Module: Kernel
Relationships & Source Files | |
Extension / Inclusion / Inheritance Descendants | |
Included In:
| |
Defined in: | object.c, complex.c, cont.c, eval.c, eval_jump.c, file.c, io.c, kernel.rb, load.c, object.c, prelude.rb, proc.c, process.c, random.c, rational.c, ruby.c, signal.c, vm_backtrace.c, vm_eval.c, vm_trace.c, warning.rb |
Overview
The Kernel module is included by class ::Object
, so its methods are available in every Ruby object.
The Kernel instance methods are documented in class ::Object
while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:
sprintf "%.1f", 1.234 #=> "1.2"
Class Attribute Summary
-
block_given? ⇒ Boolean
readonly
Returns
true
ifyield
would execute a block in the current context. -
iterator? ⇒ Boolean
readonly
Deprecated.
Class Method Summary
-
__callee__ ⇒ Symbol
Returns the called name of the current method as a
::Symbol
. -
__dir__ ⇒ String
Returns the canonicalized absolute path of the directory of the file from which this method is called.
-
__method__ ⇒ Symbol
Returns the name at the definition of the current method as a
::Symbol
. -
` ⇒ String
Returns the standard output of running cmd in a subshell.
-
abort
Terminate execution immediately, effectively by calling
Kernel.exit(false)
. -
Array(arg) ⇒ Array
Returns
arg
as an .Array. -
at_exit ⇒ Proc
Converts block to a
::Proc
object (and therefore binds it at the point of call) and registers it for execution when the program exits. - autoload(module, filename) ⇒ nil
-
autoload?(name, inherit = true) ⇒ String?
Returns filename to be loaded if name is registered as .autoload.
-
binding ⇒ Binding
Returns a
::Binding
object, describing the variable and method bindings at the point of call. -
callcc {|cont| ... } ⇒ Object
Generates a
::Continuation
object, which it passes to the associated block. -
caller(start = 1, length = nil) ⇒ Array?
Returns the current execution stack—an array containing strings in the form
file:line
orfile:line: in `method'
. -
caller_locations(start = 1, length = nil) ⇒ Array?
Returns the current execution stack—an array containing backtrace location objects.
-
catch([tag]) {|tag| ... } ⇒ Object
catch
executes its block. -
chomp ⇒ $_
Equivalent to
$_ = $_.chomp(string)
. -
chop ⇒ $_
Equivalent to
($_.dup).chop!
, exceptnil
is never returned. -
Complex(x[, y], exception: true) ⇒ Numeric?
Returns x+i*y;.
-
eval(string [, binding [, filename [,lineno]]]) ⇒ Object
Evaluates the Ruby expression(s) in string.
-
exec([env,] command... [,options])
Replaces the current process by running the given external command, which can take one of the following forms:
-
exit(status = true)
Initiates the termination of the Ruby script by raising the
::SystemExit
exception. -
Process.exit!(status = false)
Exits the process immediately.
-
fail
(also: .raise)
With no arguments, raises the exception in
$!
or raises a::RuntimeError
if$!
isnil
. -
fork ⇒ Integer?
Creates a subprocess.
-
format(format_string [, arguments...] ) ⇒ String
(also: .sprintf)
Returns the string resulting from applying format_string to any additional arguments.
-
gets(sep=$/ [, getline_args]) ⇒ String?
Returns (and assigns to
$_
) the next line from the list of files in ARGV (or$*
), or from standard input if no files are present on the command line. -
global_variables ⇒ Array
Returns an array of the names of global variables.
-
gsub(pattern, replacement) ⇒ $_
Equivalent to
$_.gsub...
, except that$_
will be updated if substitution occurs. -
Hash(arg) ⇒ Hash
Converts arg to a .Hash by calling arg
.to_hash
. -
Integer(arg, base = 0, exception: true) ⇒ Integer?
Converts arg to an .Integer.
- lambda {|...| ... } ⇒ Proc
-
load(filename, wrap = false) ⇒ true
Loads and executes the Ruby program in the file filename.
-
local_variables ⇒ Array
Returns the names of the current local variables.
-
loop
Repeatedly executes the block.
-
open(path [, mode [, perm]] [, opt]) ⇒ IO?
Creates an
::IO
object connected to the given stream, file, or subprocess. -
p(obj) ⇒ Object
For each object, directly writes obj.
inspect
followed by a newline to the program’s standard output. -
print(obj, ...) ⇒ nil
Prints each object in turn to
$stdout
. -
printf(io, string [, obj ... ]) ⇒ nil
Equivalent to:
-
proc {|...| ... } ⇒ Proc
Equivalent to Proc.new.
-
putc(int) ⇒ Integer
Equivalent to:
-
puts(obj, ...) ⇒ nil
Equivalent to.
-
raise
Alias for .fail.
-
rand(max = 0) ⇒ Numeric
If called without an argument, or if
max.to_i.abs == 0
, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0. -
Rational(x, y, exception: true) ⇒ Rational?
Returns
x/y
orarg
as a .Rational. -
readline(sep = $/) ⇒ String
Equivalent to .gets, except
readline
raises::EOFError
at end of file. -
readlines(sep = $/) ⇒ Array
Returns an array containing the lines returned by calling
Kernel.gets(sep)
until the end of file. -
require(name) ⇒ Boolean
Loads the given
name
, returningtrue
if successful andfalse
if the feature is already loaded. -
require_relative(string) ⇒ Boolean
Ruby tries to load the library named string relative to the requiring file’s path.
-
IO.select(read_array [, write_array [, error_array [, timeout]]]) ⇒ Array?
Calls select(2) system call.
-
set_trace_func(proc) ⇒ Proc
Establishes proc as the handler for tracing, or disables tracing if the parameter is
nil
. -
sleep([duration]) ⇒ Integer
Suspends the current thread for duration seconds (which may be any number, including a .Float with fractional seconds).
-
spawn([env,] command... [,options]) ⇒ pid
spawn executes specified command and return its pid.
-
sprintf(format_string [, arguments...] ) ⇒ String
Alias for .format.
-
srand(number = Random.new_seed) ⇒ old_seed
Seeds the system pseudo-random number generator, with
number
. -
String(arg) ⇒ String
Returns arg as a .String.
-
sub(pattern, replacement) ⇒ $_
Equivalent to
$_.sub(args)
, except that$_
will be updated if substitution occurs. -
syscall(num [, args...]) ⇒ Integer
Calls the operating system function identified by num and returns the result of the function or raises
::SystemCallError
if it failed. -
system([env,] command... [,options], exception: false) ⇒ true, ...
Executes command… in a subshell.
-
test(cmd, file1 [, file2] ) ⇒ Object
Uses the character
cmd
to perform various tests onfile1
(first table below) or onfile1
andfile2
(second table). -
throw(tag [, obj])
Transfers control to the end of the active .catch block waiting for tag.
-
trace_var(symbol, cmd) ⇒ nil
Controls tracing of assignments to global variables.
-
Signal.trap(signal, command) ⇒ Object
Specifies the handling of signals.
-
untrace_var(symbol [, cmd] ) ⇒ Array?
Removes tracing for the specified command on the given global variable and returns
nil
. -
Float(arg, exception: true) ⇒ Float?
mod_func
Returns arg converted to a float.
-
warn(*msgs, uplevel: nil, category: nil) ⇒ nil
mod_func
If warnings have been disabled (for example with the
-W0
flag), does nothing.
Instance Attribute Summary
-
frozen? ⇒ Boolean
readonly
Returns the freeze status of obj.
Instance Method Summary
-
class ⇒ class
Returns the class of obj.
-
clone(freeze: nil) ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.
-
tap {|x| ... } ⇒ Object
Yields self to the block, and then returns self.
-
then {|x| ... } ⇒ Object
Yields self to the block and returns the result of the block.
-
yield_self {|x| ... } ⇒ Object
Yields self to the block and returns the result of the block.
-
pp(*objs)
(also: #pp)
private
Alias for #pp.
Class Attribute Details
block_given? ⇒ Boolean
(readonly)
Returns true
if yield
would execute a block in the current context. The .iterator? form is mildly deprecated.
def try
if block_given?
yield
else
"no block"
end
end
try #=> "no block"
try { "hello" } #=> "hello"
try do "hello" end #=> "hello"
# File 'vm_eval.c', line 2539
static VALUE rb_f_block_given_p(VALUE _) { rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; cfp = vm_get_ruby_level_caller_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)); if (cfp != NULL && VM_CF_BLOCK_HANDLER(cfp) != VM_BLOCK_HANDLER_NONE) { return Qtrue; } else { return Qfalse; } }
iterator? ⇒ Boolean
(readonly)
Deprecated. Use block_given? instead.
# File 'vm_eval.c', line 2561
static VALUE rb_f_iterator_p(VALUE self) { rb_warn_deprecated("iterator?", "block_given?"); return rb_f_block_given_p(self); }
Class Method Details
__callee__ ⇒ Symbol
Returns the called name of the current method as a ::Symbol
. If called outside of a method, it returns nil
.
# File 'eval.c', line 1987
static VALUE rb_f_callee_name(VALUE _) { ID fname = prev_frame_callee(); /* need *callee* ID */ if (fname) { return ID2SYM(fname); } else { return Qnil; } }
__dir__ ⇒ String
Returns the canonicalized absolute path of the directory of the file from which this method is called. It means symlinks in the path is resolved. If __FILE__
is nil
, it returns nil
. The return value equals to File.dirname(File.realpath(__FILE__))
.
# File 'eval.c', line 2010
static VALUE f_current_dirname(VALUE _) { VALUE base = rb_current_realfilepath(); if (NIL_P(base)) { return Qnil; } base = rb_file_dirname(base); return base; }
__method__ ⇒ Symbol
Returns the name at the definition of the current method as a ::Symbol
. If called outside of a method, it returns nil
.
# File 'eval.c', line 1965
static VALUE rb_f_method_name(VALUE _) { ID fname = prev_frame_func(); /* need *method* ID */ if (fname) { return ID2SYM(fname); } else { return Qnil; } }
` ⇒ String
Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}
uses this method. Sets $?
to the process status.
`date` #=> "Wed Apr 9 08:56:30 CDT 2003\n"
`ls testdir`.split[1] #=> "main.rb"
`echo oops && exit 99` #=> "oops\n"
$?.exitstatus #=> 99
# File 'io.c', line 9258
static VALUE rb_f_backquote(VALUE obj, VALUE str) { VALUE port; VALUE result; rb_io_t *fptr; SafeStringValue(str); rb_last_status_clear(); port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL); if (NIL_P(port)) return rb_str_new(0,0); GetOpenFile(port, fptr); result = read_all(fptr, remain_size(fptr), Qnil); rb_io_close(port); RFILE(port)->fptr = NULL; rb_io_fptr_finalize(fptr); rb_gc_force_recycle(port); /* also guards from premature GC */ return result; }
abort
abort([msg])
Process.abort([msg])
Terminate execution immediately, effectively by calling Kernel.exit(false)
. If msg is given, it is written to STDERR prior to terminating.
# File 'process.c', line 4531
static VALUE f_abort(int c, const VALUE *a, VALUE _) { rb_f_abort(c, a); UNREACHABLE_RETURN(Qnil); }
Array(arg) ⇒ Array
Returns arg
as an Array
.
First tries to call to_ary
on arg
, then to_a
. If arg
does not respond to to_ary
or to_a
, returns an Array
of length 1 containing arg
.
If to_ary
or to_a
returns something other than an Array
, raises a ::TypeError
.
Array(["a", "b"]) #=> ["a", "b"]
Array(1..5) #=> [1, 2, 3, 4, 5]
Array(key: :value) #=> [[:key, :value]]
Array(nil) #=> []
Array(1) #=> [1]
# File 'object.c', line 3954
static VALUE rb_f_array(VALUE obj, VALUE arg) { return rb_Array(arg); }
at_exit ⇒ Proc
Converts block to a ::Proc
object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.
def do_at_exit(str1)
at_exit { print str1 }
end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit
produces:
goodbye cruel world
# File 'eval_jump.c', line 37
static VALUE rb_f_at_exit(VALUE _) { VALUE proc; if (!rb_block_given_p()) { rb_raise(rb_eArgError, "called without a block"); } proc = rb_block_proc(); rb_set_end_proc(rb_call_end_proc, proc); return proc; }
autoload(module, filename) ⇒ nil
# File 'load.c', line 1303
static VALUE rb_f_autoload(VALUE obj, VALUE sym, VALUE file) { VALUE klass = rb_class_real(rb_vm_cbase()); if (!klass) { rb_raise(rb_eTypeError, "Can not set autoload on singleton class"); } return rb_mod_autoload(klass, sym, file); }
autoload?(name, inherit = true) ⇒ String?
# File 'load.c', line 1324
static VALUE rb_f_autoload_p(int argc, VALUE *argv, VALUE obj) { /* use rb_vm_cbase() as same as rb_f_autoload. */ VALUE klass = rb_vm_cbase(); if (NIL_P(klass)) { return Qnil; } return rb_mod_autoload_p(argc, argv, klass); }
binding ⇒ Binding
Returns a ::Binding
object, describing the variable and method bindings at the point of call. This object can be used when calling .eval to execute the evaluated command in this environment. See also the description of class ::Binding
.
def get_binding(param)
binding
end
b = get_binding("hello")
eval("param", b) #=> "hello"
# File 'proc.c', line 386
static VALUE rb_f_binding(VALUE self) { return rb_binding_new(); }
callcc {|cont| ... } ⇒ Object
Generates a ::Continuation
object, which it passes to the associated block. You need to require 'continuation'
before using this method. Performing a cont.call
will cause the #callcc
to return (as will falling through the end of the block). The value returned by the #callcc
is the value of the block, or the value passed to cont.call
. See class ::Continuation
for more details. Also see .throw for an alternative mechanism for unwinding a call stack.
# File 'cont.c', line 1529
static VALUE rb_callcc(VALUE self) { volatile int called; volatile VALUE val = cont_capture(&called); if (called) { return val; } else { return rb_yield(val); } }
Returns the current execution stack—an array containing strings in the form file:line
or file:line: in `method'
.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
def a(skip)
caller(skip)
end
def b(skip)
a(skip)
end
def c(skip)
b(skip)
end
c(0) #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10:in `<main>'"]
c(1) #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11:in `<main>'"]
c(2) #=> ["prog:8:in `c'", "prog:12:in `<main>'"]
c(3) #=> ["prog:13:in `<main>'"]
c(4) #=> []
c(5) #=> nil
# File 'vm_backtrace.c', line 1210
static VALUE rb_f_caller(int argc, VALUE *argv, VALUE _) { return ec_backtrace_to_ary(GET_EC(), argc, argv, 1, 1, 1); }
Returns the current execution stack—an array containing backtrace location objects.
See ::Thread::Backtrace::Location
for more information.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
# File 'vm_backtrace.c', line 1238
static VALUE rb_f_caller_locations(int argc, VALUE *argv, VALUE _) { return ec_backtrace_to_ary(GET_EC(), argc, argv, 1, 1, 0); }
catch([tag]) {|tag| ... } ⇒ Object
catch
executes its block. If .throw is not called, the block executes normally, and catch
returns the value of the last expression evaluated.
catch(1) { 123 } # => 123
If throw(tag2, val)
is called, Ruby searches up its stack for a catch
block whose tag
has the same object_id
as tag2. When found, the block stops executing and returns val (or nil
if no second argument was given to .throw).
catch(1) { throw(1, 456) } # => 456
catch(1) { throw(1) } # => nil
When tag
is passed as the first argument, catch
yields it as the parameter of the block.
catch(1) {|x| x + 2 } # => 3
When no tag
is given, catch
yields a new unique object (as from Object.new
) as the block parameter. This object can then be used as the argument to .throw, and will match the correct catch
block.
catch do |obj_A|
catch do |obj_B|
throw(obj_B, 123)
puts "This puts is not reached"
end
puts "This puts is displayed"
456
end
# => 456
catch do |obj_A|
catch do |obj_B|
throw(obj_A, 123)
puts "This puts is still not reached"
end
puts "Now this puts is also not reached"
456
end
# => 123
# File 'vm_eval.c', line 2377
static VALUE rb_f_catch(int argc, VALUE *argv, VALUE self) { VALUE tag = rb_check_arity(argc, 0, 1) ? argv[0] : rb_obj_alloc(rb_cObject); return rb_catch_obj(tag, catch_i, 0); }
chomp ⇒ $_
chomp(string) ⇒ $_
_
chomp(string) ⇒ $_
Equivalent to $_ = $_.chomp(string)
. See String#chomp. Available only when -p/-n command line option specified.
# File 'ruby.c', line 1650
static VALUE rb_f_chomp(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("chomp"), argc, argv); rb_lastline_set(str); return str; }
chop ⇒ $_
Equivalent to ($_.dup).chop!
, except nil
is never returned. See String#chop!. Available only when -p/-n command line option specified.
# File 'ruby.c', line 1630
static VALUE rb_f_chop(VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("chop"), 0, 0); rb_lastline_set(str); return str; }
Complex(x[, y], exception: true) ⇒ Numeric?
Returns x+i*y;
Complex(1, 2) #=> (1+2i)
Complex('1+2i') #=> (1+2i)
Complex(nil) #=> TypeError
Complex(1, nil) #=> TypeError
Complex(1, nil, exception: false) #=> nil
Complex('1+2', exception: false) #=> nil
Syntax of string form:
string form = extra spaces , complex , extra spaces ;
complex = real part | [ sign ] , imaginary part
| real part , sign , imaginary part
| rational , "@" , rational ;
real part = rational ;
imaginary part = imaginary unit | unsigned rational , imaginary unit ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
imaginary unit = "i" | "I" | "j" | "J" ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit };
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;
See String#to_c.
# File 'complex.c', line 549
static VALUE nucomp_f_complex(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, opts = Qnil; int raise = TRUE; if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { a2 = Qundef; } if (!NIL_P(opts)) { raise = rb_opts_exception_p(opts, raise); } if (argc > 0 && CLASS_OF(a1) == rb_cComplex && a2 == Qundef) { return a1; } return nucomp_convert(rb_cComplex, a1, a2, raise); }
eval(string [, binding [, filename [,lineno]]]) ⇒ Object
Evaluates the Ruby expression(s) in string. If binding is given, which must be a ::Binding
object, the evaluation is performed in its context. If the optional filename and lineno parameters are present, they will be used when reporting syntax errors.
def get_binding(str)
return binding
end
str = "hello"
eval "str + ' Fred'" #=> "hello Fred"
eval "str + ' Fred'", get_binding("bye") #=> "bye Fred"
# File 'vm_eval.c', line 1777
VALUE rb_f_eval(int argc, const VALUE *argv, VALUE self) { VALUE src, scope, vfile, vline; VALUE file = Qundef; int line = 1; rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline); SafeStringValue(src); if (argc >= 3) { StringValue(vfile); } if (argc >= 4) { line = NUM2INT(vline); } if (!NIL_P(vfile)) file = vfile; if (NIL_P(scope)) return eval_string_with_cref(self, src, NULL, file, line); else return eval_string_with_scope(scope, src, file, line); }
exec([env,] command... [,options])
Replaces the current process by running the given external command, which can take one of the following forms:
exec(commandline)
-
command line string which is passed to the standard shell
exec(cmdname, arg1, ...)
-
command name and one or more arguments (no shell)
exec([cmdname, argv0], arg1, ...)
-
command name, argv and zero or more arguments (no shell)
In the first form, the string is taken as a command line that is subject to shell expansion before being executed.
The standard shell always means "/bin/sh"
on Unix-like systems, same as ENV["RUBYSHELL"]
(or ENV["COMSPEC"]
on Windows NT series), and similar.
If the string from the first form (exec("command")
) follows these simple rules:
-
no meta characters
-
no shell reserved word and no special built-in
-
Ruby invokes the command directly without shell
You can force shell invocation by adding “;” to the string (because “;” is a meta character).
Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.
In the second form (exec("command1", "arg1", ...)
), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.
In the third form (exec(["command", "argv0"], "arg1", ...)
), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0]
value, which may show up in process listings.
In order to execute the command, one of the exec(2)
system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).
This behavior is modified by the given env
and options
parameters. See .spawn for details.
If the command fails to execute (typically Errno::ENOENT
when it was not found) a ::SystemCallError
exception is raised.
This method modifies process attributes according to given options
before exec(2)
system call. See .spawn for more details about the given options
.
The modified attributes may be retained when exec(2)
system call fails.
For example, hard resource limits are not restorable.
Consider to create a child process using .spawn or .system if this is not acceptable.
exec "echo *" # echoes list of files in current directory
# never get here
exec "echo", "*" # echoes an asterisk
# never get here
# File 'process.c', line 3215
static VALUE f_exec(int c, const VALUE *a, VALUE _) { rb_f_exec(c, a); UNREACHABLE_RETURN(Qnil); }
exit(status = true)
exit(status = true)
Process.exit(status = true)
Initiates the termination of the Ruby script by raising the ::SystemExit
exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true
and FALSE
of status means success and failure respectively. The interpretation of other integer values are system dependent.
begin
exit
puts "never get here"
rescue SystemExit
puts "rescued a SystemExit exception"
end
puts "after begin block"
produces:
rescued a SystemExit exception
after begin block
Just prior to termination, Ruby executes any .at_exit functions (see .at_exit) and runs any object finalizers (see ObjectSpace.define_finalizer).
at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
exit
produces:
at_exit function
in finalizer
# File 'process.c', line 4486
static VALUE f_exit(int c, const VALUE *a, VALUE _) { rb_f_exit(c, a); UNREACHABLE_RETURN(Qnil); }
Process.exit!(status = false)
# File 'process.c', line 4399
static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { int istatus; if (rb_check_arity(argc, 0, 1) == 1) { istatus = exit_status_code(argv[0]); } else { istatus = EXIT_FAILURE; } _exit(istatus); UNREACHABLE_RETURN(Qnil); }
raise
raise(string, cause: $!)
raise(exception [, string [, array]], cause: $!)
fail
fail(string, cause: $!)
fail(exception [, string [, array]], cause: $!)
Also known as: .raise
With no arguments, raises the exception in $!
or raises a ::RuntimeError
if $!
is nil
. With a single .String argument, raises a ::RuntimeError
with the string as a message. Otherwise, the first parameter should be an ::Exception
class (or another object that returns an ::Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception (accessible via Exception#message), and the third parameter is an array of callback information (accessible via Exception#backtrace). The cause
of the generated exception (accessible via Exception#cause) is automatically set to the “current” exception ($!
), if any. An alternative value, either an ::Exception
object or nil
, can be specified via the :cause
argument.
Exceptions are caught by the rescue
clause of begin...end
blocks.
raise "Failed to create socket"
raise ArgumentError, "No parameters", caller
# File 'eval.c', line 821
static VALUE f_raise(int c, VALUE *v, VALUE _) { return rb_f_raise(c, v); }
Float(arg, exception: true) ⇒ Float? (mod_func)
Returns arg converted to a float. ::Numeric
types are converted directly, and with exception to .String and nil
the rest are converted using arg.to_f
. Converting a .String with invalid characters will result in a ::ArgumentError
. Converting nil
generates a ::TypeError
. Exceptions can be suppressed by passing exception: false
.
Float(1) #=> 1.0
Float("123.456") #=> 123.456
Float("123.0_badstring") #=> ArgumentError: invalid value for Float(): "123.0_badstring"
Float(nil) #=> TypeError: can't convert nil into Float
Float("123.0_badstring", exception: false) #=> nil
# File 'kernel.rb', line 171
def Float(arg, exception: true) Primitive.rb_f_float(arg, exception) end
Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork
call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using .exit! to avoid running any .at_exit functions. The parent process should use Process.wait to collect the termination statuses of its children or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.
If fork is not usable, Process.respond_to?
(:fork) returns false.
Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().
# File 'process.c', line 4337
static VALUE rb_f_fork(VALUE obj) { rb_pid_t pid; switch (pid = rb_fork_ruby(NULL)) { case 0: rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return PIDT2NUM(pid); } }
Also known as: .sprintf
Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.
The syntax of a format sequence is as follows.
%[flags][width][.precision]type
A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding .sprintf argument is to be interpreted, while the flags modify that interpretation.
The field type characters are:
Field | Integer Format
------+--------------------------------------------------------------
b | Convert argument as a binary number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..1'.
B | Equivalent to `b', but uses an uppercase 0B for prefix
| in the alternative format by #.
d | Convert argument as a decimal number.
i | Identical to `d'.
o | Convert argument as an octal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..7'.
u | Identical to `d'.
x | Convert argument as a hexadecimal number.
| Negative numbers will be displayed as a two's complement
| prefixed with `..f' (representing an infinite string of
| leading 'ff's).
X | Equivalent to `x', but uses uppercase letters.
Field | Float Format
------+--------------------------------------------------------------
e | Convert floating point argument into exponential notation
| with one digit before the decimal point as [-]d.dddddde[+-]dd.
| The precision specifies the number of digits after the decimal
| point (defaulting to six).
E | Equivalent to `e', but uses an uppercase E to indicate
| the exponent.
f | Convert floating point argument as [-]ddd.dddddd,
| where the precision specifies the number of digits after
| the decimal point.
g | Convert a floating point number using exponential form
| if the exponent is less than -4 or greater than or
| equal to the precision, or in dd.dddd form otherwise.
| The precision specifies the number of significant digits.
G | Equivalent to `g', but use an uppercase `E' in exponent form.
a | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
| which is consisted from optional sign, "0x", fraction part
| as hexadecimal, "p", and exponential part as decimal.
A | Equivalent to `a', but use uppercase `X' and `P'.
Field | Other Format
------+--------------------------------------------------------------
c | Argument is the numeric code for a single character or
| a single character string itself.
p | The valuing of argument.inspect.
s | Argument is a string to be substituted. If the format
| sequence contains a precision, at most that many characters
| will be copied.
% | A percent sign itself will be displayed. No argument taken.
The flags modifies the behavior of the formats. The flag characters are:
Flag | Applies to | Meaning
-----------------------------------------------------------------
space | bBdiouxX | Leave a space at the start of
| aAeEfgG | non-negative numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
-----------------------------------------------------------------
(digit)$ | all | Specifies the absolute argument number
| | for this field. Absolute and relative
| | argument numbers cannot be mixed in a
| | sprintf string.
-----------------------------------------------------------------
# | bBoxX | Use an alternative format.
| aAeEfgG | For the conversions `o', increase the precision
| | until the first digit will be `0' if
| | it is not formatted as complements.
| | For the conversions `x', `X', `b' and `B'
| | on non-zero, prefix the result with ``0x'',
| | ``0X'', ``0b'' and ``0B'', respectively.
| | For `a', `A', `e', `E', `f', `g', and 'G',
| | force a decimal point to be added,
| | even if no digits follow.
| | For `g' and 'G', do not remove trailing zeros.
-----------------------------------------------------------------
+ | bBdiouxX | Add a leading plus sign to non-negative
| aAeEfgG | numbers.
| (numeric fmt) | For `o', `x', `X', `b' and `B', use
| | a minus sign with absolute value for
| | negative values.
-----------------------------------------------------------------
- | all | Left-justify the result of this conversion.
-----------------------------------------------------------------
0 (zero) | bBdiouxX | Pad with zeros, not spaces.
| aAeEfgG | For `o', `x', `X', `b' and `B', radix-1
| (numeric fmt) | is used for negative numbers formatted as
| | complements.
-----------------------------------------------------------------
* | all | Use the next argument as the field width.
| | If negative, left-justify the result. If the
| | asterisk is followed by a number and a dollar
| | sign, use the indicated argument as the width.
Examples of flags:
# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123) #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"
# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123) #=> "173"
sprintf("%#o", 123) #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123) #=> "..7605"
sprintf("%#o", -123) #=> "..7605"
# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123) #=> "7b"
sprintf("%#x", 123) #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123) #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0) #=> "0"
# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123) #=> "7B"
sprintf("%#X", 123) #=> "0X7B"
# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123) #=> "1111011"
sprintf("%#b", 123) #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123) #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0) #=> "0"
# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123) #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"
# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1) #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"
# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234) #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."
# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4) #=> "123.4"
sprintf("%#g", 123.4) #=> "123.400"
sprintf("%g", 123456) #=> "123456"
sprintf("%#g", 123456) #=> "123456."
The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.
Examples of width:
# padding is done by spaces, width=20
# 0 or radix-1. <------------------>
sprintf("%20d", 123) #=> " 123"
sprintf("%+20d", 123) #=> " +123"
sprintf("%020d", 123) #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123) #=> "123 "
sprintf("%-+20d", 123) #=> "+123 "
sprintf("%- 20d", 123) #=> " 123 "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"
For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s
will always contribute exactly ten characters to the result.)
Examples of precisions:
# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits <------>
sprintf("%20.8d", 123) #=> " 00000123"
sprintf("%20.8o", 123) #=> " 00000173"
sprintf("%20.8x", 123) #=> " 0000007b"
sprintf("%20.8b", 123) #=> " 01111011"
sprintf("%20.8d", -123) #=> " -00000123"
sprintf("%20.8o", -123) #=> " ..777605"
sprintf("%20.8x", -123) #=> " ..ffff85"
sprintf("%20.8b", -11) #=> " ..110101"
# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted. <------>
sprintf("%#20.8d", 123) #=> " 00000123"
sprintf("%#20.8o", 123) #=> " 00000173"
sprintf("%#20.8x", 123) #=> " 0x0000007b"
sprintf("%#20.8b", 123) #=> " 0b01111011"
sprintf("%#20.8d", -123) #=> " -00000123"
sprintf("%#20.8o", -123) #=> " ..777605"
sprintf("%#20.8x", -123) #=> " 0x..ffff85"
sprintf("%#20.8b", -11) #=> " 0b..110101"
# precision for `e' is number of
# digits after the decimal point <------>
sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03"
# precision for `f' is number of
# digits after the decimal point <------>
sprintf("%20.8f", 1234.56789) #=> " 1234.56789000"
# precision for `g' is number of
# significant digits <------->
sprintf("%20.8g", 1234.56789) #=> " 1234.5679"
# <------->
sprintf("%20.8g", 123456789) #=> " 1.2345679e+08"
# precision for `s' is
# maximum number of characters <------>
sprintf("%20.8s", "string test") #=> " string t"
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b"
sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23"
sprintf("%u", -123) #=> "-123"
For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %name
style doesn’t.
Examples:
sprintf("%<foo>d : %<bar>f", { :foo => 1, : => 2 })
#=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
# => "1f"
# File 'object.c', line 4326
static VALUE f_sprintf(int c, const VALUE *v, VALUE _) { return rb_f_sprintf(c, v); }
Returns (and assigns to $_
) the next line from the list of files in ARGV (or $*
), or from standard input if no files are present on the command line. Returns nil
at end of file. The optional argument specifies the record separator. The separator is included with the contents of each record. A separator of nil
reads the entire contents, and a zero-length separator reads the input one paragraph at a time, where paragraphs are divided by two consecutive newlines. If the first argument is an integer, or optional second argument is given, the returning string would not be longer than the given value in bytes. If multiple filenames are present in ARGV, gets(nil)
will read the contents one file at a time.
ARGV << "testfile"
print while gets
produces:
This is line one
This is line two
This is line three
And so on...
The style of programming using $_
as an implicit parameter is gradually losing favor in the Ruby community.
# File 'io.c', line 9065
static VALUE rb_f_gets(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_gets(argc, argv, argf); } return rb_funcallv(argf, idGets, argc, argv); }
global_variables ⇒ Array
Returns an array of the names of global variables. This includes special regexp global variables such as $~
and $+
, but does not include the numbered regexp global variables ($1
, $2
, etc.).
global_variables.grep /std/ #=> [:$stdin, :$stdout, :$stderr]
# File 'eval.c', line 2033
static VALUE f_global_variables(VALUE _) { return rb_f_global_variables(); }
gsub(pattern, replacement) ⇒ $_
gsub(pattern) {|...| ... } ⇒ $_
_
gsub(pattern) {|...| ... } ⇒ $_
Equivalent to $_.gsub...
, except that $_
will be updated if substitution occurs. Available only when -p/-n command line option specified.
# File 'ruby.c', line 1612
static VALUE rb_f_gsub(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("gsub"), argc, argv); rb_lastline_set(str); return str; }
Hash(arg) ⇒ Hash
Converts arg to a Hash
by calling arg.to_hash
. Returns an empty Hash
when arg is nil
or []
.
Hash([]) #=> {}
Hash(nil) #=> {}
Hash(key: :value) #=> {:key => :value}
Hash([1, 2, 3]) #=> TypeError
# File 'object.c', line 3992
static VALUE rb_f_hash(VALUE obj, VALUE arg) { return rb_Hash(arg); }
Integer(arg, base = 0, exception: true) ⇒ Integer?
Converts arg to an Integer
. ::Numeric
types are converted directly (with floating point numbers being truncated). base (0, or between 2 and 36) is a base for integer string representation. If arg is a .String, when base is omitted or equals zero, radix indicators (0
, 0b
, and 0x
) are honored. In any case, strings should consist only of one or more digits, except for that a sign, one underscore between two digits, and leading/trailing spaces are optional. This behavior is different from that of String#to_i. Non string values will be converted by first trying to_int
, then to_i
.
Passing nil
raises a ::TypeError
, while passing a .String that does not conform with numeric representation raises an ::ArgumentError
. This behavior can be altered by passing exception: false
, in this case a not convertible value will return nil
.
Integer(123.999) #=> 123
Integer("0x1a") #=> 26
Integer(Time.new) #=> 1204973019
Integer("0930", 10) #=> 930
Integer("111", 2) #=> 7
Integer(" +1_0 ") #=> 10
Integer(nil) #=> TypeError: can't convert nil into Integer
Integer("x") #=> ArgumentError: invalid value for Integer(): "x"
Integer("x", exception: false) #=> nil
# File 'object.c', line 3418
static VALUE rb_f_integer(int argc, VALUE *argv, VALUE obj) { VALUE arg = Qnil, opts = Qnil; int base = 0; if (argc > 1) { int narg = 1; VALUE vbase = rb_check_to_int(argv[1]); if (!NIL_P(vbase)) { base = NUM2INT(vbase); narg = 2; } if (argc > narg) { VALUE hash = rb_check_hash_type(argv[argc-1]); if (!NIL_P(hash)) { opts = rb_extract_keywords(&hash); if (!hash) --argc; } } } rb_check_arity(argc, 1, 2); arg = argv[0]; return rb_convert_to_integer(arg, base, opts_exception_p(opts)); }
lambda {|...| ... } ⇒ Proc
# File 'proc.c', line 886
static VALUE f_lambda(VALUE _) { f_lambda_warn(); return rb_block_lambda(); }
load(filename, wrap = false) ⇒ true
Loads and executes the Ruby program in the file filename.
If the filename is an absolute path (e.g. starts with ‘/’), the file will be loaded directly using the absolute path.
If the filename is an explicit relative path (e.g. starts with ‘./’ or ‘../’), the file will be loaded using the relative path from the current directory.
Otherwise, the file will be searched for in the library directories listed in $LOAD_PATH
($:
). If the file is found in a directory, it will attempt to load the file relative to that directory. If the file is not found in any of the directories in $LOAD_PATH
, the file will be loaded using the relative path from the current directory.
If the file doesn’t exist when there is an attempt to load it, a ::LoadError
will be raised.
If the optional wrap parameter is true
, the loaded script will be executed under an anonymous module, protecting the calling program’s global namespace. In no circumstance will any local variables in the loaded file be propagated to the loading environment.
# File 'load.c', line 753
static VALUE rb_f_load(int argc, VALUE *argv, VALUE _) { VALUE fname, wrap, path, orig_fname; rb_scan_args(argc, argv, "11", &fname, &wrap); orig_fname = rb_get_path_check_to_string(fname); fname = rb_str_encode_ospath(orig_fname); RUBY_DTRACE_HOOK(LOAD_ENTRY, RSTRING_PTR(orig_fname)); path = rb_find_file(fname); if (!path) { if (!rb_file_load_ok(RSTRING_PTR(fname))) load_failed(orig_fname); path = fname; } rb_load_internal(path, RTEST(wrap)); RUBY_DTRACE_HOOK(LOAD_RETURN, RSTRING_PTR(orig_fname)); return Qtrue; }
local_variables ⇒ Array
Returns the names of the current local variables.
fred = 1
for i in 1..10
# ...
end
local_variables #=> [:fred, :i]
# File 'vm_eval.c', line 2484
static VALUE rb_f_local_variables(VALUE _) { struct local_var_list vars; rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = vm_get_ruby_level_caller_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(ec->cfp)); unsigned int i; local_var_list_init(&vars); while (cfp) { if (cfp->iseq) { for (i = 0; i < cfp->iseq->body->local_table_size; i++) { local_var_list_add(&vars, cfp->iseq->body->local_table[i]); } } if (!VM_ENV_LOCAL_P(cfp->ep)) { /* block */ const VALUE *ep = VM_CF_PREV_EP(cfp); if (vm_collect_local_variables_in_heap(ep, &vars)) { break; } else { while (cfp->ep != ep) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } } else { break; } } return local_var_list_finish(&vars); }
loop
loop ⇒ Enumerator
Repeatedly executes the block.
If no block is given, an enumerator is returned instead.
loop do
print "Input: "
line = gets
break if !line or line =~ /^qQ/
# ...
end
::StopIteration
raised in the block breaks the loop. In this case, loop returns the “result” value stored in the exception.
enum = Enumerator.new { |y|
y << "one"
y << "two"
:ok
}
result = loop {
puts enum.next
} #=> :ok
# File 'vm_eval.c', line 1477
static VALUE rb_f_loop(VALUE self) { RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size); return rb_rescue2(loop_i, (VALUE)0, loop_stop, (VALUE)0, rb_eStopIteration, (VALUE)0); }
Creates an ::IO
object connected to the given stream, file, or subprocess.
If path
does not start with a pipe character (|
), treat it as the name of a file to open using the specified mode (defaulting to “r”).
The mode
is either a string or an integer. If it is an integer, it must be bitwise-or of open(2) flags, such as File::RDWR
or File::EXCL
. If it is a string, it is either “fmode”, “fmode:ext_enc”, or “fmode:ext_enc:int_enc”.
See the documentation of IO.new for full documentation of the mode
string directives.
If a file is being created, its initial permissions may be set using the perm
parameter. See File.new and the open(2) and chmod(2) man pages for a description of permissions.
If a block is specified, it will be invoked with the ::IO
object as a parameter, and the ::IO
will be automatically closed when the block terminates. The call returns the value of the block.
If path
starts with a pipe character ("|"
), a subprocess is created, connected to the caller by a pair of pipes. The returned ::IO
object may be used to write to the standard input and read from the standard output of this subprocess.
If the command following the pipe is a single minus sign ("|-"
), Ruby forks, and this subprocess is connected to the parent. If the command is not "-"
, the subprocess runs the command.
When the subprocess is Ruby (opened via "|-"
), the open
call returns nil
. If a block is associated with the open call, that block will run twice — once in the parent and once in the child.
The block parameter will be an ::IO
object in the parent and nil
in the child. The parent’s ::IO
object will be connected to the child’s $stdin and $stdout. The subprocess will be terminated at the end of the block.
Examples
Reading from “testfile”:
open("testfile") do |f|
print f.gets
end
Produces:
This is line one
Open a subprocess and read its output:
cmd = open("|date")
print cmd.gets
cmd.close
Produces:
Wed Apr 9 08:56:31 CDT 2003
Open a subprocess running the same Ruby program:
f = open("|-", "w+")
if f.nil?
puts "in Child"
exit
else
puts "Got: #{f.gets}"
end
Produces:
Got: in Child
Open a subprocess using a block to receive the ::IO
object:
open "|-" do |f|
if f then
# parent process
puts "Got: #{f.gets}"
else
# child process
puts "in Child"
end
end
Produces:
Got: in Child
# File 'io.c', line 7331
static VALUE rb_f_open(int argc, VALUE *argv, VALUE _) { ID to_open = 0; int redirect = FALSE; if (argc >= 1) { CONST_ID(to_open, "to_open"); if (rb_respond_to(argv[0], to_open)) { redirect = TRUE; } else { VALUE tmp = argv[0]; FilePathValue(tmp); if (NIL_P(tmp)) { redirect = TRUE; } else { VALUE cmd = check_pipe_command(tmp); if (!NIL_P(cmd)) { argv[0] = cmd; return rb_io_s_popen(argc, argv, rb_cIO); } } } } if (redirect) { VALUE io = rb_funcallv_kw(argv[0], to_open, argc-1, argv+1, RB_PASS_CALLED_KEYWORDS); if (rb_block_given_p()) { return rb_ensure(rb_yield, io, io_close, io); } return io; } return rb_io_s_open(argc, argv, rb_cFile); }
# File 'io.c', line 8005
static VALUE rb_f_p(int argc, VALUE *argv, VALUE self) { int i; for (i=0; i<argc; i++) { VALUE inspected = rb_obj_as_string(rb_inspect(argv[i])); rb_uninterruptible(rb_p_write, inspected); } return rb_p_result(argc, argv); }
print(obj, ...) ⇒ nil
Prints each object in turn to $stdout
. If the output field separator ($,
) is not nil
, its contents will appear between each field. If the output record separator ($\
) is not nil
, it will be appended to the output. If no arguments are given, prints $_
. Objects that aren’t strings will be converted by calling their to_s
method.
print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99
produces:
cat12399
cat, 1, 2, 3, 99
# File 'io.c', line 7770
static VALUE rb_f_print(int argc, const VALUE *argv, VALUE _) { rb_io_print(argc, argv, rb_ractor_stdout()); return Qnil; }
printf(io, string [, obj ... ]) ⇒ nil
printf(string [, obj ... ]) ⇒ nil
[ GitHub ]
nil
printf(string [, obj ... ]) ⇒ nil
# File 'io.c', line 7666
static VALUE rb_f_printf(int argc, VALUE *argv, VALUE _) { VALUE out; if (argc == 0) return Qnil; if (RB_TYPE_P(argv[0], T_STRING)) { out = rb_ractor_stdout(); } else { out = argv[0]; argv++; argc--; } rb_io_write(out, rb_f_sprintf(argc, argv)); return Qnil; }
proc {|...| ... } ⇒ Proc
Equivalent to Proc.new.
# File 'proc.c', line 838
static VALUE f_proc(VALUE _) { return proc_new(rb_cProc, FALSE, TRUE); }
putc(int) ⇒ Integer
Equivalent to:
$stdout.putc(int)
Refer to the documentation for IO#putc for important information regarding multi-byte characters.
# File 'io.c', line 7821
static VALUE rb_f_putc(VALUE recv, VALUE ch) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_putc(recv, ch); } return rb_funcallv(r_stdout, rb_intern("putc"), 1, &ch); }
puts(obj, ...) ⇒ nil
Equivalent to
$stdout.puts(obj, ...)
# File 'io.c', line 7936
static VALUE rb_f_puts(int argc, VALUE *argv, VALUE recv) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_puts(argc, argv, recv); } return rb_funcallv(r_stdout, rb_intern("puts"), argc, argv); }
raise
raise(string, cause: $!)
raise(exception [, string [, array]], cause: $!)
fail
fail(string, cause: $!)
fail(exception [, string [, array]], cause: $!)
Alias for .fail.
rand(max = 0) ⇒ Numeric
If called without an argument, or if max.to_i.abs == 0
, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.
rand #=> 0.2725926052826416
When max.abs
is greater than or equal to 1, rand
returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs
.
rand(100) #=> 12
When max
is a ::Range
, rand
returns a random number where range.member?(number) == true.
Negative or floating point values for max
are allowed, but may give surprising results.
rand(-100) # => 87
rand(-0.5) # => 0.8130921818028143
rand(1.9) # equivalent to rand(1), which is always 0
.srand may be used to ensure that sequences of random numbers are reproducible between different runs of a program.
See also Random.rand.
# File 'random.c', line 1553
static VALUE rb_f_rand(int argc, VALUE *argv, VALUE obj) { VALUE vmax; rb_random_t *rnd = rand_start(default_rand()); if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) { VALUE v = rand_range(obj, rnd, vmax); if (v != Qfalse) return v; vmax = rb_to_int(vmax); if (vmax != INT2FIX(0)) { v = rand_int(obj, rnd, vmax, 0); if (!NIL_P(v)) return v; } } return DBL2NUM(random_real(obj, rnd, TRUE)); }
Rational(x, y, exception: true) ⇒ Rational?
Rational(arg, exception: true) ⇒ Rational?
Returns x/y
or arg
as a Rational
.
Rational(2, 3) #=> (2/3)
Rational(5) #=> (5/1)
Rational(0.5) #=> (1/2)
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational("2/3") #=> (2/3)
Rational("0.3") #=> (3/10)
Rational("10 cents") #=> ArgumentError
Rational(nil) #=> TypeError
Rational(1, nil) #=> TypeError
Rational("10 cents", exception: false) #=> nil
Syntax of the string form:
string form = extra spaces , rational , extra spaces ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;
See also String#to_r.
# File 'rational.c', line 549
static VALUE nurat_f_rational(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, opts = Qnil; int raise = TRUE; if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { a2 = Qundef; } if (!NIL_P(opts)) { raise = rb_opts_exception_p(opts, raise); } return nurat_convert(rb_cRational, a1, a2, raise); }
Equivalent to .gets, except readline
raises ::EOFError
at end of file.
# File 'io.c', line 9141
static VALUE rb_f_readline(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readline(argc, argv, argf); } return rb_funcallv(argf, rb_intern("readline"), argc, argv); }
Returns an array containing the lines returned by calling Kernel.gets(sep)
until the end of file.
# File 'io.c', line 9195
static VALUE rb_f_readlines(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readlines(argc, argv, argf); } return rb_funcallv(argf, rb_intern("readlines"), argc, argv); }
require(name) ⇒ Boolean
Loads the given name
, returning true
if successful and false
if the feature is already loaded.
If the filename neither resolves to an absolute path nor starts with ‘./’ or ‘../’, the file will be searched for in the library directories listed in $LOAD_PATH
($:
). If the filename starts with ‘./’ or ‘../’, resolution is based on Dir.pwd.
If the filename has the extension “.rb”, it is loaded as a source file; if the extension is “.so”, “.o”, or “.dll”, or the default shared library extension on the current platform, Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries adding “.rb”, “.so”, and so on to the name until found. If the file named cannot be found, a ::LoadError
will be raised.
For Ruby extensions the filename given may use any shared library extension. For example, on Linux the socket extension is “socket.so” and require 'socket.dll'
will load the socket extension.
The absolute path of the loaded file is added to $LOADED_FEATURES
($"
). A file will not be loaded again if its path already appears in $"
. For example, require 'a'; require './a'
will not load a.rb
again.
require "my-library.rb"
require "db-driver"
Any constants or globals within the loaded source file will be available in the calling program’s global namespace. However, local variables will not be propagated to the loading environment.
# File 'load.c', line 879
VALUE rb_f_require(VALUE obj, VALUE fname) { return rb_require_string(fname); }
require_relative(string) ⇒ Boolean
Ruby tries to load the library named string relative to the requiring file’s path. If the file’s path cannot be determined a ::LoadError
is raised. If a file is loaded true
is returned and false otherwise.
# File 'load.c', line 893
VALUE rb_f_require_relative(VALUE obj, VALUE fname) { VALUE base = rb_current_realfilepath(); if (NIL_P(base)) { rb_loaderror("cannot infer basepath"); } base = rb_file_dirname(base); return rb_require_string(rb_file_absolute_path(fname, base)); }
IO.select(read_array [, write_array [, error_array [, timeout]]]) ⇒ Array?
Calls select(2) system call. It monitors given arrays of ::IO
objects, waits until one or more of ::IO
objects are ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those ::IO
objects. It will return nil
if optional timeout value is given and no ::IO
object is ready in timeout seconds.
IO.select peeks the buffer of ::IO
objects for testing readability. If the ::IO
buffer is not empty, IO.select immediately notifies readability. This “peek” only happens for ::IO
objects. It does not happen for IO-like objects such as OpenSSL::SSL::SSLSocket
.
The best way to use IO.select is invoking it after nonblocking methods such as #read_nonblock
, #write_nonblock
, etc. The methods raise an exception which is extended by ::IO::WaitReadable
or ::IO::WaitWritable
. The modules notify how the caller should wait with IO.select. If ::IO::WaitReadable
is raised, the caller should wait for reading. If ::IO::WaitWritable
is raised, the caller should wait for writing.
So, blocking read (#readpartial) can be emulated using #read_nonblock
and IO.select as follows:
begin
result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
Especially, the combination of nonblocking methods and IO.select is preferred for ::IO
like objects such as OpenSSL::SSL::SSLSocket
. It has #to_io
method to return underlying ::IO
object. IO.select calls #to_io
to obtain the file descriptor to wait.
This means that readability notified by IO.select doesn’t mean readability from OpenSSL::SSL::SSLSocket
object.
The most likely situation is that OpenSSL::SSL::SSLSocket
buffers some data. IO.select doesn’t see the buffer. So IO.select can block when OpenSSL::SSL::SSLSocket#readpartial
doesn’t block.
However, several more complicated situations exist.
SSL is a protocol which is sequence of records. The record consists of multiple bytes. So, the remote side of SSL sends a partial record, IO.select notifies readability but OpenSSL::SSL::SSLSocket
cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial
will block.
Also, the remote side can request SSL renegotiation which forces the local SSL engine to write some data. This means OpenSSL::SSL::SSLSocket#readpartial
may invoke #write
system call and it can block. In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock
raises ::IO::WaitWritable
instead of blocking. So, the caller should wait for ready for writability as above example.
The combination of nonblocking methods and IO.select is also useful for streams such as tty, pipe socket socket when multiple processes read from a stream.
Finally, Linux kernel developers don’t guarantee that readability of select(2) means readability of following read(2) even for a single process. See select(2) manual on GNU/Linux system.
Invoking IO.select before IO#readpartial works well as usual. However it is not the best way to use IO.select.
The writability notified by select(2) doesn’t show how many bytes are writable. IO#write method blocks until given whole string is written. So, IO#write(two or more bytes)
can block after writability is notified by IO.select. IO#write_nonblock is required to avoid the blocking.
Blocking write (#write) can be emulated using #write_nonblock
and IO.select as follows: ::IO::WaitReadable
should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket
.
while 0 < string.bytesize
begin
written = io_like.write_nonblock(string)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
string = string.byteslice(written..-1)
end
Parameters
- read_array
-
an array of
::IO
objects that wait until ready for read - write_array
-
an array of
::IO
objects that wait until ready for write - error_array
-
an array of
::IO
objects that wait for exceptions - timeout
-
a numeric value in second
Example
rp, wp = IO.pipe
mesg = "ping "
100.times {
# IO.select follows IO#read. Not the best way to use IO.select.
rs, ws, = IO.select([rp], [wp])
if r = rs[0]
ret = r.read(5)
print ret
case ret
when /ping/
mesg = "pong\n"
when /pong/
mesg = "ping "
end
end
if w = ws[0]
w.write(mesg)
end
}
produces:
ping pong
ping pong
ping pong
(snipped)
ping
# File 'io.c', line 9748
static VALUE rb_f_select(int argc, VALUE *argv, VALUE obj) { VALUE timeout; struct select_args args; struct timeval timerec; int i; rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout); if (NIL_P(timeout)) { args.timeout = 0; } else { timerec = rb_time_interval(timeout); args.timeout = &timerec; } for (i = 0; i < numberof(args.fdsets); ++i) rb_fd_init(&args.fdsets[i]); return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args); }
set_trace_func(proc) ⇒ Proc
set_trace_func(nil) ⇒ nil
nil
Establishes proc as the handler for tracing, or disables tracing if the parameter is nil
.
Note: this method is obsolete, please use ::TracePoint
instead.
proc takes up to six parameters:
-
an event name
-
a filename
-
a line number
-
an object id
-
a binding
-
the name of a class
proc is invoked whenever an event occurs.
Events are:
c-call
-
call a C-language routine
c-return
-
return from a C-language routine
call
-
call a Ruby method
- #class
-
start a class or module definition
end
-
finish a class or module definition
line
-
execute code on a new line
- .raise
-
raise an exception
return
-
return from a Ruby method
Tracing is disabled within the context of proc.
class Test
def test
a = 1
b = 2
end
end
set_trace_func proc { |event, file, line, id, binding, classname|
printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
}
t = Test.new
t.test
line prog.rb:11 false
c-call prog.rb:11 new Class
c-call prog.rb:11 initialize Object
c-return prog.rb:11 initialize Object
c-return prog.rb:11 new Class
line prog.rb:12 false
call prog.rb:2 test Test
line prog.rb:3 test Test
line prog.rb:4 test Test
return prog.rb:4 test Test
# File 'vm_trace.c', line 524
static VALUE set_trace_func(VALUE obj, VALUE trace) { rb_remove_event_hook(call_trace_func); if (NIL_P(trace)) { return Qnil; } if (!rb_obj_is_proc(trace)) { rb_raise(rb_eTypeError, "trace_func needs to be Proc"); } rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace); return trace; }
sleep([duration]) ⇒ Integer
Suspends the current thread for duration seconds (which may be any number, including a .Float with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run. Called without an argument, sleep() will sleep forever.
Time.new #=> 2008-03-08 19:56:19 +0900
sleep 1.2 #=> 1
Time.new #=> 2008-03-08 19:56:20 +0900
sleep 1.9 #=> 2
Time.new #=> 2008-03-08 19:56:22 +0900
# File 'process.c', line 5103
static VALUE rb_f_sleep(int argc, VALUE *argv, VALUE _) { time_t beg = time(0); VALUE scheduler = rb_scheduler_current(); if (scheduler != Qnil) { rb_scheduler_kernel_sleepv(scheduler, argc, argv); } else { if (argc == 0) { rb_thread_sleep_forever(); } else { rb_check_arity(argc, 0, 1); rb_thread_wait_for(rb_time_interval(argv[0])); } } time_t end = time(0) - beg; return TIMET2NUM(end); }
spawn([env,] command... [,options]) ⇒ pid
Process.spawn([env,] command... [,options]) ⇒ pid
pid
Process.spawn([env,] command... [,options]) ⇒ pid
spawn executes specified command and return its pid.
pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid
pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid
This method is similar to .system but it doesn’t wait for the command to finish.
The parent process should use Process.wait to collect the termination status of its child or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
spawn has bunch of options to specify process attributes:
env: hash
name => val : set the environment variable
name => nil : unset the environment variable
the keys and the values except for nil must be strings.
command...:
commandline : command line string which is passed to the standard shell
cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
: hash
clearing environment variables:
:unsetenv_others => true : clear environment variables except specified by env
:unsetenv_others => false : don't clear (default)
process group:
:pgroup => true or 0 : make a new process group
:pgroup => pgid : join the specified process group
:pgroup => nil : don't change the process group (default)
create new process group: Windows only
:new_pgroup => true : the new process is the root process of a new process group
:new_pgroup => false : don't create a new process group (default)
resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
:rlimit_resourcename => limit
:rlimit_resourcename => [cur_limit, max_limit]
umask:
:umask => int
redirection:
key:
FD : single file descriptor in child process
[FD, FD, ...] : multiple file descriptor in child process
value:
FD : redirect to the file descriptor in parent process
string : redirect to file with open(string, "r" or "w")
[string] : redirect to file with open(string, File::RDONLY)
[string, open_mode] : redirect to file with open(string, open_mode, 0644)
[string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
[:child, FD] : redirect to the redirected file descriptor
:close : close the file descriptor in child process
FD is one of follows
:in : the file descriptor 0 which is the standard input
:out : the file descriptor 1 which is the standard output
:err : the file descriptor 2 which is the standard error
integer : the file descriptor of specified the integer
io : the file descriptor specified as io.fileno
file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
:close_others => false : inherit
current directory:
:chdir => str
The cmdname, arg1, ...
form does not use the shell. However, on different OSes, different things are provided as built-in commands. An example of this is ‘echo’, which is a built-in on Windows, but is a normal program on Linux and Mac OS X. This means that Process.spawn 'echo', '%Path%'
will display the contents of the %Path%
environment variable on Windows, but Process.spawn 'echo', '$PATH'
prints the literal $PATH
.
If a hash is given as env
, the environment is updated by env
before exec(2)
in the child process. If a pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.
The :unsetenv_others
key in options
specifies to clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process group. The corresponding value should be true, zero, a positive integer, or nil. true and zero cause the process to be a process leader of a new process group. A non-zero positive integer causes the process to join the provided process group. The default value, nil, causes the process to remain in the same process group.
pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid)
on the subprocess. :new_pgroup
is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group
pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit. foo should be one of resource types such as core
. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.
cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in
, :out
, :err
, an integer, an ::IO
and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by #spawn
. :err
, 2 and STDERR specifies the standard error stream (stderr).
The hash values specifies a file descriptor in the parent process which invokes #spawn
. :out
, 1 and STDOUT specifies the standard output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in
, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY
is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others
option. :close_others
doesn’t affect the standard descriptors which are closed only if :close
is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others
is false by default for spawn and IO.popen.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others
option.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w) # r, w is closed in the child process.
w.close
:close
is specified as a hash value to close a fd individually.
f = open(foo)
system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn
uses an extra file descriptor to resolve such cyclic file descriptor mapping.
See .exec for the standard shell.
# File 'process.c', line 5059
static VALUE rb_f_spawn(int argc, VALUE *argv, VALUE _) { rb_pid_t pid; char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; VALUE execarg_obj, fail_str; struct rb_execarg *eargp; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); eargp = rb_execarg_get(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg)); if (pid == -1) { int err = errno; rb_exec_fail(eargp, err, errmsg); RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, fail_str); } #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif }
Alias for .format.
srand(number = Random.new_seed) ⇒ old_seed
Seeds the system pseudo-random number generator, with number
. The previous seed value is returned.
If number
is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.
srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.
srand 1234 # => 268519324636777531569100071560086917274
[ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234 # => 1234
[ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
# File 'random.c', line 857
static VALUE rb_f_srand(int argc, VALUE *argv, VALUE obj) { VALUE seed, old; rb_random_mt_t *r = rand_mt_start(default_rand()); if (rb_check_arity(argc, 0, 1) == 0) { seed = random_seed(obj); } else { seed = rb_to_int(argv[0]); } old = r->base.seed; rand_init(&random_mt_if, &r->base, seed); r->base.seed = seed; return old; }
String(arg) ⇒ String
Returns arg as a String
.
First tries to call its to_str
method, then its to_s
method.
String(self) #=> "main"
String(self.class) #=> "Object"
String(123456) #=> "123456"
# File 'object.c', line 3911
static VALUE rb_f_string(VALUE obj, VALUE arg) { return rb_String(arg); }
sub(pattern, replacement) ⇒ $_
sub(pattern) {|...| ... } ⇒ $_
_
sub(pattern) {|...| ... } ⇒ $_
Equivalent to $_.sub(args)
, except that $_
will be updated if substitution occurs. Available only when -p/-n command line option specified.
# File 'ruby.c', line 1593
static VALUE rb_f_sub(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("sub"), argc, argv); rb_lastline_set(str); return str; }
syscall(num [, args...]) ⇒ Integer
Calls the operating system function identified by num and returns the result of the function or raises ::SystemCallError
if it failed.
Arguments for the function can follow num. They must be either .String objects or .Integer objects. A .String object is passed as a pointer to the byte sequence. An .Integer object is passed as an integer whose bit size is same as a pointer. Up to nine parameters may be passed.
The function identified by num is system dependent. On some Unix systems, the numbers may be obtained from a header file called syscall.h
.
syscall 4, 1, "hello\n", 6 # '4' is write(2) on our box
produces:
hello
Calling syscall
on a platform which does not have any way to an arbitrary system function just fails with ::NotImplementedError
.
Note: syscall
is essentially unsafe and unportable. Feel free to shoot your foot. The DL (Fiddle) library is preferred for safer and a bit more portable programming.
# File 'io.c', line 10217
static VALUE rb_f_syscall(int argc, VALUE *argv, VALUE _) { VALUE arg[8]; #if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */ # define SYSCALL __syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) # if SIZEOF_LONG == 8 long num, retval = -1; # elif SIZEOF_LONG_LONG == 8 long long num, retval = -1; # else # error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<---- # endif #elif defined(__linux__) # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) /* * Linux man page says, syscall(2) function prototype is below. * * int syscall(int number, ...); * * But, it's incorrect. Actual one takes and returned long. (see unistd.h) */ long num, retval = -1; #else # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2INT(x) # define RETVAL2NUM(x) INT2NUM(x) int num, retval = -1; #endif int i; if (RTEST(ruby_verbose)) { rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative."); } if (argc == 0) rb_raise(rb_eArgError, "too few arguments for syscall"); if (argc > numberof(arg)) rb_raise(rb_eArgError, "too many arguments for syscall"); num = NUM2SYSCALLID(argv[0]); ++argv; for (i = argc - 1; i--; ) { VALUE v = rb_check_string_type(argv[i]); if (!NIL_P(v)) { SafeStringValue(v); rb_str_modify(v); arg[i] = (VALUE)StringValueCStr(v); } else { arg[i] = (VALUE)NUM2LONG(argv[i]); } } switch (argc) { case 1: retval = SYSCALL(num); break; case 2: retval = SYSCALL(num, arg[0]); break; case 3: retval = SYSCALL(num, arg[0],arg[1]); break; case 4: retval = SYSCALL(num, arg[0],arg[1],arg[2]); break; case 5: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]); break; case 6: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]); break; case 7: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]); break; case 8: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]); break; } if (retval == -1) rb_sys_fail(0); return RETVAL2NUM(retval); #undef SYSCALL #undef NUM2SYSCALLID #undef RETVAL2NUM }
system([env,] command... [,options], exception: false) ⇒ true
, ...
Executes command… in a subshell. command… is one of following forms.
commandline
-
command line string which is passed to the standard shell
cmdname, arg1, ...
-
command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ...
-
command name,
argv[0]
and zero or more arguments (no shell)
system returns true
if the command gives zero exit status, false
for non zero exit status. Returns nil
if command execution fails. An error status is available in $?
.
If the exception: true
argument is passed, the method raises an exception instead of returning false
or nil
.
The arguments are processed in the same way as for .spawn.
The hash arguments, env and options, are same as #exec
and #spawn
. See .spawn for details.
system("echo *")
system("echo", "*")
produces:
config.h main.rb
*
Error handling:
system("cat nonexistent.txt")
# => false
system("catt nonexistent.txt")
# => nil
system("cat nonexistent.txt", exception: true)
# RuntimeError (Command failed with exit 1: cat)
system("catt nonexistent.txt", exception: true)
# Errno::ENOENT (No such file or directory - catt)
See .exec for the standard shell.
# File 'process.c', line 4732
static VALUE rb_f_system(int argc, VALUE *argv, VALUE _) { /* * n.b. using alloca for now to simplify future Thread::Light code * when we need to use malloc for non-native Fiber */ struct waitpid_state *w = alloca(sizeof(struct waitpid_state)); rb_pid_t pid; /* may be different from waitpid_state.pid on exec failure */ VALUE execarg_obj; struct rb_execarg *eargp; int exec_errnum; execarg_obj = rb_execarg_new(argc, argv, TRUE, TRUE); eargp = rb_execarg_get(execarg_obj); w->ec = GET_EC(); waitpid_state_init(w, 0, 0); eargp->waitpid_state = w; pid = rb_execarg_spawn(execarg_obj, 0, 0); exec_errnum = pid < 0 ? errno : 0; #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) if (w->pid > 0) { /* `pid' (not w->pid) may be < 0 here if execve failed in child */ if (WAITPID_USE_SIGCHLD) { rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); } else { waitpid_no_SIGCHLD(w); } rb_last_status_set(w->status, w->ret); } #endif if (w->pid < 0 /* fork failure */ || pid < 0 /* exec failure */) { if (eargp->exception) { int err = exec_errnum ? exec_errnum : w->errnum; VALUE command = eargp->invoke.sh.shell_script; RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, command); } else { return Qnil; } } if (w->status == EXIT_SUCCESS) return Qtrue; if (eargp->exception) { VALUE command = eargp->invoke.sh.shell_script; VALUE str = rb_str_new_cstr("Command failed with"); rb_str_cat_cstr(pst_message_status(str, w->status), ": "); rb_str_append(str, command); RB_GC_GUARD(execarg_obj); rb_exc_raise(rb_exc_new_str(rb_eRuntimeError, str)); } else { return Qfalse; } }
test(cmd, file1 [, file2] ) ⇒ Object
Uses the character cmd
to perform various tests on file1
(first table below) or on file1
and file2
(second table).
::File
tests on a single file:
Cmd Returns Meaning
"A" | Time | Last access time for file1
"b" | boolean | True if file1 is a block device
"c" | boolean | True if file1 is a character device
"C" | Time | Last change time for file1
"d" | boolean | True if file1 exists and is a directory
"e" | boolean | True if file1 exists
"f" | boolean | True if file1 exists and is a regular file
"g" | boolean | True if file1 has the \CF{setgid} bit
| | set (false under NT)
"G" | boolean | True if file1 exists and has a group
| | ownership equal to the caller's group
"k" | boolean | True if file1 exists and has the sticky bit set
"l" | boolean | True if file1 exists and is a symbolic link
"M" | Time | Last modification time for file1
"o" | boolean | True if file1 exists and is owned by
| | the caller's effective uid
"O" | boolean | True if file1 exists and is owned by
| | the caller's real uid
"p" | boolean | True if file1 exists and is a fifo
"r" | boolean | True if file1 is readable by the effective
| | uid/gid of the caller
"R" | boolean | True if file is readable by the real
| | uid/gid of the caller
"s" | int/nil | If file1 has nonzero size, return the size,
| | otherwise return nil
"S" | boolean | True if file1 exists and is a socket
"u" | boolean | True if file1 has the setuid bit set
"w" | boolean | True if file1 exists and is writable by
| | the effective uid/gid
"W" | boolean | True if file1 exists and is writable by
| | the real uid/gid
"x" | boolean | True if file1 exists and is executable by
| | the effective uid/gid
"X" | boolean | True if file1 exists and is executable by
| | the real uid/gid
"z" | boolean | True if file1 exists and has a zero length
Tests that take two files:
"-" | boolean | True if file1 and file2 are identical
"=" | boolean | True if the modification times of file1
| | and file2 are equal
"<" | boolean | True if the modification time of file1
| | is prior to that of file2
">" | boolean | True if the modification time of file1
| | is after that of file2
# File 'file.c', line 5336
static VALUE rb_f_test(int argc, VALUE *argv, VALUE _) { int cmd; if (argc == 0) rb_check_arity(argc, 2, 3); cmd = NUM2CHR(argv[0]); if (cmd == 0) { goto unknown; } if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) { CHECK(1); switch (cmd) { case 'b': return rb_file_blockdev_p(0, argv[1]); case 'c': return rb_file_chardev_p(0, argv[1]); case 'd': return rb_file_directory_p(0, argv[1]); case 'e': return rb_file_exist_p(0, argv[1]); case 'f': return rb_file_file_p(0, argv[1]); case 'g': return rb_file_sgid_p(0, argv[1]); case 'G': return rb_file_grpowned_p(0, argv[1]); case 'k': return rb_file_sticky_p(0, argv[1]); case 'l': return rb_file_symlink_p(0, argv[1]); case 'o': return rb_file_owned_p(0, argv[1]); case 'O': return rb_file_rowned_p(0, argv[1]); case 'p': return rb_file_pipe_p(0, argv[1]); case 'r': return rb_file_readable_p(0, argv[1]); case 'R': return rb_file_readable_real_p(0, argv[1]); case 's': return rb_file_size_p(0, argv[1]); case 'S': return rb_file_socket_p(0, argv[1]); case 'u': return rb_file_suid_p(0, argv[1]); case 'w': return rb_file_writable_p(0, argv[1]); case 'W': return rb_file_writable_real_p(0, argv[1]); case 'x': return rb_file_executable_p(0, argv[1]); case 'X': return rb_file_executable_real_p(0, argv[1]); case 'z': return rb_file_zero_p(0, argv[1]); } } if (strchr("MAC", cmd)) { struct stat st; VALUE fname = argv[1]; CHECK(1); if (rb_stat(fname, &st) == -1) { int e = errno; FilePathValue(fname); rb_syserr_fail_path(e, fname); } switch (cmd) { case 'A': return stat_atime(&st); case 'M': return stat_mtime(&st); case 'C': return stat_ctime(&st); } } if (cmd == '-') { CHECK(2); return rb_file_identical_p(0, argv[1], argv[2]); } if (strchr("=<>", cmd)) { struct stat st1, st2; struct timespec t1, t2; CHECK(2); if (rb_stat(argv[1], &st1) < 0) return Qfalse; if (rb_stat(argv[2], &st2) < 0) return Qfalse; t1 = stat_mtimespec(&st1); t2 = stat_mtimespec(&st2); switch (cmd) { case '=': if (t1.tv_sec == t2.tv_sec && t1.tv_nsec == t2.tv_nsec) return Qtrue; return Qfalse; case '>': if (t1.tv_sec > t2.tv_sec) return Qtrue; if (t1.tv_sec == t2.tv_sec && t1.tv_nsec > t2.tv_nsec) return Qtrue; return Qfalse; case '<': if (t1.tv_sec < t2.tv_sec) return Qtrue; if (t1.tv_sec == t2.tv_sec && t1.tv_nsec < t2.tv_nsec) return Qtrue; return Qfalse; } } unknown: /* unknown command */ if (ISPRINT(cmd)) { rb_raise(rb_eArgError, "unknown command '%s%c'", cmd == '\'' || cmd == '\\' ? "\\" : "", cmd); } else { rb_raise(rb_eArgError, "unknown command \"\\x%02X\"", cmd); } UNREACHABLE_RETURN(Qundef); }
throw(tag [, obj])
Transfers control to the end of the active .catch block waiting for tag. Raises ::UncaughtThrowError
if there is no .catch block for the tag. The optional second parameter supplies a return value for the .catch block, which otherwise defaults to nil
. For examples, see .catch.
# File 'vm_eval.c', line 2279
static VALUE rb_f_throw(int argc, VALUE *argv, VALUE _) { VALUE tag, value; rb_scan_args(argc, argv, "11", &tag, &value); rb_throw_obj(tag, value); UNREACHABLE_RETURN(Qnil); }
trace_var(symbol, cmd) ⇒ nil
trace_var(symbol) {|val| ... } ⇒ nil
nil
trace_var(symbol) {|val| ... } ⇒ nil
Controls tracing of assignments to global variables. The parameter symbol
identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a ::Proc
object) or block is executed whenever the variable is assigned. The block or ::Proc
object receives the variable’s new value as a parameter. Also see .untrace_var.
trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
$_ = ' there'
produces:
$_ is now 'hello'
$_ is now ' there'
# File 'eval.c', line 2062
static VALUE f_trace_var(int c, const VALUE *a, VALUE _) { return rb_f_trace_var(c, a); }
Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.
Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD") { puts "Child died" }
fork && Process.wait
produces:
Terminating: 27461
Child died
Terminating: 27460
# File 'signal.c', line 1390
static VALUE sig_trap(int argc, VALUE *argv, VALUE _) { int sig; sighandler_t func; VALUE cmd; rb_check_arity(argc, 1, 2); sig = trap_signm(argv[0]); if (reserved_signal_p(sig)) { const char *name = signo2signm(sig); if (name) rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name); else rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig); } if (argc == 1) { cmd = rb_block_proc(); func = sighandler; } else { cmd = argv[1]; func = trap_handler(&cmd, sig); } if (rb_obj_is_proc(cmd) && !rb_ractor_main_p() && !rb_ractor_shareable_p(cmd)) { cmd = rb_proc_isolate(cmd); } return trap(sig, func, cmd); }
untrace_var(symbol [, cmd] ) ⇒ Array?
Removes tracing for the specified command on the given global variable and returns nil
. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.
# File 'eval.c', line 2078
static VALUE f_untrace_var(int c, const VALUE *a, VALUE _) { return rb_f_untrace_var(c, a); }
warn(*msgs, uplevel: nil, category: nil) ⇒ nil
(mod_func)
If warnings have been disabled (for example with the -W0
flag), does nothing. Otherwise, converts each of the messages to strings, appends a newline character to the string if the string does not end in a newline, and calls Warning#warn with the string.
warn("warning 1", "warning 2")
<em>produces:</em>
warning 1
warning 2
If the uplevel
keyword argument is given, the string will be prepended with information for the given caller frame in the same format used by the rb_warn
C function.
# In baz.rb
def foo
warn("invalid call to foo", uplevel: 1)
end
def
foo
end
<em>produces:</em>
baz.rb:6: warning: invalid call to foo
If category
keyword argument is given, passes the category to Warning#warn. The category given must be be one of the following categories:
:deprecated
-
Used for warning for deprecated functionality that may
be removed in the future.
:experimental
-
Used for experimental features that may change in
future releases.
# File 'warning.rb', line 50
def warn(*msgs, uplevel: nil, category: nil) Primitive.rb_warn_m(msgs, uplevel, category) end
Instance Attribute Details
frozen? ⇒ Boolean
(readonly)
Returns the freeze status of obj.
a = [ "a", "b", "c" ]
a.freeze #=> ["a", "b", "c"]
a.frozen? #=> true
# File 'kernel.rb', line 67
def frozen? Primitive.attr! 'inline' Primitive.cexpr! 'rb_obj_frozen_p(self)' end
Instance Method Details
class ⇒ class
Returns the class of obj. This method must always be called with an explicit receiver, as #class
is also a reserved word in Ruby.
1.class #=> Integer
self.class #=> Object
# File 'kernel.rb', line 18
def class Primitive.attr! 'inline' Primitive.cexpr! 'rb_obj_class(self)' end
clone(freeze: nil) ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. #clone
copies the frozen value state of obj, unless the :freeze
keyword argument is given with a false or true value. See also the discussion under Object#dup.
class Klass
attr_accessor :str
end
s1 = Klass.new #=> #<Klass:0x401b3a38>
s1.str = "Hello" #=> "Hello"
s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
s2.str[1,4] = "i" #=> "i"
s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
# File 'kernel.rb', line 47
def clone(freeze: nil) Primitive.rb_obj_clone2(freeze) end
pp(*objs) (private) Also known as: #pp
Alias for pp
.
# File 'prelude.rb', line 19
def pp(*objs) require 'pp' pp(*objs) end
tap {|x| ... } ⇒ Object
Yields self to the block, and then returns self. The primary purpose of this method is to “tap into” a method chain, in order to perform operations on intermediate results within the chain.
(1..10) .tap {|x| puts "original: #{x}" }
.to_a .tap {|x| puts "array: #{x}" }
.select {|x| x.even? } .tap {|x| puts "evens: #{x}" }
.map {|x| x*x } .tap {|x| puts "squares: #{x}" }
# File 'kernel.rb', line 89
def tap yield(self) self end
then {|x| ... } ⇒ Object
Yields self to the block and returns the result of the block.
3.next.then {|x| x**x }.to_s #=> "256"
Good usage for then
is value piping in method chains:
require 'open-uri'
require 'json'
construct_url(arguments).
then {|url| open(url).read }.
then {|response| JSON.parse(response) }
When called without block, the method returns ::Enumerator
, which can be used, for example, for conditional circuit-breaking:
# meets condition, no-op
1.then.detect(&:odd?) # => 1
# does not meet condition, drop value
2.then.detect(&:odd?) # => nil
# File 'kernel.rb', line 120
def then unless Primitive.block_given_p return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, rb_obj_size)' end yield(self) end
yield_self {|x| ... } ⇒ Object
Yields self to the block and returns the result of the block.
"my string".yield_self {|s| s.upcase } #=> "MY STRING"
Good usage for #then is value piping in method chains:
require 'open-uri'
require 'json'
construct_url(arguments).
then {|url| open(url).read }.
then {|response| JSON.parse(response) }
# File 'kernel.rb', line 144
def yield_self unless Primitive.block_given_p return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, rb_obj_size)' end yield(self) end