Class: Range
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
::Enumerable
|
|
Inherits: | Object |
Defined in: | range.c |
Overview
A Range represents an interval—a set of values with a beginning and an end. Ranges may be constructed using the s..
e and s...
e literals, or with .new. Ranges constructed using ..
run from the beginning to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.
(-1..-5).to_a #=> []
(-5..-1).to_a #=> [-5, -4, -3, -2, -1]
('a'..'e').to_a #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a #=> ["a", "b", "c", "d"]
Beginless/Endless Ranges
A “beginless range” and “endless range” represents a semi-infinite range. Literal notation for a beginless range is:
(..1)
# or
(...1)
Literal notation for an endless range is:
(1..)
# or similarly
(1...)
Which is equivalent to
(1..nil) # or similarly (1...nil)
Range.new(1, nil) # or Range.new(1, nil, true)
Beginless/endless ranges are useful, for example, for idiomatic slicing of arrays:
[1, 2, 3, 4, 5][...2] # => [1, 2]
[1, 2, 3, 4, 5][2...] # => [3, 4, 5]
Some implementation details:
-
#begin of beginless range and #end of endless range are
nil
; -
#each of beginless range raises an exception;
-
#each of endless range enumerates infinite sequence (may be useful in combination with Enumerable#take_while or similar methods);
-
(1..)
and(1...)
are not equal, although technically representing the same sequence.
Custom Objects in Ranges
Ranges can be constructed using any objects that can be compared using the <=>
operator. Methods that treat the range as a sequence (#each and methods inherited from ::Enumerable
) expect the begin object to implement a succ
method to return the next object in sequence. The #step and #include? methods require the begin object to implement succ
or to be numeric.
In the Xs
class below both <=>
and succ
are implemented so Xs
can be used to construct ranges. Note that the ::Comparable
module is included so the #== method is defined in terms of <=>
.
class Xs # represent a string of 'x's
include Comparable
attr :length
def initialize(n)
@length = n
end
def succ
Xs.new(@length + 1)
end
def <=>(other)
@length <=> other.length
end
def to_s
sprintf "%2d #{inspect}", @length
end
def inspect
'x' * @length
end
end
An example of using Xs
to construct a range:
r = Xs.new(3)..Xs.new(6) #=> xxx..xxxxxx
r.to_a #=> [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5)) #=> true
Class Method Summary
- .new(begin, end, exclude_end=false) ⇒ Range constructor
Instance Attribute Summary
-
#exclude_end? ⇒ Boolean
readonly
Returns
true
if the range excludes its end value.
Instance Method Summary
-
#%(n) ⇒ Enumerator
Iterates over the range, passing each
n
th element to the block. -
#==(obj) ⇒ Boolean
Returns
true
only ifobj
is aRange
, has equivalent begin and end items (by comparing them with==
), and has the same #exclude_end? setting as the range. -
#===(obj) ⇒ Boolean
Returns
true
ifobj
is between begin and end of range,false
otherwise (same as #cover?). -
#begin ⇒ Object
Returns the object that defines the beginning of the range.
-
#bsearch {|obj| ... } ⇒ value
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
-
#count ⇒ Integer
Identical to Enumerable#count, except it returns Infinity for endless ranges.
-
#cover?(obj) ⇒ Boolean
Returns
true
ifobj
is between the begin and end of the range. -
#each {|i| ... } ⇒ Range
Iterates over the elements of range, passing each in turn to the block.
-
#end ⇒ Object
Returns the object that defines the end of the range.
-
#entries ⇒ Array
Alias for #to_a.
-
#eql?(obj) ⇒ Boolean
Returns
true
only ifobj
is aRange
, has equivalent begin and end items (by comparing them witheql?
), and has the same #exclude_end? setting as the range. -
#first ⇒ Object
Returns the first object in the range, or an array of the first
n
elements. -
#hash ⇒ Integer
Compute a hash-code for this range.
-
#include?(obj) ⇒ Boolean
Alias for #member?.
-
#inspect ⇒ String
Convert this range object to a printable form (using #inspect to convert the begin and end objects).
-
#last ⇒ Object
Returns the last object in the range, or an array of the last
n
elements. -
#max ⇒ Object
Returns the maximum value in the range, or an array of maximum values in the range if given an Integer argument.
-
#member?(obj) ⇒ Boolean
(also: #include?)
Returns
true
ifobj
is an element of the range,false
otherwise. -
#min ⇒ Object
Returns the minimum value in the range.
-
#minmax ⇒ Array, Object
Returns a two element array which contains the minimum and the maximum value in the range.
-
#size ⇒ Numeric
Returns the number of elements in the range.
-
#step(n = 1) {|obj| ... } ⇒ Range
Iterates over the range, passing each
n
th element to the block. -
#to_a ⇒ Array
(also: #entries)
Returns an array containing the items in the range.
-
#to_s ⇒ String
Convert this range object to a printable form (using #to_s to convert the begin and end objects).
- #initialize_copy(orig) Internal use only
::Enumerable
- Included
#all? | Passes each element of the collection to the given block. |
#any? | Passes each element of the collection to the given block. |
#chain | Returns an enumerator object generated from this enumerator and given enumerables. |
#chunk | Enumerates over the items, chunking them together based on the return value of the block. |
#chunk_while | Creates an enumerator for each chunked elements. |
#collect | Alias for Enumerable#map. |
#collect_concat | Alias for Enumerable#flat_map. |
#count | Returns the number of items in |
#cycle | Calls block for each element of enum repeatedly n times or forever if none or |
#detect | Alias for Enumerable#find. |
#drop | Drops first n elements from enum, and returns rest elements in an array. |
#drop_while | Drops elements up to, but not including, the first element for which the block returns |
#each_cons | Iterates the given block for each array of consecutive <n> elements. |
#each_entry | Calls block once for each element in |
#each_slice | Iterates the given block for each slice of <n> elements. |
#each_with_index | Calls block with two arguments, the item and its index, for each item in enum. |
#each_with_object | Iterates the given block for each element with an arbitrary object given, and returns the initially given object. |
#entries | Alias for Enumerable#to_a. |
#filter | Returns an array containing all elements of |
#filter_map | Returns a new array containing the truthy results (everything except |
#find | Passes each entry in enum to block. |
#find_all | Alias for Enumerable#filter. |
#find_index | Compares each entry in enum with value or passes to block. |
#first | Returns the first element, or the first |
#flat_map | Returns a new array with the concatenated results of running block once for every element in enum. |
#grep | Returns an array of every element in enum for which |
#grep_v | Inverted version of Enumerable#grep. |
#group_by | Groups the collection by result of the block. |
#include? | Alias for Enumerable#member?. |
#inject | Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator. |
#lazy | Returns an |
#map | Returns a new array with the results of running block once for every element in enum. |
#max | Returns the object in enum with the maximum value. |
#max_by | Returns the object in enum that gives the maximum value from the given block. |
#member? | Returns |
#min | Returns the object in enum with the minimum value. |
#min_by | Returns the object in enum that gives the minimum value from the given block. |
#minmax | Returns a two element array which contains the minimum and the maximum value in the enumerable. |
#minmax_by | Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block. |
#none? | Passes each element of the collection to the given block. |
#one? | Passes each element of the collection to the given block. |
#partition | Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest. |
#reduce | Alias for Enumerable#inject. |
#reject | Returns an array for all elements of |
#reverse_each | Builds a temporary array and traverses that array in reverse order. |
#select | Alias for Enumerable#filter. |
#slice_after | Creates an enumerator for each chunked elements. |
#slice_before | Creates an enumerator for each chunked elements. |
#slice_when | Creates an enumerator for each chunked elements. |
#sort | Returns an array containing the items in enum sorted. |
#sort_by | Sorts enum using a set of keys generated by mapping the values in enum through the given block. |
#sum | Returns the sum of elements in an |
#take | Returns first n elements from enum. |
#take_while | Passes elements to the block until the block returns |
#tally | Tallies the collection, i.e., counts the occurrences of each element. |
#to_a | Returns an array containing the items in enum. |
#to_h | Returns the result of interpreting enum as a list of |
#uniq | Returns a new array by removing duplicate values in |
#zip | Takes one element from enum and merges corresponding elements from each args. |
Constructor Details
.new(begin, end, exclude_end=false) ⇒ Range
# File 'range.c', line 95
static VALUE range_initialize(int argc, VALUE *argv, VALUE range) { VALUE beg, end, flags; rb_scan_args(argc, argv, "21", &beg, &end, &flags); range_modify(range); range_init(range, beg, end, RBOOL(RTEST(flags))); return Qnil; }
Instance Attribute Details
#exclude_end? ⇒ Boolean
(readonly)
Returns true
if the range excludes its end value.
(1..5).exclude_end? #=> false
(1...5).exclude_end? #=> true
# File 'range.c', line 125
static VALUE range_exclude_end_p(VALUE range) { return EXCL(range) ? Qtrue : Qfalse; }
Instance Method Details
#step(n = 1) {|obj| ... } ⇒ Range
#step(n = 1) ⇒ Enumerator
#step(n = 1) ⇒ an_arithmetic_sequence
#%(n) ⇒ Enumerator
#%(n) ⇒ an_arithmetic_sequence
Range
#step(n = 1) ⇒ Enumerator
#step(n = 1) ⇒ an_arithmetic_sequence
#%(n) ⇒ Enumerator
#%(n) ⇒ an_arithmetic_sequence
Iterates over the range, passing each n
th element to the block. If begin and end are numeric, n
is added for each iteration. Otherwise #step invokes #succ
to iterate through range elements.
If no block is given, an enumerator is returned instead. Especially, the enumerator is an ::Enumerator::ArithmeticSequence
if begin and end of the range are numeric.
range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}
produces:
1 x
3 xxx
5 xxxxx
7 xxxxxxx
9 xxxxxxxxx
1 x
4 xxxx
7 xxxxxxx
10 xxxxxxxxxx
See Range for the definition of class Xs.
# File 'range.c', line 523
static VALUE range_percent_step(VALUE range, VALUE step) { return range_step(1, &step, range); }
#==(obj) ⇒ Boolean
Returns true
only if obj
is a Range
, has equivalent begin and end items (by comparing them with ==
), and has the same #exclude_end? setting as the range.
(0..2) == (0..2) #=> true
(0..2) == Range.new(0,2) #=> true
(0..2) == (0...2) #=> false
# File 'range.c', line 160
static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); }
#===(obj) ⇒ Boolean
Returns true
if obj
is between begin and end of range, false
otherwise (same as #cover?). Conveniently, ===
is the comparison operator used by case
statements.
case 79
when 1..50 then puts "low"
when 51..75 then puts "medium"
when 76..100 then puts "high"
end
# Prints "high"
case "2.6.5"
when ..."2.4" then puts "EOL"
when "2.4"..."2.5" then puts "maintenance"
when "2.5"..."2.7" then puts "stable"
when "2.7".. then puts "upcoming"
end
# Prints "stable"
# File 'range.c', line 1502
static VALUE range_eqq(VALUE range, VALUE val) { VALUE ret = range_include_internal(range, val, 1); if (ret != Qundef) return ret; return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); }
#begin ⇒ Object
Returns the object that defines the beginning of the range.
(1..10).begin #=> 1
# File 'range.c', line 1001
static VALUE range_begin(VALUE range) { return RANGE_BEG(range); }
#bsearch {|obj| ... } ⇒ value
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.
In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:
-
the block returns false for any value which is less than x, and
-
the block returns true for any value which is greater than or equal to x.
If x is within the range, this method returns the value x. Otherwise, it returns nil.
ary = [0, 4, 7, 10, 12]
(0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
(0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
(0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
(0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil
(0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0
In find-any mode (this behaves like libc’s bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:
-
the block returns a positive number for v if v < x,
-
the block returns zero for v if x <= v < y, and
-
the block returns a negative number for v if y <= v.
This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.
ary = [0, 100, 100, 100, 200]
(0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3
(0..4).bsearch {|i| 300 - ary[i] } #=> nil
(0..4).bsearch {|i| 50 - ary[i] } #=> nil
You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.
# File 'range.c', line 679
static VALUE range_bsearch(VALUE range) { VALUE beg, end, satisfied = Qnil; int smaller; /* Implementation notes: * Floats are handled by mapping them to 64 bits integers. * Apart from sign issues, floats and their 64 bits integer have the * same order, assuming they are represented as exponent followed * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about * potential overflow (since float to long can use 64 bits) * as well as the fact that -1/2 can be 0 or -1 in C89. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ #define BSEARCH(conv) \ do { \ RETURN_ENUMERATOR(range, 0, 0); \ if (EXCL(range)) high--; \ org_high = high; \ while (low < high) { \ mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \ BSEARCH_CHECK(conv(mid)); \ if (smaller) { \ high = mid; \ } \ else { \ low = mid + 1; \ } \ } \ if (low == org_high) { \ BSEARCH_CHECK(conv(low)); \ if (!smaller) return Qnil; \ } \ return satisfied; \ } while (0) beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { long low = FIX2LONG(beg); long high = FIX2LONG(end); long mid, org_high; BSEARCH(INT2FIX); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) { int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); int64_t mid, org_high; BSEARCH(int64_as_double_to_num); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { RETURN_ENUMERATOR(range, 0, 0); return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { VALUE diff = LONG2FIX(1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(beg, '+', 1, diff); BSEARCH_CHECK(mid); if (smaller) { return bsearch_integer_range(beg, mid, 0); } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); } } else if (NIL_P(beg) && is_integer_p(end)) { VALUE diff = LONG2FIX(-1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(end, '+', 1, diff); BSEARCH_CHECK(mid); if (!smaller) { return bsearch_integer_range(mid, end, 0); } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); } } else { rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; }
Identical to Enumerable#count, except it returns Infinity for endless ranges.
# File 'range.c', line 1724
static VALUE range_count(int argc, VALUE *argv, VALUE range) { if (argc != 0) { /* It is odd for instance (1...).count(0) to return Infinity. Just let * it loop. */ return rb_call_super(argc, argv); } else if (rb_block_given_p()) { /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return * Infinity. Just let it loop. */ return rb_call_super(argc, argv); } else if (NIL_P(RANGE_END(range))) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } else if (NIL_P(RANGE_BEG(range))) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } else { return rb_call_super(argc, argv); } }
#cover?(obj) ⇒ Boolean
#cover?(range) ⇒ Boolean
Boolean
#cover?(range) ⇒ Boolean
Returns true
if obj
is between the begin and end of the range.
This tests begin <= obj <= end
when #exclude_end? is false
and begin <= obj < end
when #exclude_end? is true
.
If called with a Range
argument, returns true
when the given range is covered by the receiver, by comparing the begin and end values. If the argument can be treated as a sequence, this method treats it that way. In the specific case of (a..b).cover?(c...d)
with a <= c && b < d
, the end of the sequence must be calculated, which may exhibit poor performance if c
is non-numeric. Returns false
if the begin value of the range is larger than the end value. Also returns false
if one of the internal calls to <=>
returns nil
(indicating the objects are not comparable).
("a".."z").cover?("c") #=> true
("a".."z").cover?("5") #=> false
("a".."z").cover?("cc") #=> true
("a".."z").cover?(1) #=> false
(1..5).cover?(2..3) #=> true
(1..5).cover?(0..6) #=> false
(1..5).cover?(1...6) #=> true
# File 'range.c', line 1613
static VALUE range_cover(VALUE range, VALUE val) { VALUE beg, end; beg = RANGE_BEG(range); end = RANGE_END(range); if (rb_obj_is_kind_of(val, rb_cRange)) { return RBOOL(r_cover_range_p(range, beg, end, val)); } return r_cover_p(range, beg, end, val); }
#each {|i| ... } ⇒ Range
#each ⇒ Enumerator
Range
#each ⇒ Enumerator
Iterates over the elements of range, passing each in turn to the block.
The each
method can only be used if the begin object of the range supports the succ
method. A TypeError is raised if the object does not have succ
method defined (like ::Float
).
If no block is given, an enumerator is returned instead.
(10..15).each {|n| print n, ' ' }
# prints: 10 11 12 13 14 15
(2.5..5).each {|n| print n, ' ' }
# raises: TypeError: can't iterate from Float
# File 'range.c', line 898
static VALUE range_each(VALUE range) { VALUE beg, end; long i; RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && NIL_P(end)) { range_each_fixnum_endless(beg); } else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ return range_each_fixnum_loop(beg, end, range); } else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ if (!FIXNUM_P(beg)) { if (RBIGNUM_NEGATIVE_P(beg)) { do { rb_yield(beg); } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); if (NIL_P(end)) range_each_fixnum_endless(beg); if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range); } else { if (NIL_P(end)) range_each_bignum_endless(beg); if (FIXNUM_P(end)) return range; } } if (FIXNUM_P(beg)) { i = FIX2LONG(beg); do { rb_yield(LONG2FIX(i)); } while (POSFIXABLE(++i)); beg = LONG2NUM(i); } ASSUME(!FIXNUM_P(beg)); ASSUME(!SPECIAL_CONST_P(end)); } if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { if (EXCL(range)) { while (rb_big_cmp(beg, end) == INT2FIX(-1)) { rb_yield(beg); beg = rb_big_plus(beg, INT2FIX(1)); } } else { VALUE c; while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { rb_yield(beg); if (c == INT2FIX(0)) break; beg = rb_big_plus(beg, INT2FIX(1)); } } } } else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ beg = rb_sym2str(beg); if (NIL_P(end)) { rb_str_upto_endless_each(beg, sym_each_i, 0); } else { rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); } } else { VALUE tmp = rb_check_string_type(beg); if (!NIL_P(tmp)) { if (!NIL_P(end)) { rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); } else { rb_str_upto_endless_each(tmp, each_i, 0); } } else { if (!discrete_object_p(beg)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(beg)); } if (!NIL_P(end)) range_each_func(range, each_i, 0); else for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) rb_yield(beg); } } return range; }
#end ⇒ Object
Returns the object that defines the end of the range.
(1..10).end #=> 10
(1...10).end #=> 10
# File 'range.c', line 1019
static VALUE range_end(VALUE range) { return RANGE_END(range); }
Alias for #to_a.
#eql?(obj) ⇒ Boolean
Returns true
only if obj
is a Range
, has equivalent begin and end items (by comparing them with eql?
), and has the same #exclude_end? setting as the range.
(0..2).eql?(0..2) #=> true
(0..2).eql?(Range.new(0,2)) #=> true
(0..2).eql?(0...2) #=> false
# File 'range.c', line 214
static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); }
Returns the first object in the range, or an array of the first n
elements.
(10..20).first #=> 10
(10..20).first(3) #=> [10, 11, 12]
# File 'range.c', line 1053
static VALUE range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2]; if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the first element of beginless range"); } if (argc == 0) return RANGE_BEG(range); rb_scan_args(argc, argv, "1", &n); ary[0] = n; ary[1] = rb_ary_new2(NUM2LONG(n)); rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary); return ary[1]; }
#hash ⇒ Integer
Compute a hash-code for this range. Two ranges with equal begin and end points (using #eql?), and the same #exclude_end? value will generate the same hash-code.
See also Object#hash.
# File 'range.c', line 235
static VALUE range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v; hash = rb_hash_start(hash); v = rb_hash(RANGE_BEG(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); v = rb_hash(RANGE_END(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); hash = rb_hash_uint(hash, EXCL(range) << 24); hash = rb_hash_end(hash); return ST2FIX(hash); }
#member?(obj) ⇒ Boolean
#include?(obj) ⇒ Boolean
Boolean
#include?(obj) ⇒ Boolean
Alias for #member?.
#initialize_copy(orig)
# File 'range.c', line 107
static VALUE range_initialize_copy(VALUE range, VALUE orig) { range_modify(range); rb_struct_init_copy(range, orig); return range; }
#inspect ⇒ String
Convert this range object to a printable form (using #inspect
to convert the begin and end objects).
# File 'range.c', line 1468
static VALUE range_inspect(VALUE range) { return rb_exec_recursive(inspect_range, range, 0); }
Returns the last object in the range, or an array of the last n
elements.
Note that with no arguments last
will return the object that defines the end of the range even if #exclude_end? is true
.
(10..20).last #=> 20
(10...20).last #=> 20
(10..20).last(3) #=> [18, 19, 20]
(10...20).last(3) #=> [17, 18, 19]
# File 'range.c', line 1141
static VALUE range_last(int argc, VALUE *argv, VALUE range) { VALUE b, e; if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); b = RANGE_BEG(range); e = RANGE_END(range); if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); }
Returns the maximum value in the range, or an array of maximum values in the range if given an Integer argument.
For inclusive ranges with an end, the maximum value of the range is the same as the end of the range.
If an argument or block is given, or self
is an exclusive, non-numeric range, calls Enumerable#max (via super
) with the argument and/or block to get the maximum values, unless self
is a beginless range, in which case it raises a ::RangeError
.
If self
is an exclusive, integer range (both start and end of the range are integers), and no arguments or block are provided, returns last value in the range (1 before the end). Otherwise, if self
is an exclusive, numeric range, raises a ::TypeError
.
Returns nil
if the begin value of the range larger than the end value. Returns nil
if the begin value of an exclusive range is equal to the end value. Raises a ::RangeError
if called on an endless range.
Examples:
(10..20).max #=> 20
(10..20).max(2) #=> [20, 19]
(10...20).max #=> 19
(10...20).max(2) #=> [19, 18]
(10...20).max{|x, y| -x <=> -y } #=> 10
(10...20).max(2){|x, y| -x <=> -y } #=> [10, 11]
# File 'range.c', line 1244
static VALUE range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); } VALUE b = RANGE_BEG(range); if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { if (NIL_P(b)) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } else { struct cmp_opt_data cmp_opt = { 0, 0 }; int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt); if (c > 0) return Qnil; if (EXCL(range)) { if (!RB_INTEGER_TYPE_P(e)) { rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; if (!RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } return rb_funcall(e, '-', 1, INT2FIX(1)); } return e; } }
#member?(obj) ⇒ Boolean
#include?(obj) ⇒ Boolean
Also known as: #include?
Boolean
#include?(obj) ⇒ Boolean
Returns true
if obj
is an element of the range, false
otherwise.
("a".."z").include?("g") #=> true
("a".."z").include?("A") #=> false
("a".."z").include?("cc") #=> false
If you need to ensure obj
is between #begin and #end, use #cover?
("a".."z").cover?("cc") #=> true
If begin and end are numeric, #include? behaves like #cover?
(1..3).include?(1.5) # => true
# File 'range.c', line 1532
static VALUE range_include(VALUE range, VALUE val) { VALUE ret = range_include_internal(range, val, 0); if (ret != Qundef) return ret; return rb_call_super(1, &val); }
Returns the minimum value in the range. Returns nil
if the begin value of the range is larger than the end value. Returns nil
if the begin value of an exclusive range is equal to the end value.
Can be given an optional block to override the default comparison method a <=> b
.
(10..20).min #=> 10
# File 'range.c', line 1179
static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); } if (rb_block_given_p()) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); } return rb_call_super(argc, argv); } else if (argc != 0) { return range_first(argc, argv, range); } else { struct cmp_opt_data cmp_opt = { 0, 0 }; VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt); if (c > 0 || (c == 0 && EXCL(range))) return Qnil; return b; } }
Returns a two element array which contains the minimum and the maximum value in the range.
Can be given an optional block to override the default comparison method a <=> b
.
# File 'range.c', line 1297
static VALUE range_minmax(VALUE range) { if (rb_block_given_p()) { return rb_call_super(0, NULL); } return rb_assoc_new( rb_funcall(range, id_min, 0), rb_funcall(range, id_max, 0) ); }
#size ⇒ Numeric
# File 'range.c', line 800
static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); if (rb_obj_is_kind_of(b, rb_cNumeric)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); } if (NIL_P(e)) { return DBL2NUM(HUGE_VAL); } } else if (NIL_P(b)) { return DBL2NUM(HUGE_VAL); } return Qnil; }
#step(n = 1) {|obj| ... } ⇒ Range
#step(n = 1) ⇒ Enumerator
#step(n = 1) ⇒ an_arithmetic_sequence
#%(n) ⇒ Enumerator
#%(n) ⇒ an_arithmetic_sequence
Range
#step(n = 1) ⇒ Enumerator
#step(n = 1) ⇒ an_arithmetic_sequence
#%(n) ⇒ Enumerator
#%(n) ⇒ an_arithmetic_sequence
Iterates over the range, passing each n
th element to the block. If begin and end are numeric, n
is added for each iteration. Otherwise #step
invokes #succ
to iterate through range elements.
If no block is given, an enumerator is returned instead. Especially, the enumerator is an ::Enumerator::ArithmeticSequence
if begin and end of the range are numeric.
range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}
produces:
1 x
3 xxx
5 xxxxx
7 xxxxxxx
9 xxxxxxxxx
1 x
4 xxxx
7 xxxxxxx
10 xxxxxxxxxx
See Range for the definition of class Xs.
# File 'range.c', line 408
static VALUE range_step(int argc, VALUE *argv, VALUE range) { VALUE b, e, step, tmp; b = RANGE_BEG(range); e = RANGE_END(range); step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]); if (!rb_block_given_p()) { if (!rb_obj_is_kind_of(step, rb_cNumeric)) { step = rb_to_int(step); } if (rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); } step = check_step_domain(step); if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { long i = FIX2LONG(b), unit = FIX2LONG(step); do { rb_yield(LONG2FIX(i)); i += unit; /* FIXABLE+FIXABLE never overflow */ } while (FIXABLE(i)); b = LONG2NUM(i); for (;; b = rb_big_plus(b, step)) rb_yield(b); } else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ long end = FIX2LONG(e); long i, unit = FIX2LONG(step); if (!EXCL(range)) end += 1; i = FIX2LONG(b); while (i < end) { rb_yield(LONG2NUM(i)); if (i + unit < i) break; i += unit; } } else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */ VALUE iter[2]; iter[0] = INT2FIX(1); iter[1] = step; b = rb_sym2str(b); if (NIL_P(e)) { rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter); } else { rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); } } else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) { /* done */ } else if (rb_obj_is_kind_of(b, rb_cNumeric) || !NIL_P(rb_check_to_integer(b, "to_int")) || !NIL_P(rb_check_to_integer(e, "to_int"))) { ID op = EXCL(range) ? '<' : idLE; VALUE v = b; int i = 0; while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) { rb_yield(v); i++; v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); } } else { tmp = rb_check_string_type(b); if (!NIL_P(tmp)) { VALUE iter[2]; b = tmp; iter[0] = INT2FIX(1); iter[1] = step; if (NIL_P(e)) { rb_str_upto_endless_each(b, step_i, (VALUE)iter); } else { rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter); } } else { VALUE args[2]; if (!discrete_object_p(b)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(b)); } args[0] = INT2FIX(1); args[1] = step; range_each_func(range, step_i, (VALUE)args); } } return range; }
Also known as: #entries
Returns an array containing the items in the range.
(1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
(1..).to_a #=> RangeError: cannot convert endless range to an array
# File 'range.c', line 830
static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); }
#to_s ⇒ String
Convert this range object to a printable form (using #to_s
to convert the begin and end objects).
# File 'range.c', line 1422
static VALUE range_to_s(VALUE range) { VALUE str, str2; str = rb_obj_as_string(RANGE_BEG(range)); str2 = rb_obj_as_string(RANGE_END(range)); str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); rb_str_append(str, str2); return str; }