do_#{meth}", *args, &block)
end
ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end
However, be aware that if the ruby2_keywords
method is removed, the behavior of the foo
method using the above approach will change so that the method does not pass through keywords.
# File 'vm_method.c', line 2414
static VALUE rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module) { int i; VALUE origin_class = RCLASS_ORIGIN(module); rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); rb_check_frozen(module); for (i = 0; i < argc; i++) { VALUE v = argv[i]; ID name = rb_check_id(&v); rb_method_entry_t *me; VALUE defined_class; if (!name) { rb_print_undef_str(module, v); } me = search_method(origin_class, name, &defined_class); if (!me && RB_TYPE_P(module, T_MODULE)) { me = search_method(rb_cObject, name, &defined_class); } if (UNDEFINED_METHOD_ENTRY_P(me) || UNDEFINED_REFINED_METHOD_P(me->def)) { rb_print_undef(module, name, METHOD_VISI_UNDEF); } if (module == defined_class || origin_class == defined_class) { switch (me->def->type) { case VM_METHOD_TYPE_ISEQ: if (ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_rest && !ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kw && !ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kwrest) { ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.ruby2_keywords = 1; rb_clear_method_cache(module, name); } else { rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name)); } break; case VM_METHOD_TYPE_BMETHOD: { VALUE procval = me->def->body.bmethod.proc; if (vm_block_handler_type(procval) == block_handler_type_proc) { procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval)); } if (vm_block_handler_type(procval) == block_handler_type_iseq) { const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval); const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq); if (ISEQ_BODY(iseq)->param.flags.has_rest && !ISEQ_BODY(iseq)->param.flags.has_kw && !ISEQ_BODY(iseq)->param.flags.has_kwrest) { ISEQ_BODY(iseq)->param.flags.ruby2_keywords = 1; rb_clear_method_cache(module, name); } else { rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name)); } break; } } /* fallthrough */ default: rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name)); break; } } else { rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name)); } } return Qnil; }
#to_s ⇒ String Also known as: #inspect
Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.
# File 'object.c', line 1591
MJIT_FUNC_EXPORTED VALUE rb_mod_to_s(VALUE klass) { ID id_defined_at; VALUE refined_class, defined_at; if (FL_TEST(klass, FL_SINGLETON)) { VALUE s = rb_usascii_str_new2("#<Class:"); VALUE v = rb_ivar_get(klass, id__attached__); if (CLASS_OR_MODULE_P(v)) { rb_str_append(s, rb_inspect(v)); } else { rb_str_append(s, rb_any_to_s(v)); } rb_str_cat2(s, ">"); return s; } refined_class = rb_refinement_module_get_refined_class(klass); if (!NIL_P(refined_class)) { VALUE s = rb_usascii_str_new2("#<refinement:"); rb_str_concat(s, rb_inspect(refined_class)); rb_str_cat2(s, "@"); CONST_ID(id_defined_at, "__defined_at__"); defined_at = rb_attr_get(klass, id_defined_at); rb_str_concat(s, rb_inspect(defined_at)); rb_str_cat2(s, ">"); return s; } return rb_class_name(klass); }
#undef_method(symbol) ⇒ self
#undef_method(string) ⇒ self
self
#undef_method(string) ⇒ self
Prevents the current class from responding to calls to the named method. Contrast this with #remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. ::String
arguments are converted to symbols.
class Parent
def hello
puts "In parent"
end
end
class Child < Parent
def hello
puts "In child"
end
end
c = Child.new
c.hello
class Child
remove_method :hello # remove from child, still in parent
end
c.hello
class Child
undef_method :hello # prevent any calls to 'hello'
end
c.hello
produces:
In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
# File 'vm_method.c', line 1829
static VALUE rb_mod_undef_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { VALUE v = argv[i]; ID id = rb_check_id(&v); if (!id) { rb_method_name_error(mod, v); } rb_undef(mod, id); } return mod; }
#undefined_instance_methods ⇒ Array
Returns a list of the undefined instance methods defined in mod. The undefined methods of any ancestors are not included.
# File 'class.c', line 1906
VALUE rb_class_undefined_instance_methods(VALUE mod) { VALUE include_super = Qfalse; return class_instance_method_list(1, &include_super, mod, 0, ins_methods_undef_i); }
#using(module) ⇒ self
(private)
Import class refinements from module into the current class or module definition.
# File 'eval.c', line 1469
static VALUE mod_using(VALUE self, VALUE module) { rb_control_frame_t *prev_cfp = previous_frame(GET_EC()); if (prev_frame_func()) { rb_raise(rb_eRuntimeError, "Module#using is not permitted in methods"); } if (prev_cfp && prev_cfp->self != self) { rb_raise(rb_eRuntimeError, "Module#using is not called on self"); } if (rb_block_given_p()) { ignored_block(module, "Module#"); } rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module); return self; }