Class: Integer
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
::Numeric
|
|
Instance Chain:
self,
::Numeric ,
::Comparable
|
|
Inherits: | Numeric |
Defined in: | numeric.c, bignum.c, integer.rb, rational.c |
Overview
Holds Integer values. You cannot add a singleton method to an Integer
object, any attempt to do so will raise a ::TypeError
.
Constant Summary
-
GMP_VERSION =
The version of loaded GMP.
rb_sprintf("GMP %s", gmp_version)
Class Method Summary
-
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer
n
, i.e. the largest non-negative integer less than or equal to the square root ofn
.
Instance Attribute Summary
-
#even? ⇒ Boolean
readonly
Returns
true
ifint
is an even number. -
#integer? ⇒ Boolean
readonly
Since
int
is already anInteger
, this always returnstrue
. -
#odd? ⇒ Boolean
readonly
Returns
true
ifint
is an odd number. -
#zero? ⇒ Boolean
readonly
Returns
true
ifint
has a zero value.
::Numeric
- Inherited
#finite? | Returns |
#infinite? | Returns |
#integer? | Returns |
#negative? | Returns |
#nonzero? | Returns |
#positive? | Returns |
#real | Returns self. |
#real? | Returns |
#zero? | Returns |
Instance Method Summary
-
#%(other) ⇒ Numeric
(also: #modulo)
Returns
int
moduloother
. -
#&(other_int) ⇒ Integer
Bitwise AND.
-
#*(numeric) ⇒ numeric_result
Performs multiplication: the class of the resulting object depends on the class of
numeric
. -
#**(numeric) ⇒ numeric_result
Raises
int
to the power ofnumeric
, which may be negative or fractional. -
#+(numeric) ⇒ numeric_result
Performs addition: the class of the resulting object depends on the class of
numeric
. -
#-(numeric) ⇒ numeric_result
Performs subtraction: the class of the resulting object depends on the class of
numeric
. -
#- ⇒ Integer
Returns
int
, negated. -
#/(numeric) ⇒ numeric_result
Performs division: the class of the resulting object depends on the class of
numeric
. -
#<(real) ⇒ Boolean
Returns
true
if the value ofint
is less than that ofreal
. -
#<<(count) ⇒ Integer
Returns
int
shifted leftcount
positions, or right ifcount
is negative. -
#<=(real) ⇒ Boolean
Returns
true
if the value ofint
is less than or equal to that ofreal
. -
#<=>(numeric) ⇒ 1, ...
Comparison—Returns -1, 0, or +1 depending on whether
int
is less than, equal to, or greater thannumeric
. -
#==(other) ⇒ Boolean
(also: #===)
Returns
true
ifint
equalsother
numerically. -
#===(other) ⇒ Boolean
Alias for #==.
-
#>(real) ⇒ Boolean
Returns
true
if the value ofint
is greater than that ofreal
. -
#>=(real) ⇒ Boolean
Returns
true
if the value ofint
is greater than or equal to that ofreal
. -
#>>(count) ⇒ Integer
Returns
int
shifted rightcount
positions, or left ifcount
is negative. -
#[](n) ⇒ 0, 1
Bit Reference—Returns the
n
th bit in the binary representation ofint
, whereint[0]
is the least significant bit. -
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
- #abs
-
#allbits?(mask) ⇒ Boolean
Returns
true
if all bits ofint & {mask}
are 1. -
#anybits?(mask) ⇒ Boolean
Returns
true
if any bits ofint & {mask}
are 1. -
#bit_length ⇒ Integer
Returns the number of bits of the value of
int
. -
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
int
with a precision ofndigits
decimal digits (default: 0). -
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the
int
‘s value according toencoding
. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numeric
and abig
represented as Bignum objects. -
#denominator ⇒ 1
Returns 1.
-
#digits ⇒ Array
Returns the digits of
int
‘s place-value representation with radixbase
(default: 10). -
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing
int
bynumeric
. -
#divmod(numeric) ⇒ Array
See Numeric#divmod.
-
#downto(limit) {|i| ... } ⇒ self
Iterates the given block, passing in decreasing values from
int
down to and includinglimit
. -
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing
int
bynumeric
. -
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
int
with a precision ofndigits
decimal digits (default: 0). -
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers.
-
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
-
#inspect(base = 10) ⇒ String
Alias for #to_s.
-
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers.
- #magnitude
-
#modulo(other) ⇒ Numeric
Alias for #%.
-
#next ⇒ Integer
(also: #succ)
Returns the successor of
int
, i.e. theInteger
equal toint
1</code>. -
#nobits?(mask) ⇒ Boolean
Returns
true
if no bits ofint & {mask}
are 1. -
#numerator ⇒ self
Returns self.
-
#ord ⇒ self
Returns the
int
itself. -
#pow(numeric) ⇒ Numeric
Returns (modular) exponentiation as:
-
#pred ⇒ Integer
Returns the predecessor of
int
, i.e. theInteger
equal toint-1
. -
#rationalize([eps]) ⇒ Rational
Returns the value as a rational.
-
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing
int
bynumeric
. -
#round([ndigits] [, half: mode]) ⇒ Integer, Float
Returns
int
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#size ⇒ Integer
Returns the number of bytes in the machine representation of
int
(machine dependent). -
#succ ⇒ Integer
Alias for #next.
-
#times {|i| ... } ⇒ self
Iterates the given block
int
times, passing in values from zero toint - 1
. -
#to_f ⇒ Float
Converts
int
to a::Float
. -
#to_i ⇒ Integer
Since
int
is already anInteger
, returnsself
. -
#to_int ⇒ Integer
Since
int
is already anInteger
, returnsself
. -
#to_r ⇒ Rational
Returns the value as a rational.
-
#to_s(base = 10) ⇒ String
(also: #inspect)
Returns a string containing the place-value representation of
int
with radixbase
(between 2 and 36). -
#truncate([ndigits]) ⇒ Integer, Float
Returns
int
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). -
#upto(limit) {|i| ... } ⇒ self
Iterates the given block, passing in integer values from
int
up to and includinglimit
. -
#|(other_int) ⇒ Integer
Bitwise OR.
-
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
::Numeric
- Inherited
#% |
|
#+@ | Unary Plus—Returns the receiver. |
#-@ | Unary Minus—Returns the receiver, negated. |
#<=> | Returns zero if |
#abs | Returns the absolute value of |
#abs2 | Returns square of self. |
#angle | Alias for Numeric#arg. |
#arg | Returns 0 if the value is positive, pi otherwise. |
#ceil | Returns the smallest number greater than or equal to |
#clone | Returns the receiver. |
#coerce | If |
#conj | Returns self. |
#conjugate | Alias for Numeric#conj. |
#denominator | Returns the denominator (always positive). |
#div | Uses |
#divmod | Returns an array containing the quotient and modulus obtained by dividing |
#dup | Returns the receiver. |
#eql? | Returns |
#fdiv | Returns float division. |
#floor | Returns the largest number less than or equal to |
#i | Returns the corresponding imaginary number. |
#imag | Returns zero. |
#imaginary | Alias for Numeric#imag. |
#magnitude | Alias for Numeric#abs. |
#modulo | Alias for Numeric#%. |
#numerator | Returns the numerator. |
#phase | Alias for Numeric#arg. |
#polar | Returns an array; [num.abs, num.arg]. |
#quo | Returns the most exact division (rational for integers, float for floats). |
#rect | Returns an array; [num, 0]. |
#rectangular | Alias for Numeric#rect. |
#remainder |
|
#round | Returns |
#step | Invokes the given block with the sequence of numbers starting at |
#to_c | Returns the value as a complex. |
#to_int | Invokes the child class’s #to_i method to convert |
#truncate | Returns |
#singleton_method_added | Trap attempts to add methods to |
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Class Method Details
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer n
, i.e. the largest non-negative integer less than or equal to the square root of n
.
Integer.sqrt(0) #=> 0
Integer.sqrt(1) #=> 1
Integer.sqrt(24) #=> 4
Integer.sqrt(25) #=> 5
Integer.sqrt(10**400) #=> 10**200
Equivalent to Math.sqrt(n).floor
, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) #=> 100000000000000000000000
Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
If n
is not an Integer
, it is converted to an Integer
first. If n
is negative, a ::Math::DomainError
is raised.
# File 'numeric.c', line 5355
static VALUE rb_int_s_isqrt(VALUE self, VALUE num) { unsigned long n, sq; num = rb_to_int(num); if (FIXNUM_P(num)) { if (FIXNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } n = FIX2ULONG(num); sq = rb_ulong_isqrt(n); return LONG2FIX(sq); } else { size_t biglen; if (RBIGNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } biglen = BIGNUM_LEN(num); if (biglen == 0) return INT2FIX(0); #if SIZEOF_BDIGIT <= SIZEOF_LONG /* short-circuit */ if (biglen == 1) { n = BIGNUM_DIGITS(num)[0]; sq = rb_ulong_isqrt(n); return ULONG2NUM(sq); } #endif return rb_big_isqrt(num); } }
Instance Attribute Details
#even? ⇒ Boolean
(readonly)
Returns true
if int
is an even number.
# File 'integer.rb', line 82
def even? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_even_p(self)' end
#integer? ⇒ Boolean
(readonly)
Since int
is already an Integer
, this always returns true
.
# File 'integer.rb', line 91
def integer? return true end
#odd? ⇒ Boolean
(readonly)
Returns true
if int
is an odd number.
# File 'integer.rb', line 104
def odd? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_odd_p(self)' end
#zero? ⇒ Boolean
(readonly)
Returns true
if int
has a zero value.
# File 'integer.rb', line 146
def zero? Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_zero_p(self)' end
Instance Method Details
Also known as: #modulo
Returns int
modulo other
.
See Numeric#divmod for more information.
# File 'numeric.c', line 3872
VALUE rb_int_modulo(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_mod(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_modulo(x, y); } return num_modulo(x, y); }
#&(other_int) ⇒ Integer
Bitwise AND.
# File 'numeric.c', line 4435
VALUE rb_int_and(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_and(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_and(x, y); } return Qnil; }
#*(numeric) ⇒ numeric_result
Performs multiplication: the class of the resulting object depends on the class of numeric
.
# File 'numeric.c', line 3685
VALUE rb_int_mul(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_mul(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_mul(x, y); } return rb_num_coerce_bin(x, y, '*'); }
#**(numeric) ⇒ numeric_result
Raises int
to the power of numeric
, which may be negative or fractional. The result may be an Integer
, a ::Float
, a ::Rational
, or a complex number.
2 ** 3 #=> 8
2 ** -1 #=> (1/2)
2 ** 0.5 #=> 1.4142135623730951
(-1) ** 0.5 #=> (0.0+1.0i)
123456789 ** 2 #=> 15241578750190521
123456789 ** 1.2 #=> 5126464716.0993185
123456789 ** -2 #=> (1/15241578750190521)
# File 'numeric.c', line 4087
VALUE rb_int_pow(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_pow(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_pow(x, y); } return Qnil; }
#+(numeric) ⇒ numeric_result
Performs addition: the class of the resulting object depends on the class of numeric
.
# File 'numeric.c', line 3596
VALUE rb_int_plus(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_plus(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_plus(x, y); } return rb_num_coerce_bin(x, y, '+'); }
#-(numeric) ⇒ numeric_result
Performs subtraction: the class of the resulting object depends on the class of numeric
.
# File 'numeric.c', line 3635
VALUE rb_int_minus(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_minus(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_minus(x, y); } return rb_num_coerce_bin(x, y, '-'); }
#- ⇒ Integer
Returns int
, negated.
# File 'integer.rb', line 6
def -@ Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_uminus(self)' end
#/(numeric) ⇒ numeric_result
Performs division: the class of the resulting object depends on the class of numeric
.
# File 'numeric.c', line 3802
VALUE rb_int_div(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_div(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_div(x, y); } return Qnil; }
#<(real) ⇒ Boolean
Returns true
if the value of int
is less than that of real
.
# File 'numeric.c', line 4313
static VALUE int_lt(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_lt(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_lt(x, y); } return Qnil; }
#<<(count) ⇒ Integer
Returns int
shifted left count
positions, or right if count
is negative.
# File 'numeric.c', line 4552
VALUE rb_int_lshift(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return rb_fix_lshift(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_lshift(x, y); } return Qnil; }
#<=(real) ⇒ Boolean
Returns true
if the value of int
is less than or equal to that of real
.
# File 'numeric.c', line 4353
static VALUE int_le(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_le(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_le(x, y); } return Qnil; }
#<=>(numeric) ⇒ 1
, ...
Comparison—Returns -1, 0, or +1 depending on whether int
is less than, equal to, or greater than numeric
.
This is the basis for the tests in the ::Comparable
module.
nil
is returned if the two values are incomparable.
# File 'numeric.c', line 4195
VALUE rb_int_cmp(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_cmp(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_cmp(x, y); } else { rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x)); } }
#==(other) ⇒ Boolean
Also known as: #===
Returns true
if int
equals other
numerically. Contrast this with Integer#eql?
, which requires other
to be an Integer
.
1 == 2 #=> false
1 == 1.0 #=> true
# File 'numeric.c', line 4146
VALUE rb_int_equal(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_equal(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_eq(x, y); } return Qnil; }
#==(other) ⇒ Boolean
#===(other) ⇒ Boolean
Boolean
#===(other) ⇒ Boolean
Alias for #==.
#>(real) ⇒ Boolean
Returns true
if the value of int
is greater than that of real
.
# File 'numeric.c', line 4235
VALUE rb_int_gt(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_gt(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_gt(x, y); } return Qnil; }
#>=(real) ⇒ Boolean
Returns true
if the value of int
is greater than or equal to that of real
.
# File 'numeric.c', line 4275
VALUE rb_int_ge(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_ge(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_ge(x, y); } return Qnil; }
#>>(count) ⇒ Integer
Returns int
shifted right count
positions, or left if count
is negative.
# File 'numeric.c', line 4600
static VALUE rb_int_rshift(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return rb_fix_rshift(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_rshift(x, y); } return Qnil; }
Bit Reference—Returns the n
th bit in the binary representation of int
, where int[0]
is the least significant bit.
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
#=> 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
#=> 000101110110100000111000011110010100111100010111001
In principle, n[i]
is equivalent to (n >> i) & 1
. Thus, any negative index always returns zero:
p 255[-1] #=> 0
::Range
operations n[i, len]
and n[i..j]
are naturally extended.
-
n[i, len]
equals to(n >> i) & ((1 << len) - 1)
. -
n[i..j]
equals to(n >> i) & ((1 << (j - i + 1)) - 1)
. -
n[i...j]
equals to(n >> i) & ((1 << (j - i)) - 1)
. -
n[i..]
equals to(n >> i)
. -
n[..j]
is zero ifn & ((1 << (j + 1)) - 1)
is zero. Otherwise, raises an::ArgumentError
. -
n[...j]
is zero ifn & ((1 << j) - 1)
is zero. Otherwise, raises an::ArgumentError
.
Note that range operation may exhaust memory. For example, -1[0, 1000000000000]
will raise ::NoMemoryError
.
# File 'numeric.c', line 4760
static VALUE int_aref(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 2) { return int_aref2(num, argv[0], argv[1]); } return int_aref1(num, argv[0]); return Qnil; }
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
# File 'numeric.c', line 4505
static VALUE int_xor(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_xor(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_xor(x, y); } return Qnil; }
#abs
[ GitHub ]# File 'integer.rb', line 27
def abs Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_abs(self)' end
#allbits?(mask) ⇒ Boolean
Returns true
if all bits of int & {mask}
are 1.
# File 'numeric.c', line 3285
static VALUE int_allbits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return rb_int_equal(rb_int_and(num, mask), mask); }
#anybits?(mask) ⇒ Boolean
Returns true
if any bits of int & {mask}
are 1.
# File 'numeric.c', line 3299
static VALUE int_anybits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue; }
#bit_length ⇒ Integer
Returns the number of bits of the value of int
.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e
. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001
(-2**1000).bit_length #=> 1000
(-2**1000+1).bit_length #=> 1000
(-2**12-1).bit_length #=> 13
(-2**12).bit_length #=> 12
(-2**12+1).bit_length #=> 12
-0x101.bit_length #=> 9
-0x100.bit_length #=> 8
-0xff.bit_length #=> 8
-2.bit_length #=> 1
-1.bit_length #=> 0
0.bit_length #=> 0
1.bit_length #=> 1
0xff.bit_length #=> 8
0x100.bit_length #=> 9
(2**12-1).bit_length #=> 12
(2**12).bit_length #=> 13
(2**12+1).bit_length #=> 13
(2**1000-1).bit_length #=> 1000
(2**1000).bit_length #=> 1001
(2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack as follows:
if n.bit_length < 32
[n].pack("l") # no overflow
else
raise "overflow"
end
# File 'integer.rb', line 73
def bit_length Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_bit_length(self)' end
#ceil([ndigits]) ⇒ Integer
, Float
Returns the smallest number greater than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.ceil #=> 1
1.ceil(2) #=> 1
18.ceil(-1) #=> 20
(-18).ceil(-1) #=> -10
# File 'numeric.c', line 5241
static VALUE int_ceil(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_ceil(num, ndigits); }
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the int
‘s value according to encoding
.
65.chr #=> "A"
230.chr #=> "\xE6"
255.chr(Encoding::UTF_8) #=> "\u00FF"
# File 'numeric.c', line 3412
static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%u out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_error_arity(argc, 0, 1); } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); }
#coerce(numeric) ⇒ Array
Returns an array with both a numeric
and a big
represented as Bignum objects.
This is achieved by converting numeric
to a Bignum.
A TypeError is raised if the numeric
is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
# File 'bignum.c', line 6745
static VALUE rb_int_coerce(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(y)) { return rb_assoc_new(y, x); } else { x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x); } }
#denominator ⇒ 1
Returns 1.
# File 'rational.c', line 2073
static VALUE integer_denominator(VALUE self) { return INT2FIX(1); }
Returns the digits of int
‘s place-value representation with radix base
(default: 10). The digits are returned as an array with the least significant digit as the first array element.
base
must be greater than or equal to 2.
12345.digits #=> [5, 4, 3, 2, 1]
12345.digits(7) #=> [4, 6, 6, 0, 5]
12345.digits(100) #=> [45, 23, 1]
-12345.digits(7) #=> Math::DomainError
# File 'numeric.c', line 4967
static VALUE rb_int_digits(int argc, VALUE *argv, VALUE num) { VALUE base_value; long base; if (rb_num_negative_p(num)) rb_raise(rb_eMathDomainError, "out of domain"); if (rb_check_arity(argc, 0, 1)) { base_value = rb_to_int(argv[0]); if (!RB_INTEGER_TYPE_P(base_value)) rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)", rb_obj_classname(argv[0])); if (RB_TYPE_P(base_value, T_BIGNUM)) return rb_int_digits_bigbase(num, base_value); base = FIX2LONG(base_value); if (base < 0) rb_raise(rb_eArgError, "negative radix"); else if (base < 2) rb_raise(rb_eArgError, "invalid radix %ld", base); } else base = 10; if (FIXNUM_P(num)) return rb_fix_digits(num, base); else if (RB_TYPE_P(num, T_BIGNUM)) return rb_int_digits_bigbase(num, LONG2FIX(base)); return Qnil; }
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing int
by numeric
.
# File 'numeric.c', line 3829
VALUE rb_int_idiv(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_idiv(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_idiv(x, y); } return num_div(x, y); }
#divmod(numeric) ⇒ Array
See Numeric#divmod.
# File 'numeric.c', line 3949
VALUE rb_int_divmod(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_divmod(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_divmod(x, y); } return Qnil; }
#downto(limit) {|i| ... } ⇒ self
#downto(limit) ⇒ Enumerator
self
#downto(limit) ⇒ Enumerator
Iterates the given block, passing in decreasing values from int
down to and including limit
.
If no block is given, an ::Enumerator
is returned instead.
5.downto(1) { |n| print n, ".. " }
puts "Liftoff!"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
# File 'numeric.c', line 5067
static VALUE int_downto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing int
by numeric
.
654321.fdiv(13731) #=> 47.652829364212366
654321.fdiv(13731.24) #=> 47.65199646936475
-654321.fdiv(13731) #=> -47.652829364212366
# File 'numeric.c', line 3747
VALUE rb_int_fdiv(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x)) { return DBL2NUM(rb_int_fdiv_double(x, y)); } return Qnil; }
#floor([ndigits]) ⇒ Integer
, Float
Returns the largest number less than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.floor #=> 1
1.floor(2) #=> 1
18.floor(-1) #=> 10
(-18).floor(-1) #=> -20
# File 'numeric.c', line 5209
static VALUE int_floor(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_floor(num, ndigits); }
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
# File 'rational.c', line 1902
VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); }
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180]
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
# File 'rational.c', line 1940
VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); }
Alias for #to_s.
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
# File 'rational.c', line 1921
VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); }
#magnitude
[ GitHub ]# File 'integer.rb', line 95
def magnitude Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_abs(self)' end
Alias for #%.
#next ⇒ Integer
#succ ⇒ Integer
Also known as: #succ
Integer
#succ ⇒ Integer
# File 'numeric.c', line 3336
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_plus(num, INT2FIX(1)); } return num_funcall1(num, '+', INT2FIX(1)); }
#nobits?(mask) ⇒ Boolean
Returns true
if no bits of int & {mask}
are 1.
# File 'numeric.c', line 3313
static VALUE int_nobits_p(VALUE num, VALUE mask) { mask = rb_to_int(mask); return int_zero_p(rb_int_and(num, mask)); }
#numerator ⇒ self
Returns self.
# File 'rational.c', line 2061
static VALUE integer_numerator(VALUE self) { return self; }
#ord ⇒ self
Returns the int
itself.
97.ord #=> 97
This method is intended for compatibility to character literals in Ruby 1.9.
For example, ?a.ord
returns 97 both in 1.8 and 1.9.
# File 'integer.rb', line 120
def ord return self end
#pow(numeric) ⇒ Numeric
#pow(integer, integer) ⇒ Integer
Integer
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b
a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
# File 'bignum.c', line 7107
VALUE rb_int_powm(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 1) { return rb_int_pow(num, argv[0]); } else { VALUE const a = num; VALUE const b = argv[0]; VALUE m = argv[1]; int nega_flg = 0; if ( ! RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer"); } if (rb_int_negative_p(b)) { rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified"); } if (!RB_INTEGER_TYPE_P(m)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers"); } if (rb_int_negative_p(m)) { m = rb_int_uminus(m); nega_flg = 1; } if (FIXNUM_P(m)) { long const half_val = (long)HALF_LONG_MSB; long const mm = FIX2LONG(m); if (!mm) rb_num_zerodiv(); if (mm == 1) return INT2FIX(0); if (mm <= half_val) { return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg); } else { return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg); } } else { if (rb_bigzero_p(m)) rb_num_zerodiv(); if (bignorm(m) == INT2FIX(1)) return INT2FIX(0); return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg); } } UNREACHABLE_RETURN(Qnil); }
#pred ⇒ Integer
Returns the predecessor of int
, i.e. the Integer
equal to int-1
.
1.pred #=> 0
(-1).pred #=> -2
# File 'numeric.c', line 3362
static VALUE rb_int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_minus(num, INT2FIX(1)); } return num_funcall1(num, '-', INT2FIX(1)); }
#rationalize([eps]) ⇒ Rational
Returns the value as a rational. The optional argument eps
is always ignored.
# File 'rational.c', line 2170
static VALUE integer_rationalize(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 0, 1); return integer_to_r(self); }
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing int
by numeric
.
x.remainder(y)
means x-y*(x/y).truncate
.
5.remainder(3) #=> 2
-5.remainder(3) #=> -2
5.remainder(-3) #=> 2
-5.remainder(-3) #=> -2
5.remainder(1.5) #=> 0.5
See Numeric#divmod.
# File 'numeric.c', line 3901
static VALUE int_remainder(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return num_remainder(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_remainder(x, y); } return Qnil; }
#round([ndigits] [, half: mode]) ⇒ Integer
, Float
Returns int
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.round #=> 1
1.round(2) #=> 1
15.round(-1) #=> 20
(-15).round(-1) #=> -20
The optional half
keyword argument is available similar to Float#round.
25.round(-1, half: :up) #=> 30
25.round(-1, half: :down) #=> 20
25.round(-1, half: :even) #=> 20
35.round(-1, half: :up) #=> 40
35.round(-1, half: :down) #=> 30
35.round(-1, half: :even) #=> 40
(-25).round(-1, half: :up) #=> -30
(-25).round(-1, half: :down) #=> -20
(-25).round(-1, half: :even) #=> -20
# File 'numeric.c', line 5174
static VALUE int_round(int argc, VALUE* argv, VALUE num) { int ndigits; int mode; VALUE nd, opt; if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num; ndigits = NUM2INT(nd); mode = rb_num_get_rounding_option(opt); if (ndigits >= 0) { return num; } return rb_int_round(num, ndigits, mode); }
#size ⇒ Integer
Returns the number of bytes in the machine representation of int
(machine dependent).
1.size #=> 8
-1.size #=> 8
2147483647.size #=> 8
(256**10 - 1).size #=> 10
(256**20 - 1).size #=> 20
(256**40 - 1).size #=> 40
# File 'numeric.c', line 4859
static VALUE int_size(VALUE num) { if (FIXNUM_P(num)) { return fix_size(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_size_m(num); } return Qnil; }
#next ⇒ Integer
#succ ⇒ Integer
Integer
#succ ⇒ Integer
Alias for #next.
#times {|i| ... } ⇒ self
#times ⇒ Enumerator
self
#times ⇒ Enumerator
Iterates the given block int
times, passing in values from zero to int - 1
.
If no block is given, an ::Enumerator
is returned instead.
5.times {|i| print i, " " } #=> 0 1 2 3 4
# File 'numeric.c', line 5117
static VALUE int_dotimes(VALUE num) { RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i<end; i++) { rb_yield_1(LONG2FIX(i)); } } else { VALUE i = INT2FIX(0); for (;;) { if (!RTEST(rb_funcall(i, '<', 1, num))) break; rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } } return num; }
#to_f ⇒ Float
[ GitHub ]# File 'numeric.c', line 4781
static VALUE int_to_f(VALUE num) { double val; if (FIXNUM_P(num)) { val = (double)FIX2LONG(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { val = rb_big2dbl(num); } else { rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num)); } return DBL2NUM(val); }
#to_i ⇒ Integer
Since int
is already an Integer
, returns self
.
#to_int is an alias for #to_i
.
# File 'integer.rb', line 130
def to_i return self end
#to_int ⇒ Integer
Since int
is already an Integer
, returns self
.
# File 'integer.rb', line 138
def to_int return self end
#to_r ⇒ Rational
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
# File 'rational.c', line 2157
static VALUE integer_to_r(VALUE self) { return rb_rational_new1(self); }
#to_s(base = 10) ⇒ String Also known as: #inspect
Returns a string containing the place-value representation of int
with radix base
(between 2 and 36).
12345.to_s #=> "12345"
12345.to_s(2) #=> "11000000111001"
12345.to_s(8) #=> "30071"
12345.to_s(10) #=> "12345"
12345.to_s(16) #=> "3039"
12345.to_s(36) #=> "9ix"
78546939656932.to_s(36) #=> "rubyrules"
# File 'numeric.c', line 3536
static VALUE int_to_s(int argc, VALUE *argv, VALUE x) { int base; if (rb_check_arity(argc, 0, 1)) base = NUM2INT(argv[0]); else base = 10; return rb_int2str(x, base); }
#truncate([ndigits]) ⇒ Integer
, Float
Returns int
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.truncate #=> 1
1.truncate(2) #=> 1
18.truncate(-1) #=> 10
(-18).truncate(-1) #=> -10
# File 'numeric.c', line 5273
static VALUE int_truncate(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_truncate(num, ndigits); }
#upto(limit) {|i| ... } ⇒ self
#upto(limit) ⇒ Enumerator
self
#upto(limit) ⇒ Enumerator
Iterates the given block, passing in integer values from int
up to and including limit
.
If no block is given, an ::Enumerator
is returned instead.
5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
# File 'numeric.c', line 5021
static VALUE int_upto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } ensure_cmp(c, i, to); } return from; }
#|(other_int) ⇒ Integer
Bitwise OR.
# File 'numeric.c', line 4470
static VALUE int_or(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_or(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_or(x, y); } return Qnil; }
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
Inverts the bits in an Integer
. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
# File 'integer.rb', line 22
def ~ Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_comp(self)' end