Class: IO::Buffer
Relationships & Source Files | |
Namespace Children | |
Exceptions:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
::Comparable
|
|
Inherits: | Object |
Defined in: | io_buffer.c, io_buffer.c |
Overview
Buffer
is a low-level efficient buffer for input/output. There are three ways of using buffer:
-
Create an empty buffer with .new, fill it with buffer using #copy or #set_value, #set_string, get buffer with #get_string;
-
Create a buffer mapped to some string with .for, then it could be used both for reading with #get_string or #get_value, and writing (writing will change the source string, too);
-
Create a buffer mapped to some file with .map, then it could be used for reading and writing the underlying file.
Interaction with string and file memory is performed by efficient low-level C mechanisms like memcpy
.
The class is meant to be an utility for implementing more high-level mechanisms like Fiber::SchedulerInterface#io_read
and Fiber::SchedulerInterface#io_write
.
Examples of usage:
Empty buffer:
buffer = IO::Buffer.new(8) # create empty 8-byte buffer
# =>
# #<IO::Buffer 0x0000555f5d1a5c50+8 INTERNAL>
# ...
buffer
# =>
# <IO::Buffer 0x0000555f5d156ab0+8 INTERNAL>
# 0x00000000 00 00 00 00 00 00 00 00
buffer.set_string('test', 2) # put there bytes of the "test" string, starting from offset 2
# => 4
buffer.get_string # get the result
# => "\x00\x00test\x00\x00"
Buffer from string:
string = 'buffer'
buffer = IO::Buffer.for(string)
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# ...
buffer
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# 0x00000000 64 61 74 61 buffer
buffer.get_string(2) # read content starting from offset 2
# => "ta"
buffer.set_string('---', 1) # write content, starting from offset 1
# => 3
buffer
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# 0x00000000 64 2d 2d 2d d---
string # original string changed, too
# => "d---"
Buffer from file:
File.write('test.txt', 'test buffer')
# => 9
buffer = IO::Buffer.map(File.open('test.txt'))
# =>
# #<IO::Buffer 0x00007f3f0768c000+9 MAPPED IMMUTABLE>
# ...
buffer.get_string(5, 2) # read 2 bytes, starting from offset 5
# => "da"
buffer.set_string('---', 1) # attempt to write
# in `set_string': Buffer is not writable! (IO::Buffer::AccessError)
# To create writable file-mapped buffer
# Open file for read-write, pass size, offset, and flags=0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 9, 0, 0)
buffer.set_string('---', 1)
# => 3 -- bytes written
File.read('test.txt')
# => "t--- buffer"
The class is experimental and the interface is subject to change.
Constant Summary
-
BIG_ENDIAN =
# File 'io_buffer.c', line 3431RB_INT2NUM(RB_IO_BUFFER_BIG_ENDIAN)
-
DEFAULT_SIZE =
# File 'io_buffer.c', line 3404SIZET2NUM(RUBY_IO_BUFFER_DEFAULT_SIZE)
-
EXTERNAL =
Flags:
RB_INT2NUM(RB_IO_BUFFER_EXTERNAL)
-
HOST_ENDIAN =
# File 'io_buffer.c', line 3432RB_INT2NUM(RB_IO_BUFFER_HOST_ENDIAN)
-
INTERNAL =
# File 'io_buffer.c', line 3422RB_INT2NUM(RB_IO_BUFFER_INTERNAL)
-
LITTLE_ENDIAN =
Endian:
RB_INT2NUM(RB_IO_BUFFER_LITTLE_ENDIAN)
-
LOCKED =
# File 'io_buffer.c', line 3425RB_INT2NUM(RB_IO_BUFFER_LOCKED)
-
MAPPED =
# File 'io_buffer.c', line 3423RB_INT2NUM(RB_IO_BUFFER_MAPPED)
-
NETWORK_ENDIAN =
# File 'io_buffer.c', line 3433RB_INT2NUM(RB_IO_BUFFER_NETWORK_ENDIAN)
-
PAGE_SIZE =
Efficient sizing of mapped buffers:
SIZET2NUM(RUBY_IO_BUFFER_PAGE_SIZE)
-
PRIVATE =
# File 'io_buffer.c', line 3426RB_INT2NUM(RB_IO_BUFFER_PRIVATE)
-
READONLY =
# File 'io_buffer.c', line 3427RB_INT2NUM(RB_IO_BUFFER_READONLY)
-
SHARED =
# File 'io_buffer.c', line 3424RB_INT2NUM(RB_IO_BUFFER_SHARED)
Class Method Summary
-
.for(string) ⇒ Buffer
Creates a
Buffer
from the given string’s memory. -
.map(file, [size, [offset, [flags]]]) ⇒ Buffer
Create an
Buffer
for reading fromfile
by memory-mapping the file. -
.new([size = DEFAULT_SIZE, [flags) ⇒ Buffer
constructor
Create a new zero-filled
Buffer
of #size bytes. -
.size_of(buffer_type) ⇒ byte size
Returns the size of the given buffer type(s) in bytes.
Instance Attribute Summary
- #empty? ⇒ Boolean readonly
-
#external? ⇒ Boolean
readonly
The buffer is external if it references the memory which is not allocated or mapped by the buffer itself.
-
#internal? ⇒ Boolean
readonly
If the buffer is internal, meaning it references memory allocated by the buffer itself.
-
#locked
readonly
Allows to process a buffer in exclusive way, for concurrency-safety.
-
#locked? ⇒ Boolean
readonly
If the buffer is locked, meaning it is inside #locked block execution.
-
#mapped? ⇒ Boolean
readonly
If the buffer is mapped, meaning it references memory mapped by the buffer.
-
#null? ⇒ Boolean
readonly
If the buffer was freed with #free or was never allocated in the first place.
-
#readonly? ⇒ Boolean
readonly
If the buffer is read only, meaning the buffer cannot be modified using #set_value, #set_string or #copy and similar.
-
#shared? ⇒ Boolean
readonly
If the buffer is shared, meaning it references memory that can be shared with other processes (and thus might change without being modified locally).
-
#valid? ⇒ Boolean
readonly
Returns whether the buffer buffer is accessible.
Instance Method Summary
-
#&(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary AND operation to the source, using the mask, repeating as necessary.
-
#<=>(other) ⇒ Boolean
Buffers are compared by size and exact contents of the memory they are referencing using
memcmp
. -
#^(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary XOR operation to the source, using the mask, repeating as necessary.
-
#and!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary AND operation to the source, using the mask, repeating as necessary.
-
#clear(value = 0, [offset, [length]]) ⇒ self
Fill buffer with
value
, starting withoffset
and going forlength
bytes. -
#copy(source, [offset, [length, [source_offset]]]) ⇒ size
Efficiently copy buffer from a source
Buffer
into the buffer, atoffset
usingmemcpy
. -
#free ⇒ self
If the buffer references memory, release it back to the operating system.
-
#get_string([offset, [length, [encoding]]]) ⇒ String
Read a chunk or all of the buffer into a string, in the specified
encoding
. -
#get_value(buffer_type, offset) ⇒ Numeric
Read from buffer a value of
type
atoffset
. -
#get_values(buffer_types, offset) ⇒ Array
Similar to #get_value, except that it can handle multiple buffer types and returns an array of values.
- #hexdump
-
#not! ⇒ Buffer
Modify the source buffer in place by applying the binary NOT operation to the source.
-
#or!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary OR operation to the source, using the mask, repeating as necessary.
-
#read(io, [length, [offset]]) ⇒ read length, -errno
Read at least
length
bytes from theio
, into the buffer starting atoffset
. -
#resize(new_size) ⇒ self
Resizes a buffer to a
new_size
bytes, preserving its content. -
#set_string(string, [offset, [length, [source_offset]]]) ⇒ size
Efficiently copy buffer from a source
::String
into the buffer, atoffset
usingmemcpy
. -
#set_value(type, offset, value) ⇒ offset
Write to a buffer a
value
oftype
atoffset
. -
#set_values(buffer_types, offset, values) ⇒ offset
Write #values of
buffer_types
atoffset
to the buffer. - #size ⇒ Integer
-
#slice([offset, [length]]) ⇒ Buffer
Produce another
Buffer
which is a slice (or view into) the current one starting atoffset
bytes and going forlength
bytes. -
#to_s ⇒ String
Short representation of the buffer.
-
#transfer ⇒ Buffer
Transfers ownership to a new buffer, deallocating the current one.
-
#values(buffer_type, [offset, [count]]) ⇒ Array
Returns an array of values of
buffer_type
starting fromoffset
. -
#write(io, [length, [offset]]) ⇒ written length, -errno
Write at least
length
bytes from the buffer starting atoffset
, into theio
. -
#xor!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary XOR operation to the source, using the mask, repeating as necessary.
-
#|(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary OR operation to the source, using the mask, repeating as necessary.
-
#~ ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary NOT operation to the source.
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Constructor Details
.new([size = DEFAULT_SIZE, [flags) ⇒ Buffer
Create a new zero-filled Buffer
of #size bytes. By default, the buffer will be internal: directly allocated chunk of the memory. But if the requested #size is more than OS-specific PAGE_SIZE, the buffer would be allocated using the virtual memory mechanism (anonymous mmap
on Unix, VirtualAlloc
on Windows). The behavior can be forced by passing MAPPED as a second parameter.
Examples
buffer = IO::Buffer.new(4)
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000 00 00 00 00 ....
buffer.get_string(0, 1) # => "\x00"
buffer.set_string("test")
buffer
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000 74 65 73 74 test
# File 'io_buffer.c', line 670
VALUE rb_io_buffer_initialize(int argc, VALUE *argv, VALUE self) { io_buffer_experimental(); rb_check_arity(argc, 0, 2); struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); size_t size; if (argc > 0) { size = io_buffer_extract_size(argv[0]); } else { size = RUBY_IO_BUFFER_DEFAULT_SIZE; } enum rb_io_buffer_flags flags = 0; if (argc >= 2) { flags = RB_NUM2UINT(argv[1]); } else { flags |= io_flags_for_size(size); } io_buffer_initialize(buffer, NULL, size, flags, Qnil); return self; }
Class Method Details
.for(string) ⇒ Buffer
.for(string) {|io_buffer| ... }
Buffer
.for(string) {|io_buffer| ... }
Creates a Buffer
from the given string’s memory. Without a block a frozen internal copy of the string is created efficiently and used as the buffer source. When a block is provided, the buffer is associated directly with the string’s internal buffer and updating the buffer will update the string.
Until #free is invoked on the buffer, either explicitly or via the garbage collector, the source string will be locked and cannot be modified.
If the string is frozen, it will create a read-only buffer which cannot be modified. If the string is shared, it may trigger a copy-on-write when using the block form.
string = 'test'
buffer = IO::Buffer.for(string)
buffer.external? #=> true
buffer.get_string(0, 1)
# => "t"
string
# => "best"
buffer.resize(100)
# in `resize': Cannot resize external buffer! (IO::Buffer::AccessError)
IO::Buffer.for(string) do |buffer|
buffer.set_string("T")
string
# => "Test"
end
# File 'io_buffer.c', line 497
VALUE rb_io_buffer_type_for(VALUE klass, VALUE string) { StringValue(string); // If the string is frozen, both code paths are okay. // If the string is not frozen, if a block is not given, it must be frozen. if (rb_block_given_p()) { struct io_buffer_for_yield_instance_arguments arguments = { .klass = klass, .string = string, .instance = Qnil, .flags = 0, }; return rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments); } else { // This internally returns the source string if it's already frozen. string = rb_str_tmp_frozen_acquire(string); return io_buffer_for_make_instance(klass, string, RB_IO_BUFFER_READONLY); } }
.map(file, [size, [offset, [flags]]]) ⇒ Buffer
Create an Buffer
for reading from file
by memory-mapping the file. file_io
should be a ::File
instance, opened for reading.
Optional #size and offset
of mapping can be specified.
By default, the buffer would be immutable (read only); to create a writable mapping, you need to open a file in read-write mode, and explicitly pass flags
argument without IO::Buffer::IMMUTABLE
.
Example:
File.write('test.txt', 'test')
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
# => #<IO::Buffer 0x00000001014a0000+4 MAPPED READONLY>
buffer.readonly? # => true
buffer.get_string
# => "test"
buffer.set_string('b', 0)
# `set_string': Buffer is not writable! (IO::Buffer::AccessError)
# create read/write mapping: length 4 bytes, offset 0, flags 0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 4, 0)
buffer.set_string('b', 0)
# => 1
# Check it
File.read('test.txt')
# => "best"
Note that some operating systems may not have cache coherency between mapped buffers and file reads.
# File 'io_buffer.c', line 590
static VALUE io_buffer_map(int argc, VALUE *argv, VALUE klass) { rb_check_arity(argc, 1, 4); // We might like to handle a string path? VALUE io = argv[0]; size_t size; if (argc >= 2 && !RB_NIL_P(argv[1])) { size = io_buffer_extract_size(argv[1]); } else { rb_off_t file_size = rb_file_size(io); // Compiler can confirm that we handled file_size < 0 case: if (file_size < 0) { rb_raise(rb_eArgError, "Invalid negative file size!"); } // Here, we assume that file_size is positive: else if ((uintmax_t)file_size > SIZE_MAX) { rb_raise(rb_eArgError, "File larger than address space!"); } else { // This conversion should be safe: size = (size_t)file_size; } } // This is the file offset, not the buffer offset: rb_off_t offset = 0; if (argc >= 3) { offset = NUM2OFFT(argv[2]); } enum rb_io_buffer_flags flags = 0; if (argc >= 4) { flags = RB_NUM2UINT(argv[3]); } return rb_io_buffer_map(io, size, offset, flags); }
# File 'io_buffer.c', line 1719
static VALUE io_buffer_size_of(VALUE klass, VALUE buffer_type) { if (RB_TYPE_P(buffer_type, T_ARRAY)) { size_t total = 0; for (long i = 0; i < RARRAY_LEN(buffer_type); i++) { total += io_buffer_buffer_type_size(RB_SYM2ID(RARRAY_AREF(buffer_type, i))); } return SIZET2NUM(total); } else { return SIZET2NUM(io_buffer_buffer_type_size(RB_SYM2ID(buffer_type))); } }
Instance Attribute Details
#empty? ⇒ Boolean
(readonly)
# File 'io_buffer.c', line 930
static VALUE rb_io_buffer_empty_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->size == 0); }
#external? ⇒ Boolean
(readonly)
The buffer is external if it references the memory which is not allocated or mapped by the buffer itself.
A buffer created using .for has an external reference to the string’s memory.
External buffer can’t be resized.
# File 'io_buffer.c', line 950
static VALUE rb_io_buffer_external_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->flags & RB_IO_BUFFER_EXTERNAL); }
#internal? ⇒ Boolean
(readonly)
If the buffer is internal, meaning it references memory allocated by the buffer itself.
An internal buffer is not associated with any external memory (e.g. string) or file mapping.
Internal buffers are created using .new and is the default when the requested size is less than the PAGE_SIZE and it was not requested to be mapped on creation.
Internal buffers can be resized, and such an operation will typically invalidate all slices, but not always.
# File 'io_buffer.c', line 975
static VALUE rb_io_buffer_internal_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->flags & RB_IO_BUFFER_INTERNAL); }
#locked (readonly)
Allows to process a buffer in exclusive way, for concurrency-safety. While the block is performed, the buffer is considered locked, and no other code can enter the lock. Also, locked buffer can’t be changed with #resize or #free.
The following operations acquire a lock: #resize, #free.
Locking is not thread safe. It is designed as a safety net around non-blocking system calls. You can only share a buffer between threads with appropriate synchronisation techniques.
Example:
buffer = IO::Buffer.new(4)
buffer.locked? #=> false
Fiber.schedule do
buffer.locked do
buffer.write(io) # theoretical system call interface
end
end
Fiber.schedule do
# in `locked': Buffer already locked! (IO::Buffer::LockedError)
buffer.locked do
buffer.set_string("test", 0)
end
end
# File 'io_buffer.c', line 1158
VALUE rb_io_buffer_locked(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); if (buffer->flags & RB_IO_BUFFER_LOCKED) { rb_raise(rb_eIOBufferLockedError, "Buffer already locked!"); } buffer->flags |= RB_IO_BUFFER_LOCKED; VALUE result = rb_yield(self); buffer->flags &= ~RB_IO_BUFFER_LOCKED; return result; }
#locked? ⇒ Boolean
(readonly)
If the buffer is locked, meaning it is inside #locked block execution. Locked buffer can’t be resized or freed, and another lock can’t be acquired on it.
Locking is not thread safe, but is a semantic used to ensure buffers don’t move while being used by a system call.
Example:
buffer.locked do
buffer.write(io) # theoretical system call interface
end
# File 'io_buffer.c', line 1038
static VALUE rb_io_buffer_locked_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->flags & RB_IO_BUFFER_LOCKED); }
#mapped? ⇒ Boolean
(readonly)
If the buffer is mapped, meaning it references memory mapped by the buffer.
Mapped buffers are either anonymous, if created by .new with the MAPPED flag or if the size was at least PAGE_SIZE, or backed by a file if created with .map.
Mapped buffers can usually be resized, and such an operation will typically invalidate all slices, but not always.
# File 'io_buffer.c', line 997
static VALUE rb_io_buffer_mapped_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->flags & RB_IO_BUFFER_MAPPED); }
#null? ⇒ Boolean
(readonly)
If the buffer was freed with #free or was never allocated in the first place.
# File 'io_buffer.c', line 914
static VALUE rb_io_buffer_null_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(buffer->base == NULL); }
#readonly? ⇒ Boolean
(readonly)
If the buffer is read only, meaning the buffer cannot be modified using #set_value, #set_string or #copy and similar.
Frozen strings and read-only files create read-only buffers.
# File 'io_buffer.c', line 1064
static VALUE io_buffer_readonly_p(VALUE self) { return RBOOL(rb_io_buffer_readonly_p(self)); }
#valid? ⇒ Boolean
(readonly)
Returns whether the buffer buffer is accessible.
A buffer becomes invalid if it is a slice of another buffer which has been freed.
# File 'io_buffer.c', line 899
static VALUE rb_io_buffer_valid_p(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return RBOOL(io_buffer_validate(buffer)); }
Instance Method Details
#&(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary AND operation to the source, using the mask, repeating as necessary.
IO::Buffer.for("1234567890") & IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x00005589b2758480+4 INTERNAL>
# 0x00000000 31 00 00 34 35 00 00 38 39 00 1..45..89.
# File 'io_buffer.c', line 2966
static VALUE io_buffer_and(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size)); struct rb_io_buffer *output_buffer = NULL; TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer); memory_and(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size); return output; }
#<=>(other) ⇒ Boolean
Buffers are compared by size and exact contents of the memory they are referencing using memcmp
.
# File 'io_buffer.c', line 1554
static VALUE rb_io_buffer_compare(VALUE self, VALUE other) { const void *ptr1, *ptr2; size_t size1, size2; rb_io_buffer_get_bytes_for_reading(self, &ptr1, &size1); rb_io_buffer_get_bytes_for_reading(other, &ptr2, &size2); if (size1 < size2) { return RB_INT2NUM(-1); } if (size1 > size2) { return RB_INT2NUM(1); } return RB_INT2NUM(memcmp(ptr1, ptr2, size1)); }
#^(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary XOR operation to the source, using the mask, repeating as necessary.
IO::Buffer.for("1234567890") ^ IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x000055a2d5d10480+10 INTERNAL>
# 0x00000000 ce 32 33 cb ca 36 37 c7 c6 30 .23..67..0
# File 'io_buffer.c', line 3046
static VALUE io_buffer_xor(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size)); struct rb_io_buffer *output_buffer = NULL; TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer); memory_xor(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size); return output; }
#and!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary AND operation to the source, using the mask, repeating as necessary.
source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890
source.and!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000 31 00 00 34 35 00 00 38 39 00 1..45..89.
# File 'io_buffer.c', line 3143
static VALUE io_buffer_and_inplace(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); io_buffer_check_overlaps(buffer, mask_buffer); void *base; size_t size; io_buffer_get_bytes_for_writing(buffer, &base, &size); memory_and_inplace(base, size, mask_buffer->base, mask_buffer->size); return self; }
#clear(value = 0, [offset, [length]]) ⇒ self
Fill buffer with value
, starting with offset
and going for length
bytes.
buffer = IO::Buffer.for('test')
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 74 65 73 74 test
buffer.clear
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 00 00 00 00 ....
buf.clear(1) # fill with 1
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 01 01 01 01 ....
buffer.clear(2, 1, 2) # fill with 2, starting from offset 1, for 2 bytes
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 01 02 02 01 ....
buffer.clear(2, 1) # fill with 2, starting from offset 1
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 01 02 02 02 ....
# File 'io_buffer.c', line 2414
static VALUE io_buffer_clear(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 0, 3); uint8_t value = 0; if (argc >= 1) { value = NUM2UINT(argv[0]); } size_t offset, length; io_buffer_extract_offset_length(self, argc-1, argv+1, &offset, &length); rb_io_buffer_clear(self, value, offset, length); return self; }
#copy(source, [offset, [length, [source_offset]]]) ⇒ size
Efficiently copy buffer from a source Buffer
into the buffer, at offset
using memcpy
. For copying ::String
instances, see #set_string.
buffer = IO::Buffer.new(32)
# =>
# #<IO::Buffer 0x0000555f5ca22520+32 INTERNAL>
# 0x00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
# 0x00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ *
buffer.copy(IO::Buffer.for("test"), 8)
# => 4 -- size of buffer copied
buffer
# =>
# #<IO::Buffer 0x0000555f5cf8fe40+32 INTERNAL>
# 0x00000000 00 00 00 00 00 00 00 00 74 65 73 74 00 00 00 00 ........test....
# 0x00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ *
#copy
can be used to put buffer into strings associated with buffer:
string= "buffer: "
# => "buffer: "
buffer = IO::Buffer.for(string)
buffer.copy(IO::Buffer.for("test"), 5)
# => 4
string
# => "buffer:test"
Attempt to copy into a read-only buffer will fail:
File.write('test.txt', 'test')
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
buffer.copy(IO::Buffer.for("test"), 8)
# in `copy': Buffer is not writable! (IO::Buffer::AccessError)
See .map for details of creation of mutable file mappings, this will work:
buffer = IO::Buffer.map(File.open('test.txt', 'r+'))
buffer.copy(IO::Buffer.for("boom"), 0)
# => 4
File.read('test.txt')
# => "boom"
Attempt to copy the buffer which will need place outside of buffer’s bounds will fail:
buffer = IO::Buffer.new(2)
buffer.copy(IO::Buffer.for('test'), 0)
# in `copy': Specified offset+length is bigger than the buffer size! (ArgumentError)
# File 'io_buffer.c', line 2273
static VALUE io_buffer_copy(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, 4); struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); VALUE source = argv[0]; const void *source_base; size_t source_size; rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size); return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1); }
#free ⇒ self
If the buffer references memory, release it back to the operating system.
-
for a mapped buffer (e.g. from file): unmap.
-
for a buffer created from scratch: free memory.
-
for a buffer created from string: undo the association.
After the buffer is freed, no further operations can’t be performed on it.
You can resize a freed buffer to re-allocate it.
Example:
buffer = IO::Buffer.for('test')
buffer.free
# => #<IO::Buffer 0x0000000000000000+0 NULL>
buffer.get_value(:U8, 0)
# in `get_value': The buffer is not allocated! (IO::Buffer::AllocationError)
buffer.get_string
# in `get_string': The buffer is not allocated! (IO::Buffer::AllocationError)
buffer.null?
# => true
# File 'io_buffer.c', line 1204
VALUE rb_io_buffer_free(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); if (buffer->flags & RB_IO_BUFFER_LOCKED) { rb_raise(rb_eIOBufferLockedError, "Buffer is locked!"); } io_buffer_free(buffer); return self; }
#get_string([offset, [length, [encoding]]]) ⇒ String
# File 'io_buffer.c', line 2304
static VALUE io_buffer_get_string(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 0, 3); size_t offset, length; struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length); const void *base; size_t size; io_buffer_get_bytes_for_reading(buffer, &base, &size); rb_encoding *encoding; if (argc >= 3) { encoding = rb_find_encoding(argv[2]); } else { encoding = rb_ascii8bit_encoding(); } io_buffer_validate_range(buffer, offset, length); return rb_enc_str_new((const char*)base + offset, length, encoding); }
#get_value(buffer_type, offset) ⇒ Numeric
Read from buffer a value of type
at offset
. buffer_type
should be one of symbols:
-
:U8
: unsigned integer, 1 byte -
:S8
: signed integer, 1 byte -
:u16
: unsigned integer, 2 bytes, little-endian -
:U16
: unsigned integer, 2 bytes, big-endian -
:s16
: signed integer, 2 bytes, little-endian -
:S16
: signed integer, 2 bytes, big-endian -
:u32
: unsigned integer, 4 bytes, little-endian -
:U32
: unsigned integer, 4 bytes, big-endian -
:s32
: signed integer, 4 bytes, little-endian -
:S32
: signed integer, 4 bytes, big-endian -
:u64
: unsigned integer, 8 bytes, little-endian -
:U64
: unsigned integer, 8 bytes, big-endian -
:s64
: signed integer, 8 bytes, little-endian -
:S64
: signed integer, 8 bytes, big-endian -
:f32
: float, 4 bytes, little-endian -
:F32
: float, 4 bytes, big-endian -
:f64
: double, 8 bytes, little-endian -
:F64
: double, 8 bytes, big-endian
A buffer type refers specifically to the type of binary buffer that is stored in the buffer. For example, a :u32
buffer type is a 32-bit unsigned integer in little-endian format.
Example:
string = [1.5].pack('f')
# => "\x00\x00\xC0?"
IO::Buffer.for(string).get_value(:f32, 0)
# => 1.5
# File 'io_buffer.c', line 1801
static VALUE io_buffer_get_value(VALUE self, VALUE type, VALUE _offset) { const void *base; size_t size; size_t offset = io_buffer_extract_offset(_offset); rb_io_buffer_get_bytes_for_reading(self, &base, &size); return rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset); }
#get_values(buffer_types, offset) ⇒ Array
Similar to #get_value, except that it can handle multiple buffer types and returns an array of values.
Example:
string = [1.5, 2.5].pack('ff')
IO::Buffer.for(string).get_values([:f32, :f32], 0)
# => [1.5, 2.5]
# File 'io_buffer.c', line 1825
static VALUE io_buffer_get_values(VALUE self, VALUE buffer_types, VALUE _offset) { size_t offset = io_buffer_extract_offset(_offset); const void *base; size_t size; rb_io_buffer_get_bytes_for_reading(self, &base, &size); if (!RB_TYPE_P(buffer_types, T_ARRAY)) { rb_raise(rb_eArgError, "Argument buffer_types should be an array!"); } VALUE array = rb_ary_new_capa(RARRAY_LEN(buffer_types)); for (long i = 0; i < RARRAY_LEN(buffer_types); i++) { VALUE type = rb_ary_entry(buffer_types, i); VALUE value = rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset); rb_ary_push(array, value); } return array; }
#hexdump
[ GitHub ]# File 'io_buffer.c', line 841
static VALUE rb_io_buffer_hexdump(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); VALUE result = Qnil; if (io_buffer_validate(buffer) && buffer->base) { result = rb_str_buf_new(buffer->size*3 + (buffer->size/16)*12 + 1); io_buffer_hexdump(result, 16, buffer->base, buffer->size, 1); } return result; }
#not! ⇒ Buffer
Modify the source buffer in place by applying the binary NOT operation to the source.
source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890
source.not!
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000 ce cd cc cb ca c9 c8 c7 c6 cf ..........
# File 'io_buffer.c', line 3281
static VALUE io_buffer_not_inplace(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); void *base; size_t size; io_buffer_get_bytes_for_writing(buffer, &base, &size); memory_not_inplace(base, size); return self; }
#or!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary OR operation to the source, using the mask, repeating as necessary.
source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890
source.or!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000 ff 32 33 ff ff 36 37 ff ff 30 .23..67..0
# File 'io_buffer.c', line 3189
static VALUE io_buffer_or_inplace(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); io_buffer_check_overlaps(buffer, mask_buffer); void *base; size_t size; io_buffer_get_bytes_for_writing(buffer, &base, &size); memory_or_inplace(base, size, mask_buffer->base, mask_buffer->size); return self; }
#read(io, [length, [offset]]) ⇒ read length
, -errno
Read at least length
bytes from the io
, into the buffer starting at offset
. If an error occurs, return -errno
.
If length
is not given or nil
, it defaults to the size of the buffer minus the offset, i.e. the entire buffer.
If length
is zero, exactly one read
operation will occur.
If offset
is not given, it defaults to zero, i.e. the beginning of the buffer.
IO::Buffer.for('test') do |buffer|
p buffer
# =>
# <IO::Buffer 0x00007fca40087c38+4 SLICE>
# 0x00000000 74 65 73 74 test
buffer.read(File.open('/dev/urandom', 'rb'), 2)
p buffer
# =>
# <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE>
# 0x00000000 05 35 73 74 .5st
end
# File 'io_buffer.c', line 2606
static VALUE io_buffer_read(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, 3); VALUE io = argv[0]; size_t length, offset; io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset); return rb_io_buffer_read(self, io, length, offset); }
#resize(new_size) ⇒ self
Resizes a buffer to a new_size
bytes, preserving its content. Depending on the old and new size, the memory area associated with the buffer might be either extended, or rellocated at different address with content being copied.
buffer = IO::Buffer.new(4)
buffer.set_string("test", 0)
buffer.resize(8) # resize to 8 bytes
# =>
# #<IO::Buffer 0x0000555f5d1a1630+8 INTERNAL>
# 0x00000000 74 65 73 74 00 00 00 00 test....
External buffer (created with .for), and locked buffer can not be resized.
# File 'io_buffer.c', line 1540
static VALUE io_buffer_resize(VALUE self, VALUE size) { rb_io_buffer_resize(self, io_buffer_extract_size(size)); return self; }
#set_string(string, [offset, [length, [source_offset]]]) ⇒ size
Efficiently copy buffer from a source ::String
into the buffer, at offset
using memcpy
.
buf = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000 00 00 00 00 00 00 00 00 ........
# set buffer starting from offset 1, take 2 bytes starting from string's
# second
buf.set_string('test', 1, 2, 1)
# => 2
buf
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000 00 65 73 00 00 00 00 00 .es.....
See also #copy for examples of how buffer writing might be used for changing associated strings and files.
# File 'io_buffer.c', line 2352
static VALUE io_buffer_set_string(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, 4); struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); VALUE string = rb_str_to_str(argv[0]); const void *source_base = RSTRING_PTR(string); size_t source_size = RSTRING_LEN(string); return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1); }
#set_value(type, offset, value) ⇒ offset
Write to a buffer a value
of type
at offset
. type
should be one of symbols described in #get_value.
buffer = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000 00 00 00 00 00 00 00 00
buffer.set_value(:U8, 1, 111)
# => 1
buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000 00 6f 00 00 00 00 00 00 .o......
Note that if the type
is integer and value
is ::Float
, the implicit truncation is performed:
buffer = IO::Buffer.new(8)
buffer.set_value(:U32, 0, 2.5)
buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000 00 00 00 02 00 00 00 00
# ^^ the same as if we'd pass just integer 2
# File 'io_buffer.c', line 2071
static VALUE io_buffer_set_value(VALUE self, VALUE type, VALUE _offset, VALUE value) { void *base; size_t size; size_t offset = io_buffer_extract_offset(_offset); rb_io_buffer_get_bytes_for_writing(self, &base, &size); rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value); return SIZET2NUM(offset); }
#set_values(buffer_types, offset, values) ⇒ offset
Write #values of buffer_types
at offset
to the buffer. buffer_types
should be an array of symbols as described in #get_value. #values should be an array of values to write.
Example:
buffer = IO::Buffer.new(8)
buffer.set_values([:U8, :U16], 0, [1, 2])
buffer
# =>
# #<IO::Buffer 0x696f717561746978+8 INTERNAL>
# 0x00000000 01 00 02 00 00 00 00 00 ........
# File 'io_buffer.c', line 2101
static VALUE io_buffer_set_values(VALUE self, VALUE buffer_types, VALUE _offset, VALUE values) { if (!RB_TYPE_P(buffer_types, T_ARRAY)) { rb_raise(rb_eArgError, "Argument buffer_types should be an array!"); } if (!RB_TYPE_P(values, T_ARRAY)) { rb_raise(rb_eArgError, "Argument values should be an array!"); } if (RARRAY_LEN(buffer_types) != RARRAY_LEN(values)) { rb_raise(rb_eArgError, "Argument buffer_types and values should have the same length!"); } size_t offset = io_buffer_extract_offset(_offset); void *base; size_t size; rb_io_buffer_get_bytes_for_writing(self, &base, &size); for (long i = 0; i < RARRAY_LEN(buffer_types); i++) { VALUE type = rb_ary_entry(buffer_types, i); VALUE value = rb_ary_entry(values, i); rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value); } return SIZET2NUM(offset); }
#size ⇒ Integer
# File 'io_buffer.c', line 882
VALUE rb_io_buffer_size(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); return SIZET2NUM(buffer->size); }
#slice([offset, [length]]) ⇒ Buffer
Produce another Buffer
which is a slice (or view into) the current one starting at offset
bytes and going for length
bytes.
The slicing happens without copying of memory, and the slice keeps being associated with the original buffer’s source (string, or file), if any.
If the offset is not given, it will be zero. If the offset is negative, it will raise an ::ArgumentError
.
If the length is not given, the slice will be as long as the original buffer minus the specified offset. If the length is negative, it will raise an ::ArgumentError
.
Raises RuntimeError if the offset
length</tt> is out of the current buffer’s bounds.
Example:
string = 'test'
buffer = IO::Buffer.for(string)
slice = buffer.slice
# =>
# #<IO::Buffer 0x0000000108338e68+4 SLICE>
# 0x00000000 74 65 73 74 test
buffer.slice(2)
# =>
# #<IO::Buffer 0x0000000108338e6a+2 SLICE>
# 0x00000000 73 74 st
slice = buffer.slice(1, 2)
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000 65 73 es
# Put "o" into 0s position of the slice
slice.set_string('o', 0)
slice
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000 6f 73 os
# it is also visible at position 1 of the original buffer
buffer
# =>
# #<IO::Buffer 0x00007fc3d31e2d80+4 SLICE>
# 0x00000000 74 6f 73 74 tost
# ...and original string
string
# => tost
# File 'io_buffer.c', line 1308
static VALUE io_buffer_slice(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 0, 2); size_t offset, length; struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length); return rb_io_buffer_slice(buffer, self, offset, length); }
#to_s ⇒ String
# File 'io_buffer.c', line 751
VALUE rb_io_buffer_to_s(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); VALUE result = rb_str_new_cstr("#<"); rb_str_append(result, rb_class_name(CLASS_OF(self))); rb_str_catf(result, " %p+%"PRIdSIZE, buffer->base, buffer->size); if (buffer->base == NULL) { rb_str_cat2(result, " NULL"); } if (buffer->flags & RB_IO_BUFFER_EXTERNAL) { rb_str_cat2(result, " EXTERNAL"); } if (buffer->flags & RB_IO_BUFFER_INTERNAL) { rb_str_cat2(result, " INTERNAL"); } if (buffer->flags & RB_IO_BUFFER_MAPPED) { rb_str_cat2(result, " MAPPED"); } if (buffer->flags & RB_IO_BUFFER_SHARED) { rb_str_cat2(result, " SHARED"); } if (buffer->flags & RB_IO_BUFFER_LOCKED) { rb_str_cat2(result, " LOCKED"); } if (buffer->flags & RB_IO_BUFFER_READONLY) { rb_str_cat2(result, " READONLY"); } if (buffer->source != Qnil) { rb_str_cat2(result, " SLICE"); } if (!io_buffer_validate(buffer)) { rb_str_cat2(result, " INVALID"); } return rb_str_cat2(result, ">"); }
#transfer ⇒ Buffer
# File 'io_buffer.c', line 1416
VALUE rb_io_buffer_transfer(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); if (buffer->flags & RB_IO_BUFFER_LOCKED) { rb_raise(rb_eIOBufferLockedError, "Cannot transfer ownership of locked buffer!"); } VALUE instance = rb_io_buffer_type_allocate(rb_class_of(self)); struct rb_io_buffer *transferred; TypedData_Get_Struct(instance, struct rb_io_buffer, &rb_io_buffer_type, transferred); *transferred = *buffer; io_buffer_zero(buffer); return instance; }
#values(buffer_type, [offset, [count]]) ⇒ Array
# File 'io_buffer.c', line 1943
static VALUE io_buffer_values(int argc, VALUE *argv, VALUE self) { const void *base; size_t size; rb_io_buffer_get_bytes_for_reading(self, &base, &size); ID buffer_type; if (argc >= 1) { buffer_type = RB_SYM2ID(argv[0]); } else { buffer_type = RB_IO_BUFFER_DATA_TYPE_U8; } size_t offset, count; io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count); VALUE array = rb_ary_new_capa(count); for (size_t i = 0; i < count; i++) { VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset); rb_ary_push(array, value); } return array; }
#write(io, [length, [offset]]) ⇒ written
length
, -errno
Write at least length
bytes from the buffer starting at offset
, into the io
. If an error occurs, return -errno
.
If length
is not given or nil
, it defaults to the size of the buffer minus the offset, i.e. the entire buffer.
If length
is zero, exactly one write
operation will occur.
If offset
is not given, it defaults to zero, i.e. the beginning of the buffer.
out = File.open('output.txt', 'wb')
IO::Buffer.for('1234567').write(out, 3)
This leads to 123
being written into output.txt
# File 'io_buffer.c', line 2825
static VALUE io_buffer_write(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, 3); VALUE io = argv[0]; size_t length, offset; io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset); return rb_io_buffer_write(self, io, length, offset); }
#xor!(mask) ⇒ Buffer
Modify the source buffer in place by applying the binary XOR operation to the source, using the mask, repeating as necessary.
source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890
source.xor!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000 ce 32 33 cb ca 36 37 c7 c6 30 .23..67..0
# File 'io_buffer.c', line 3235
static VALUE io_buffer_xor_inplace(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); io_buffer_check_overlaps(buffer, mask_buffer); void *base; size_t size; io_buffer_get_bytes_for_writing(buffer, &base, &size); memory_xor_inplace(base, size, mask_buffer->base, mask_buffer->size); return self; }
#|(mask) ⇒ Buffer
Generate a new buffer the same size as the source by applying the binary OR operation to the source, using the mask, repeating as necessary.
IO::Buffer.for("1234567890") | IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x0000561785ae3480+10 INTERNAL>
# 0x00000000 ff 32 33 ff ff 36 37 ff ff 30 .23..67..0
# File 'io_buffer.c', line 3006
static VALUE io_buffer_or(VALUE self, VALUE mask) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); struct rb_io_buffer *mask_buffer = NULL; TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer); io_buffer_check_mask(mask_buffer); VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size)); struct rb_io_buffer *output_buffer = NULL; TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer); memory_or(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size); return output; }
#~ ⇒ Buffer
# File 'io_buffer.c', line 3086
static VALUE io_buffer_not(VALUE self) { struct rb_io_buffer *buffer = NULL; TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer); VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size)); struct rb_io_buffer *output_buffer = NULL; TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer); memory_not(output_buffer->base, buffer->base, buffer->size); return output; }