Class: Hash
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
::Enumerable
|
|
Inherits: | Object |
Defined in: | hash.c |
Overview
A Hash maps each of its unique keys to a specific value.
A Hash has certain similarities to an Array, but:
-
An Array index is always an Integer.
-
A Hash key can be (almost) any object.
Hash Data Syntax
The older syntax for Hash data uses the “hash rocket,” =>
:
h = {:foo => 0, : => 1, :baz => 2}
h # => {:foo=>0, :bar=>1, :baz=>2}
Alternatively, but only for a Hash key that’s a Symbol, you can use a newer JSON-style syntax, where each bareword becomes a Symbol:
h = {foo: 0, bar: 1, baz: 2}
h # => {:foo=>0, :bar=>1, :baz=>2}
You can also use a String in place of a bareword:
h = {'foo': 0, 'bar': 1, 'baz': 2}
h # => {:foo=>0, :bar=>1, :baz=>2}
And you can mix the styles:
h = {foo: 0, : => 1, 'baz': 2}
h # => {:foo=>0, :bar=>1, :baz=>2}
But it’s an error to try the JSON-style syntax for a key that’s not a bareword or a ::String
:
# Raises SyntaxError (syntax error, unexpected ':', expecting =>):
h = {0: 'zero'}
Common Uses
You can use a Hash to give names to objects:
person = {name: 'Matz', language: 'Ruby'}
person # => {:name=>"Matz", :language=>"Ruby"}
You can use a Hash to give names to method arguments:
def some_method(hash)
p hash
end
some_method({foo: 0, bar: 1, baz: 2}) # => {:foo=>0, :bar=>1, :baz=>2}
Note: when the last argument in a method call is a Hash, the curly braces may be omitted:
some_method(foo: 0, bar: 1, baz: 2) # => {:foo=>0, :bar=>1, :baz=>2}
You can use a Hash to initialize an object:
class Dev
attr_accessor :name, :language
def initialize(hash)
self.name = hash[:name]
self.language = hash[:language]
end
end
matz = Dev.new(name: 'Matz', language: 'Ruby')
matz # => #<Dev: @name="Matz", @language="Ruby">
Creating a Hash
Here are three ways to create a Hash:
-
Method .new
-
Method
Hash[]
-
Literal form:
{}
.
You can create a Hash by calling method .new.
Create an empty Hash
:
h = Hash.new
h # => {}
h.class # => Hash
You can create a Hash by calling method .[].
Create an empty Hash
:
h = Hash[]
h # => {}
Create a Hash with initial entries:
h = Hash[foo: 0, bar: 1, baz: 2]
h # => {:foo=>0, :bar=>1, :baz=>2}
You can create a Hash by using its literal form (curly braces).
Create an empty Hash:
h = {}
h # => {}
Create a Hash with initial entries:
h = {foo: 0, bar: 1, baz: 2}
h # => {:foo=>0, :bar=>1, :baz=>2}
Hash Value Basics
The simplest way to retrieve a Hash value (instance method #[]):
h = {foo: 0, bar: 1, baz: 2}
h[:foo] # => 0
The simplest way to create or update a Hash value (instance method #[]=):
h = {foo: 0, bar: 1, baz: 2}
h[:bat] = 3 # => 3
h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
h[:foo] = 4 # => 4
h # => {:foo=>4, :bar=>1, :baz=>2, :bat=>3}
The simplest way to delete a Hash entry (instance method #delete):
h = {foo: 0, bar: 1, baz: 2}
h.delete(: ) # => 1
h # => {:foo=>0, :baz=>2}
Entry Order
A Hash object presents its entries in the order of their creation. This is seen in:
-
Iterative methods such as #each, #each_key, #each_pair, #each_value.
-
Other order-sensitive methods such as #shift, #keys, #values.
-
The String returned by method #inspect.
A new Hash has its initial ordering per the given entries:
h = Hash[foo: 0, bar: 1]
h # => {:foo=>0, :bar=>1}
New entries are added at the end:
h[:baz] = 2
h # => {:foo=>0, :bar=>1, :baz=>2}
Updating a value does not affect the order:
h[:baz] = 3
h # => {:foo=>0, :bar=>1, :baz=>3}
But re-creating a deleted entry can affect the order:
h.delete(:foo)
h[:foo] = 5
h # => {:bar=>1, :baz=>3, :foo=>5}
Hash Keys
Hash Key Equivalence
Two objects are treated as the same hash key when their #hash value is identical and the two objects are #eql? to each other.
Modifying an Active Hash Key
Modifying a Hash key while it is in use damages the hash’s index.
This Hash has keys that are Arrays:
a0 = [ :foo, : ]
a1 = [ :baz, :bat ]
h = {a0 => 0, a1 => 1}
h.include?(a0) # => true
h[a0] # => 0
a0.hash # => 110002110
Modifying array element a0[0]
changes its hash value:
a0[0] = :bam
a0.hash # => 1069447059
And damages the Hash index:
h.include?(a0) # => false
h[a0] # => nil
You can repair the hash index using method #rehash:
h.rehash # => {[:bam, :bar]=>0, [:baz, :bat]=>1}
h.include?(a0) # => true
h[a0] # => 0
A String key is always safe. That’s because an unfrozen String passed as a key will be replaced by a duplicated and frozen String:
s = 'foo'
s.frozen? # => false
h = {s => 0}
first_key = h.keys.first
first_key.frozen? # => true
User-Defined Hash Keys
To be useable as a Hash key, objects must implement the methods #hash and #eql?. Note: this requirement does not apply if the Hash uses #compare_by_id
since comparison will then rely on the keys’ object id instead of #hash and #eql?.
Object defines basic implementation for #hash and eq?
that makes each object a distinct key. Typically, user-defined classes will want to override these methods to provide meaningful behavior, or for example inherit Struct that has useful definitions for these.
A typical implementation of #hash is based on the object’s data while #eql? is usually aliased to the overridden #== method:
class Book
attr_reader :, :title
def initialize(, title)
@author =
@title = title
end
def ==(other)
self.class === other &&
other. == @author &&
other.title == @title
end
alias eql? ==
def hash
@author.hash ^ @title.hash # XOR
end
end
book1 = Book.new 'matz', 'Ruby in a Nutshell'
book2 = Book.new 'matz', 'Ruby in a Nutshell'
reviews = {}
reviews[book1] = 'Great reference!'
reviews[book2] = 'Nice and compact!'
reviews.length #=> 1
Default Values
The methods #[], #values_at and #dig need to return the value associated to a certain key. When that key is not found, that value will be determined by its default proc (if any) or else its default (initially nil
).
You can retrieve the default value with method #default:
h = Hash.new
h.default # => nil
You can set the default value by passing an argument to method .new or with method #default=
h = Hash.new(-1)
h.default # => -1
h.default = 0
h.default # => 0
This default value is returned for #[], #values_at and #dig when a key is not found:
counts = {foo: 42}
counts.default # => nil (default)
counts[:foo] = 42
counts[: ] # => nil
counts.default = 0
counts[: ] # => 0
counts.values_at(:foo, :, :baz) # => [42, 0, 0]
counts.dig(: ) # => 0
Note that the default value is used without being duplicated. It is not advised to set the default value to a mutable object:
synonyms = Hash.new([])
synonyms[:hello] # => []
synonyms[:hello] << :hi # => [:hi], but this mutates the default!
synonyms.default # => [:hi]
synonyms[:world] << :universe
synonyms[:world] # => [:hi, :universe], oops
synonyms.keys # => [], oops
To use a mutable object as default, it is recommended to use a default proc
Default Proc
When the default proc for a Hash is set (i.e., not nil
), the default value returned by method #[] is determined by the default proc alone.
You can retrieve the default proc with method #default_proc:
h = Hash.new
h.default_proc # => nil
You can set the default proc by calling .new with a block or calling the method #default_proc=
h = Hash.new { |hash, key| "Default value for #{key}" }
h.default_proc.class # => Proc
h.default_proc = proc { |hash, key| "Default value for #{key.inspect}" }
h.default_proc.class # => Proc
When the default proc is set (i.e., not nil
) and method #[] is called with with a non-existent key, #[] calls the default proc with both the Hash object itself and the missing key, then returns the proc’s return value:
h = Hash.new { |hash, key| "Default value for #{key}" }
h[:nosuch] # => "Default value for nosuch"
Note that in the example above no entry for key :nosuch
is created:
h.include?(:nosuch) # => false
However, the proc itself can add a new entry:
synonyms = Hash.new { |hash, key| hash[key] = [] }
synonyms.include?(:hello) # => false
synonyms[:hello] << :hi # => [:hi]
synonyms[:world] << :universe # => [:universe]
synonyms.keys # => [:hello, :world]
Note that setting the default proc will clear the default value and vice versa.
Class Method Summary
-
.[] ⇒ Hash
Returns a new Hash object populated with the given objects, if any.
-
.new(default_value = nil) ⇒ Hash
constructor
Returns a new empty Hash object.
-
.ruby2_keywords_hash(hash) ⇒ Hash
Duplicates a given hash and adds a ruby2_keywords flag.
-
.ruby2_keywords_hash?(hash) ⇒ Boolean
Checks if a given hash is flagged by Module#ruby2_keywords (or Proc#ruby2_keywords).
-
.try_convert(obj) ⇒ Object, ...
If
obj
is a Hash object, returnsobj
.
Instance Attribute Summary
-
#compare_by_identity ⇒ self
readonly
Sets
self
to consider only identity in comparing keys; two keys are considered the same only if they are the same object; returnsself
. -
#compare_by_identity? ⇒ Boolean
readonly
Returns
true
if #compare_by_identity has been called,false
otherwise. -
#default_proc ⇒ Proc?
rw
Returns the default proc for
self
(see Default Values): -
#default_proc=(proc) ⇒ Proc
rw
Sets the default proc for
self
toproc
: (see Default Values): -
#empty? ⇒ Boolean
readonly
Returns
true
if there are no hash entries,false
otherwise:
Instance Method Summary
-
#<(other_hash) ⇒ Boolean
Returns
true
if #hash is a proper subset ofother_hash
,false
otherwise: -
#<=(other_hash) ⇒ Boolean
Returns
true
if #hash is a subset ofother_hash
,false
otherwise: -
#==(object) ⇒ Boolean
Returns
true
if all of the following are true: *object
is a Hash object. -
#>(other_hash) ⇒ Boolean
Returns
true
if #hash is a proper superset ofother_hash
,false
otherwise: -
#>=(other_hash) ⇒ Boolean
Returns
true
if #hash is a superset ofother_hash
,false
otherwise: -
#[](key) ⇒ value
Returns the value associated with the given #key, if found:
-
#[]=(key, value) ⇒ value
(also: #store)
#store is an alias for
[]=
. -
#any? ⇒ Boolean
Returns
true
if any element satisfies a given criterion;false
otherwise. -
#assoc(key) ⇒ Array?
If the given #key is found, returns a 2-element Array containing that key and its value:
-
#clear ⇒ self
Removes all hash entries; returns
self
. -
#compact ⇒ Hash
Returns a copy of
self
with allnil
-valued entries removed: -
#compact! ⇒ self?
Returns
self
with all itsnil
-valued entries removed (in place): - #deconstruct_keys(keys)
-
#default ⇒ Object
Returns the default value for the given #key.
-
#default=(value) ⇒ Object
Sets the default value to
value
; returnsvalue
: -
#delete(key) ⇒ value?
Deletes the entry for the given #key and returns its associated value.
-
#delete_if {|key, value| ... } ⇒ self
If a block given, calls the block with each key-value pair; deletes each entry for which the block returns a truthy value; returns
self
: -
#dig(key, *identifiers) ⇒ Object
Finds and returns the object in nested objects that is specified by #key and
identifiers
. -
#each {|key, value| ... } ⇒ self
(also: #each_pair)
each
is an alias for #each_pair. -
#each_key {|key| ... } ⇒ self
Calls the given block with each key; returns
self
: -
#each_pair {|key, value| ... } ⇒ self
Alias for #each.
-
#each_value {|value| ... } ⇒ self
Calls the given block with each value; returns
self
: -
#eql?(object) ⇒ Boolean
Returns
true
if all of the following are true: *object
is a Hash object. -
#except(*keys) ⇒ Hash
Returns a new Hash excluding entries for the given #keys:
-
#fetch(key) ⇒ Object
Returns the value for the given #key, if found.
-
#fetch_values(*keys) ⇒ Array
Returns a new Array containing the values associated with the given keys *keys:
-
#select {|key, value| ... } ⇒ Hash
(also: #select)
filter
is an alias for #select. -
#select! {|key, value| ... } ⇒ self?
(also: #select!)
filter!
is an alias for #select!. -
#flatten ⇒ Array
Returns a new Array object that is a 1-dimensional flattening of
self
. -
#has_key?(key) ⇒ Boolean
Alias for #key?.
-
#has_value?(value) ⇒ Boolean
Alias for #value?.
-
#hash ⇒ Integer
Returns the Integer hash-code for the hash.
-
#include?(key) ⇒ Boolean
Alias for #key?.
-
#initialize_copy(other_hash) ⇒ self
Alias for #replace.
-
#inspect ⇒ String
Alias for #to_s.
-
#invert ⇒ Hash
Returns a new Hash object with the each key-value pair inverted:
-
#keep_if {|key, value| ... } ⇒ self
Calls the block for each key-value pair; retains the entry if the block returns a truthy value; otherwise deletes the entry; returns
self
. -
#key(value) ⇒ key?
Returns the key for the first-found entry with the given
value
(see Entry Order): - #key?(key) ⇒ Boolean (also: #include?, #member?, #has_key?)
-
#keys ⇒ Array
Returns a new Array containing all keys in
self
: -
#length ⇒ Integer
(also: #size)
Returns the count of entries in
self
: -
#member?(key) ⇒ Boolean
Alias for #key?.
-
#merge ⇒ copy_of_self
Returns the new Hash formed by merging each of
other_hashes
into a copy ofself
. -
#merge! ⇒ self
(also: #update)
Merges each of
other_hashes
intoself
; returnsself
. -
#rassoc(value) ⇒ Array?
Returns a new 2-element Array consisting of the key and value of the first-found entry whose value is #== to value (see Entry Order):
-
#rehash ⇒ self
Rebuilds the hash table by recomputing the hash index for each key; returns
self
. -
#reject {|key, value| ... } ⇒ Hash
Returns a new Hash object whose entries are all those from
self
for which the block returnsfalse
ornil
: -
#reject! {|key, value| ... } ⇒ self?
Returns
self
, whose remaining entries are those for which the block returnsfalse
ornil
: -
#replace(other_hash) ⇒ self
(also: #initialize_copy)
Replaces the entire contents of
self
with the contents ofother_hash
; returnsself
: -
#select {|key, value| ... } ⇒ Hash
Alias for #filter.
-
#select! {|key, value| ... } ⇒ self?
Alias for #filter!.
-
#shift ⇒ Array, value
Removes the first hash entry (see Entry Order); returns a 2-element Array containing the removed key and value:
-
#size ⇒ Integer
Alias for #length.
-
#slice(*keys) ⇒ Hash
Returns a new Hash object containing the entries for the given #keys:
-
#store(key, value)
Alias for #[]=.
-
#to_a ⇒ Array
Returns a new Array of 2-element Array objects; each nested Array contains a key-value pair from
self
: -
#to_h ⇒ self, Hash
For an instance of Hash, returns
self
. -
#to_hash ⇒ self
Returns
self
. -
#to_proc ⇒ Proc
Returns a Proc object that maps a key to its value:
-
#to_s ⇒ String
(also: #inspect)
Returns a new String containing the hash entries:
-
#transform_keys {|key| ... } ⇒ Hash
Returns a new Hash object; each entry has: * A key provided by the block.
-
#transform_keys! {|key| ... } ⇒ self
Same as #transform_keys but modifies the receiver in place instead of returning a new hash.
-
#transform_values {|value| ... } ⇒ Hash
Returns a new Hash object; each entry has: * A key from
self
. -
#transform_values! {|value| ... } ⇒ self
Returns
self
, whose keys are unchanged, and whose values are determined by the given block. -
#merge! ⇒ self
Alias for #merge!.
-
#value?(value) ⇒ Boolean
(also: #has_value?)
Returns
true
ifvalue
is a value inself
, otherwisefalse
. -
#values ⇒ Array
Returns a new Array containing all values in
self
: -
#values_at(*keys) ⇒ Array
Returns a new Array containing values for the given #keys:
::Enumerable
- Included
#all? | Passes each element of the collection to the given block. |
#any? | Passes each element of the collection to the given block. |
#chain | Returns an enumerator object generated from this enumerator and given enumerables. |
#chunk | Enumerates over the items, chunking them together based on the return value of the block. |
#chunk_while | Creates an enumerator for each chunked elements. |
#collect | Alias for Enumerable#map. |
#collect_concat | Alias for Enumerable#flat_map. |
#count | Returns the number of items in |
#cycle | Calls block for each element of enum repeatedly n times or forever if none or |
#detect | Alias for Enumerable#find. |
#drop | Drops first n elements from enum, and returns rest elements in an array. |
#drop_while | Drops elements up to, but not including, the first element for which the block returns |
#each_cons | Iterates the given block for each array of consecutive <n> elements. |
#each_entry | Calls block once for each element in |
#each_slice | Iterates the given block for each slice of <n> elements. |
#each_with_index | Calls block with two arguments, the item and its index, for each item in enum. |
#each_with_object | Iterates the given block for each element with an arbitrary object given, and returns the initially given object. |
#entries | Alias for Enumerable#to_a. |
#filter | Returns an array containing all elements of |
#filter_map | Returns a new array containing the truthy results (everything except |
#find | Passes each entry in enum to block. |
#find_all | Alias for Enumerable#filter. |
#find_index | Compares each entry in enum with value or passes to block. |
#first | Returns the first element, or the first |
#flat_map | Returns a new array with the concatenated results of running block once for every element in enum. |
#grep | Returns an array of every element in enum for which |
#grep_v | Inverted version of Enumerable#grep. |
#group_by | Groups the collection by result of the block. |
#include? | Alias for Enumerable#member?. |
#inject | Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator. |
#lazy | Returns an |
#map | Returns a new array with the results of running block once for every element in enum. |
#max | Returns the object in enum with the maximum value. |
#max_by | Returns the object in enum that gives the maximum value from the given block. |
#member? | Returns |
#min | Returns the object in enum with the minimum value. |
#min_by | Returns the object in enum that gives the minimum value from the given block. |
#minmax | Returns a two element array which contains the minimum and the maximum value in the enumerable. |
#minmax_by | Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block. |
#none? | Passes each element of the collection to the given block. |
#one? | Passes each element of the collection to the given block. |
#partition | Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest. |
#reduce | Alias for Enumerable#inject. |
#reject | Returns an array for all elements of |
#reverse_each | Builds a temporary array and traverses that array in reverse order. |
#select | Alias for Enumerable#filter. |
#slice_after | Creates an enumerator for each chunked elements. |
#slice_before | Creates an enumerator for each chunked elements. |
#slice_when | Creates an enumerator for each chunked elements. |
#sort | Returns an array containing the items in enum sorted. |
#sort_by | Sorts enum using a set of keys generated by mapping the values in enum through the given block. |
#sum | Returns the sum of elements in an |
#take | Returns first n elements from enum. |
#take_while | Passes elements to the block until the block returns |
#tally | Tallies the collection, i.e., counts the occurrences of each element. |
#to_a | Returns an array containing the items in enum. |
#to_h | Returns the result of interpreting enum as a list of |
#uniq | Returns a new array by removing duplicate values in |
#zip | Takes one element from enum and merges corresponding elements from each args. |
Constructor Details
.new(default_value = nil) ⇒ Hash
.new {|hash, key| ... } ⇒ Hash
Hash
.new {|hash, key| ... } ⇒ Hash
Returns a new empty Hash object.
The initial default value and initial default proc for the new hash depend on which form above was used. See Default Values.
If neither an argument nor a block given, initializes both the default value and the default proc to nil
:
h = Hash.new
h.default # => nil
h.default_proc # => nil
If argument default_value
given but no block given, initializes the default value to the given default_value
and the default proc to nil
:
h = Hash.new(false)
h.default # => false
h.default_proc # => nil
If a block given but no argument, stores the block as the default proc and sets the default value to nil
:
h = Hash.new {|hash, key| "Default value for #{key}" }
h.default # => nil
h.default_proc.class # => Proc
h[:nosuch] # => "Default value for nosuch"
# File 'hash.c', line 1771
static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { rb_check_arity(argc, 0, 0); ifnone = rb_block_proc(); SET_PROC_DEFAULT(hash, ifnone); } else { rb_check_arity(argc, 0, 1); ifnone = argc == 0 ? Qnil : argv[0]; RHASH_SET_IFNONE(hash, ifnone); } return hash; }
Class Method Details
.[] ⇒ Hash
.[](hash) ⇒ Hash
.[]([*2_element_arrays] ) ⇒ Hash
.[](*objects) ⇒ Hash
Hash
.[](hash) ⇒ Hash
.[]([*2_element_arrays] ) ⇒ Hash
.[](*objects) ⇒ Hash
Returns a new Hash object populated with the given objects, if any. See .new.
With no argument, returns a new empty Hash.
When the single given argument is a Hash, returns a new Hash populated with the entries from the given Hash.
h = {foo: 0, bar: 1, baz: 2}
Hash[h] # => {:foo=>0, :bar=>1, :baz=>2}
When the single given argument is an Array of 2-element Arrays, returns a new Hash object wherein each 2-element array forms a key-value entry:
Hash[ [ [:foo, 0], [:, 1] ] ] # => {:foo=>0, :bar=>1}
When the argument count is an even number; returns a new Hash object wherein each successive pair of arguments has become a key-value entry:
Hash[:foo, 0, :, 1] # => {:foo=>0, :bar=>1}
Raises an exception if the argument list does not conform to any of the above.
# File 'hash.c', line 1820
static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); hash_copy(hash, tmp); return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE e = RARRAY_AREF(tmp, i); VALUE v = rb_check_array_type(e); VALUE key, val = Qnil; if (NIL_P(v)) { rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); } switch (RARRAY_LEN(v)) { default: rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)", RARRAY_LEN(v)); case 2: val = RARRAY_AREF(v, 1); case 1: key = RARRAY_AREF(v, 0); rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); rb_hash_bulk_insert(argc, argv, hash); hash_verify(hash); return hash; }
.ruby2_keywords_hash(hash) ⇒ Hash
Duplicates a given hash and adds a ruby2_keywords flag. This method is not for casual use; debugging, researching, and some truly necessary cases like deserialization of arguments.
h = {k: 1}
h = Hash.ruby2_keywords_hash(h)
def foo(k: 42)
k
end
foo(*[h]) #=> 1 with neither a warning or an error
# File 'hash.c', line 1940
static VALUE rb_hash_s_ruby2_keywords_hash(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); hash = rb_hash_dup(hash); RHASH(hash)->basic.flags |= RHASH_PASS_AS_KEYWORDS; return hash; }
.ruby2_keywords_hash?(hash) ⇒ Boolean
Checks if a given hash is flagged by Module#ruby2_keywords (or Proc#ruby2_keywords). This method is not for casual use; debugging, researching, and some truly necessary cases like serialization of arguments.
ruby2_keywords def foo(*args)
Hash.ruby2_keywords_hash?(args.last)
end
foo(k: 1) #=> true
foo({k: 1}) #=> false
# File 'hash.c', line 1918
static VALUE rb_hash_s_ruby2_keywords_hash_p(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); return (RHASH(hash)->basic.flags & RHASH_PASS_AS_KEYWORDS) ? Qtrue : Qfalse; }
.try_convert(obj) ⇒ Object, ...
If obj
is a Hash object, returns obj
.
Otherwise if obj
responds to :to_hash
, calls obj.to_hash
and returns the result.
Returns nil
if obj
does not respond to :to_hash
Raises an exception unless obj.to_hash
returns a Hash object.
# File 'hash.c', line 1897
static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_hash_type(hash); }
Instance Attribute Details
#compare_by_identity ⇒ self
(readonly)
Sets self
to consider only identity in comparing keys; two keys are considered the same only if they are the same object; returns self
.
By default, these two object are considered to be the same key, so s1
will overwrite s0
:
s0 = 'x'
s1 = 'x'
h = {}
h.compare_by_identity? # => false
h[s0] = 0
h[s1] = 1
h # => {"x"=>1}
After calling #compare_by_identity, the keys are considered to be different, and therefore do not overwrite each other:
h = {}
h.compare_by_identity # => {}
h.compare_by_identity? # => true
h[s0] = 0
h[s1] = 1
h # => {"x"=>0, "x"=>1}
# File 'hash.c', line 4419
static VALUE rb_hash_compare_by_id(VALUE hash) { VALUE tmp; st_table *identtable; if (rb_hash_compare_by_id_p(hash)) return hash; rb_hash_modify_check(hash); ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); tmp = hash_alloc(0); identtable = rb_init_identtable_with_size(RHASH_SIZE(hash)); RHASH_ST_TABLE_SET(tmp, identtable); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_TABLE_SET(hash, identtable); RHASH_ST_CLEAR(tmp); rb_gc_force_recycle(tmp); return hash; }
#compare_by_identity? ⇒ Boolean
(readonly)
Returns true
if #compare_by_identity has been called, false
otherwise.
# File 'hash.c', line 4450
MJIT_FUNC_EXPORTED VALUE rb_hash_compare_by_id_p(VALUE hash) { if (RHASH_ST_TABLE_P(hash) && RHASH_ST_TABLE(hash)->type == &identhash) { return Qtrue; } else { return Qfalse; } }
#default_proc ⇒ Proc? (rw)
Returns the default proc for self
(see Default Values):
h = {}
h.default_proc # => nil
h.default_proc = proc {|hash, key| "Default value for #{key}" }
h.default_proc.class # => Proc
# File 'hash.c', line 2229
static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; }
#default_proc=(proc) ⇒ Proc (rw)
Sets the default proc for self
to proc
: (see Default Values):
h = {}
h.default_proc # => nil
h.default_proc = proc { |hash, key| "Default value for #{key}" }
h.default_proc.class # => Proc
h.default_proc = nil
h.default_proc # => nil
# File 'hash.c', line 2252
VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify_check(hash); if (NIL_P(proc)) { SET_DEFAULT(hash, proc); return proc; } b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; SET_PROC_DEFAULT(hash, proc); return proc; }
#empty? ⇒ Boolean
(readonly)
Returns true
if there are no hash entries, false
otherwise:
{}.empty? # => true
{foo: 0, bar: 1, baz: 2}.empty? # => false
# File 'hash.c', line 3020
static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; }
Instance Method Details
#<(other_hash) ⇒ Boolean
Returns true
if #hash is a proper subset of other_hash
, false
otherwise:
h1 = {foo: 0, bar: 1}
h2 = {foo: 0, bar: 1, baz: 2}
h1 < h2 # => true
h2 < h1 # => false
h1 < h1 # => false
# File 'hash.c', line 4661
static VALUE rb_hash_lt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); }
#<=(other_hash) ⇒ Boolean
Returns true
if #hash is a subset of other_hash
, false
otherwise:
h1 = {foo: 0, bar: 1}
h2 = {foo: 0, bar: 1, baz: 2}
h1 <= h2 # => true
h2 <= h1 # => false
h1 <= h1 # => true
# File 'hash.c', line 4642
static VALUE rb_hash_le(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); }
#==(object) ⇒ Boolean
Returns true
if all of the following are true:
-
object
is a Hash object. -
#hash and
object
have the same keys (regardless of order). -
For each key #key,
hash[key] == object[key]
.
Otherwise, returns false
.
Equal:
h1 = {foo: 0, bar: 1, baz: 2}
h2 = {foo: 0, bar: 1, baz: 2}
h1 == h2 # => true
h3 = {baz: 2, bar: 1, foo: 0}
h1 == h3 # => true
# File 'hash.c', line 3797
static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); }
#>(other_hash) ⇒ Boolean
Returns true
if #hash is a proper superset of other_hash
, false
otherwise:
h1 = {foo: 0, bar: 1, baz: 2}
h2 = {foo: 0, bar: 1}
h1 > h2 # => true
h2 > h1 # => false
h1 > h1 # => false
# File 'hash.c', line 4699
static VALUE rb_hash_gt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); }
#>=(other_hash) ⇒ Boolean
Returns true
if #hash is a superset of other_hash
, false
otherwise:
h1 = {foo: 0, bar: 1, baz: 2}
h2 = {foo: 0, bar: 1}
h1 >= h2 # => true
h2 >= h1 # => false
h1 >= h1 # => true
# File 'hash.c', line 4680
static VALUE rb_hash_ge(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); }
#[](key) ⇒ value
Returns the value associated with the given #key, if found:
h = {foo: 0, bar: 1, baz: 2}
h[:foo] # => 0
If #key is not found, returns a default value (see Default Values):
h = {foo: 0, bar: 1, baz: 2}
h[:nosuch] # => nil
# File 'hash.c', line 2064
VALUE rb_hash_aref(VALUE hash, VALUE key) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return rb_hash_default_value(hash, key); } }
#[]=(key, value) ⇒ value
#store(key, value)
Also known as: #store
value
#store(key, value)
#store is an alias for []=
.
Associates the given value
with the given #key; returns value
.
If the given #key exists, replaces its value with the given value
; the ordering is not affected (see Entry Order):
h = {foo: 0, bar: 1}
h[:foo] = 2 # => 2
h.store(:, 3) # => 3
h # => {:foo=>2, :bar=>3}
If #key does not exist, adds the #key and value
; the new entry is last in the order (see Entry Order):
h = {foo: 0, bar: 1}
h[:baz] = 2 # => 2
h.store(:bat, 3) # => 3
h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
# File 'hash.c', line 2919
VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { int iter_lev = RHASH_ITER_LEV(hash); rb_hash_modify(hash); if (RHASH_TABLE_NULL_P(hash)) { if (iter_lev > 0) no_new_key(); ar_alloc_table(hash); } if (RHASH_TYPE(hash) == &identhash || rb_obj_class(key) != rb_cString) { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val); } else { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val); } return val; }
#any? ⇒ Boolean
#any?(object) ⇒ Boolean
#any? {|key, value| ... } ⇒ Boolean
Boolean
#any?(object) ⇒ Boolean
#any? {|key, value| ... } ⇒ Boolean
Returns true
if any element satisfies a given criterion; false
otherwise.
With no argument and no block, returns true
if self
is non-empty; false
if empty.
With argument object
and no block, returns true
if for any key #key h.assoc(key) == object
:
h = {foo: 0, bar: 1, baz: 2}
h.any?([:, 1]) # => true
h.any?([:, 0]) # => false
h.any?([:baz, 1]) # => false
With no argument and a block, calls the block with each key-value pair; returns true
if the block returns any truthy value, false
otherwise:
h = {foo: 0, bar: 1, baz: 2}
h.any? {|key, value| value < 3 } # => true
h.any? {|key, value| value > 3 } # => false
# File 'hash.c', line 4543
static VALUE rb_hash_any_p(int argc, VALUE *argv, VALUE hash) { VALUE args[2]; args[0] = Qfalse; rb_check_arity(argc, 0, 1); if (RHASH_EMPTY_P(hash)) return Qfalse; if (argc) { if (rb_block_given_p()) { rb_warn("given block not used"); } args[1] = argv[0]; rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args); } else { if (!rb_block_given_p()) { /* yields pairs, never false */ return Qtrue; } if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, any_p_i_fast, (VALUE)args); else rb_hash_foreach(hash, any_p_i, (VALUE)args); } return args[0]; }
#assoc(key) ⇒ Array?
# File 'hash.c', line 4178
VALUE rb_hash_assoc(VALUE hash, VALUE key) { st_table *table; const struct st_hash_type *orighash; VALUE args[2]; if (RHASH_EMPTY_P(hash)) return Qnil; ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); table = RHASH_ST_TABLE(hash); orighash = table->type; if (orighash != &identhash) { VALUE value; struct reset_hash_type_arg ensure_arg; struct st_hash_type assochash; assochash.compare = assoc_cmp; assochash.hash = orighash->hash; table->type = &assochash; args[0] = hash; args[1] = key; ensure_arg.hash = hash; ensure_arg.orighash = orighash; value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg); if (value != Qundef) return rb_assoc_new(key, value); } args[0] = key; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; }
#clear ⇒ self
Removes all hash entries; returns self
.
# File 'hash.c', line 2837
VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (RHASH_ITER_LEV(hash) > 0) { rb_hash_foreach(hash, clear_i, 0); } else if (RHASH_AR_TABLE_P(hash)) { ar_clear(hash); } else { st_clear(RHASH_ST_TABLE(hash)); } return hash; }
#compact ⇒ Hash
Returns a copy of self
with all nil
-valued entries removed:
h = {foo: 0, bar: nil, baz: 2, bat: nil}
h1 = h.compact
h1 # => {:foo=>0, :baz=>2}
# File 'hash.c', line 4354
static VALUE rb_hash_compact(VALUE hash) { VALUE result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, set_if_not_nil, result); } return result; }
#compact! ⇒ self
?
Returns self
with all its nil
-valued entries removed (in place):
h = {foo: 0, bar: nil, baz: 2, bat: nil}
h.compact! # => {:foo=>0, :baz=>2}
Returns nil
if no entries were removed.
# File 'hash.c', line 4375
static VALUE rb_hash_compact_bang(VALUE hash) { st_index_t n; rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (n) { rb_hash_foreach(hash, delete_if_nil, hash); if (n != RHASH_SIZE(hash)) return hash; } return Qnil; }
#deconstruct_keys(keys)
[ GitHub ]# File 'hash.c', line 4732
static VALUE rb_hash_deconstruct_keys(VALUE hash, VALUE keys) { return hash; }
Returns the default value for the given #key. The returned value will be determined either by the default proc or by the default value. See Default Values.
With no argument, returns the current default value:
h = {}
h.default # => nil
If #key is given, returns the default value for #key, regardless of whether that key exists:
h = Hash.new { |hash, key| hash[key] = "No key #{key}"}
h[:foo] = "Hello"
h.default(:foo) # => "No key foo"
# File 'hash.c', line 2182
static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_check_arity(argc, 0, 1); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return call_default_proc(ifnone, hash, argv[0]); } return ifnone; }
#default=(value) ⇒ Object
Sets the default value to value
; returns value
:
h = {}
h.default # => nil
h.default = false # => false
h.default # => false
See Default Values.
# File 'hash.c', line 2209
static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify_check(hash); SET_DEFAULT(hash, ifnone); return ifnone; }
#delete(key) ⇒ value
?
#delete(key) {|key| ... } ⇒ Object
value
?
#delete(key) {|key| ... } ⇒ Object
Deletes the entry for the given #key and returns its associated value.
If no block is given and #key is found, deletes the entry and returns the associated value:
h = {foo: 0, bar: 1, baz: 2}
h.delete(: ) # => 1
h # => {:foo=>0, :baz=>2}
If no block given and #key is not found, returns nil
.
If a block is given and #key is found, ignores the block, deletes the entry, and returns the associated value:
h = {foo: 0, bar: 1, baz: 2}
h.delete(:baz) { |key| raise 'Will never happen'} # => 2
h # => {:foo=>0, :bar=>1}
If a block is given and #key is not found, calls the block and returns the block’s return value:
h = {foo: 0, bar: 1, baz: 2}
h.delete(:nosuch) { |key| "Key #{key} not found" } # => "Key nosuch not found"
h # => {:foo=>0, :bar=>1, :baz=>2}
# File 'hash.c', line 2385
static VALUE rb_hash_delete_m(VALUE hash, VALUE key) { VALUE val; rb_hash_modify_check(hash); val = rb_hash_delete_entry(hash, key); if (val != Qundef) { return val; } else { if (rb_block_given_p()) { return rb_yield(key); } else { return Qnil; } } }
#delete_if {|key, value| ... } ⇒ self
#delete_if ⇒ Enumerator
self
#delete_if ⇒ Enumerator
If a block given, calls the block with each key-value pair; deletes each entry for which the block returns a truthy value; returns self
:
h = {foo: 0, bar: 1, baz: 2}
h.delete_if {|key, value| value > 0 } # => {:foo=>0}
If no block given, returns a new Enumerator:
h = {foo: 0, bar: 1, baz: 2}
e = h.delete_if # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:delete_if>
e.each { |key, value| value > 0 } # => {:foo=>0}
# File 'hash.c', line 2508
VALUE rb_hash_delete_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, delete_if_i, hash); } return hash; }
#dig(key, *identifiers) ⇒ Object
Finds and returns the object in nested objects that is specified by #key and identifiers
. The nested objects may be instances of various classes. See Dig Methods
.
Nested Hashes:
h = {foo: {bar: {baz: 2}}}
h.dig(:foo) # => {:bar=>{:baz=>2}}
h.dig(:foo, : ) # => {:bar=>{:baz=>2}}
h.dig(:foo, :, :baz) # => 2
h.dig(:foo, :, :BAZ) # => nil
Nested Hashes and Arrays:
h = {foo: {bar: [:a, :b, :c]}}
h.dig(:foo, :, 2) # => :c
This method will use the default values for keys that are not present:
h = {foo: {bar: [:a, :b, :c]}}
h.dig(:hello) # => nil
h.default_proc = -> (hash, _key) { hash }
h.dig(:hello, :world) # => h
h.dig(:hello, :world, :foo, :, 2) # => :c
# File 'hash.c', line 4601
static VALUE rb_hash_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_hash_aref(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); }
#each {|key, value| ... } ⇒ self
#each_pair {|key, value| ... } ⇒ self
#each ⇒ Enumerator
#each_pair ⇒ Enumerator
Also known as: #each_pair
self
#each_pair {|key, value| ... } ⇒ self
#each ⇒ Enumerator
#each_pair ⇒ Enumerator
each
is an alias for #each_pair.
Calls the given block with each key-value pair; returns self
:
h = {foo: 0, bar: 1, baz: 2}
h.each_pair {|key, value| puts "#{key}: #{value}"} # => {:foo=>0, :bar=>1, :baz=>2}
Output:
foo: 0
: 1
baz: 2
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.each_pair # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_pair>
h1 = e.each {|key, value| puts "#{key}: #{value}"}
h1 # => {:foo=>0, :bar=>1, :baz=>2}
Output:
foo: 0
: 1
baz: 2
# File 'hash.c', line 3148
static VALUE rb_hash_each_pair(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, each_pair_i_fast, 0); else rb_hash_foreach(hash, each_pair_i, 0); return hash; }
#each_key {|key| ... } ⇒ self
#each_key ⇒ Enumerator
self
#each_key ⇒ Enumerator
Calls the given block with each key; returns self
:
h = {foo: 0, bar: 1, baz: 2}
h.each_key {|key| puts key } # => {:foo=>0, :bar=>1, :baz=>2}
Output:
foo
baz
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.each_key # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_key>
h1 = e.each {|key| puts key }
h1 # => {:foo=>0, :bar=>1, :baz=>2}
Output:
foo
baz
# File 'hash.c', line 3095
static VALUE rb_hash_each_key(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_key_i, 0); return hash; }
#each {|key, value| ... } ⇒ self
#each_pair {|key, value| ... } ⇒ self
#each ⇒ Enumerator
#each_pair ⇒ Enumerator
self
#each_pair {|key, value| ... } ⇒ self
#each ⇒ Enumerator
#each_pair ⇒ Enumerator
Alias for #each.
#each_value {|value| ... } ⇒ self
#each_value ⇒ Enumerator
self
#each_value ⇒ Enumerator
Calls the given block with each value; returns self
:
h = {foo: 0, bar: 1, baz: 2}
h.each_value {|value| puts value } # => {:foo=>0, :bar=>1, :baz=>2}
Output:
0
1
2
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.each_value # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_value>
h1 = e.each {|value| puts value }
h1 # => {:foo=>0, :bar=>1, :baz=>2}
Output:
0
1
2
# File 'hash.c', line 3057
static VALUE rb_hash_each_value(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_value_i, 0); return hash; }
#eql?(object) ⇒ Boolean
Returns true
if all of the following are true:
-
object
is a Hash object. -
#hash and
object
have the same keys (regardless of order). -
For each key #key,
h[key] eql? object[key]
.
Otherwise, returns false
.
Equal:
h1 = {foo: 0, bar: 1, baz: 2}
h2 = {foo: 0, bar: 1, baz: 2}
h1.eql? h2 # => true
h3 = {baz: 2, bar: 1, foo: 0}
h1.eql? h3 # => true
# File 'hash.c', line 3822
static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); }
#except(*keys) ⇒ Hash
# File 'hash.c', line 2640
static VALUE rb_hash_except(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, result; result = hash_alloc(rb_cHash); hash_copy(result, hash); for (i = 0; i < argc; i++) { key = argv[i]; rb_hash_delete(result, key); } return result; }
Returns the value for the given #key, if found.
h = {foo: 0, bar: 1, baz: 2}
h.fetch(: ) # => 1
If #key is not found and no block was given, returns default_value
:
{}.fetch(:nosuch, :default) # => :default
{}.fetch(:nosuch) # => nil
If #key is not found and a block was given, yields #key to the block and returns the block’s return value:
{}.fetch(:nosuch) {|key| "No key #{key}"} # => "No key nosuch"
Raises KeyError if neither default_value
nor a block was given.
Note that this method does not use the values of either #default or #default_proc.
# File 'hash.c', line 2120
static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key; st_data_t val; long block_given; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { if (block_given) { return rb_yield(key); } else if (argc == 1) { VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc)) { desc = rb_any_to_s(key); } desc = rb_str_ellipsize(desc, 65); rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key); } else { return argv[1]; } } }
Returns a new Array containing the values associated with the given keys *keys:
h = {foo: 0, bar: 1, baz: 2}
h.fetch_values(:baz, :foo) # => [2, 0]
Returns a new empty Array if no arguments given.
When a block is given, calls the block with each missing key, treating the block’s return value as the value for that key:
h = {foo: 0, bar: 1, baz: 2}
values = h.fetch_values(:, :foo, :bad, :bam) {|key| key.to_s}
values # => [1, 0, "bad", "bam"]
When no block is given, raises an exception if any given key is not found.
# File 'hash.c', line 2702
static VALUE rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i<argc; i++) { rb_ary_push(result, rb_hash_fetch(hash, argv[i])); } return result; }
#select {|key, value| ... } ⇒ Hash
#select ⇒ Enumerator
Also known as: #select
Hash
#select ⇒ Enumerator
filter
is an alias for #select.
Returns a new Hash object whose entries are those for which the block returns a truthy value:
h = {foo: 0, bar: 1, baz: 2}
h.select {|key, value| value < 2 } # => {:foo=>0, :bar=>1}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.select # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:select>
e.each {|key, value| value < 2 } # => {:foo=>0, :bar=>1}
# File 'hash.c', line 2740
static VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, select_i, result); } return result; }
#select! {|key, value| ... } ⇒ self
?
#select! ⇒ Enumerator
Also known as: #select!
self
?
#select! ⇒ Enumerator
filter!
is an alias for #select!.
Returns self
, whose entries are those for which the block returns a truthy value:
h = {foo: 0, bar: 1, baz: 2}
h.select! {|key, value| value < 2 } => {:foo=>0, :=>1}
Returns nil
if no entries were removed.
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.select! # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:select!>
e.each { |key, value| value < 2 } # => {:foo=>0, :bar=>1}
# File 'hash.c', line 2782
static VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; }
Returns a new Array object that is a 1-dimensional flattening of self
.
By default, nested Arrays are not flattened:
h = {foo: 0, bar: [:bat, 3], baz: 2}
h.flatten # => [:foo, 0, :bar, [:bat, 3], :baz, 2]
Takes the depth of recursive flattening from Integer argument level
:
h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]}
h.flatten(1) # => [:foo, 0, :bar, [:bat, [:baz, [:bat]]]]
h.flatten(2) # => [:foo, 0, :bar, :bat, [:baz, [:bat]]]
h.flatten(3) # => [:foo, 0, :bar, :bat, :baz, [:bat]]
h.flatten(4) # => [:foo, 0, :bar, :bat, :baz, :bat]
When level
is negative, flattens all nested Arrays:
h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]}
h.flatten(-1) # => [:foo, 0, :bar, :bat, :baz, :bat]
h.flatten(-2) # => [:foo, 0, :bar, :bat, :baz, :bat]
When level
is zero, returns the equivalent of #to_a :
h = {foo: 0, bar: [:bat, 3], baz: 2}
h.flatten(0) # => [[:foo, 0], [:bar, [:bat, 3]], [:baz, 2]]
h.flatten(0) == h.to_a # => true
# File 'hash.c', line 4293
static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary; rb_check_arity(argc, 0, 1); if (argc) { int level = NUM2INT(argv[0]); if (level == 0) return rb_hash_to_a(hash); ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); level--; if (level > 0) { VALUE ary_flatten_level = INT2FIX(level); rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level); } else if (level < 0) { /* flatten recursively */ rb_funcallv(ary, id_flatten_bang, 0, 0); } } else { ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); } return ary; }
#include?(key) ⇒ Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Alias for #key?.
#value?(value) ⇒ Boolean
#has_value?(value) ⇒ Boolean
Boolean
#has_value?(value) ⇒ Boolean
Alias for #value?.
#hash ⇒ Integer
Returns the Integer hash-code for the hash.
Two Hash objects have the same hash-code if their content is the same (regardless or order):
h1 = {foo: 0, bar: 1, baz: 2}
h2 = {baz: 2, bar: 1, foo: 0}
h2.hash == h1.hash # => true
h2.eql? h1 # => true
# File 'hash.c', line 3854
static VALUE rb_hash_hash(VALUE hash) { st_index_t size = RHASH_SIZE(hash); st_index_t hval = rb_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash); if (size) { rb_hash_foreach(hash, hash_i, (VALUE)&hval); } hval = rb_hash_end(hval); return ST2FIX(hval); }
#include?(key) ⇒ Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Alias for #key?.
#replace(other_hash) ⇒ self
#initialize_copy(other_hash) ⇒ self
self
#initialize_copy(other_hash) ⇒ self
Alias for #replace.
Alias for #to_s.
#invert ⇒ Hash
Returns a new Hash object with the each key-value pair inverted:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.invert
h1 # => {0=>:foo, 1=>:bar, 2=>:baz}
Overwrites any repeated new keys: (see Entry Order):
h = {foo: 0, bar: 0, baz: 0}
h.invert # => {0=>:baz}
# File 'hash.c', line 3889
static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; }
#keep_if {|key, value| ... } ⇒ self
#keep_if ⇒ Enumerator
self
#keep_if ⇒ Enumerator
Calls the block for each key-value pair; retains the entry if the block returns a truthy value; otherwise deletes the entry; returns self
.
h = {foo: 0, bar: 1, baz: 2}
h.keep_if { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.keep_if # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:keep_if>
e.each { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2}
# File 'hash.c', line 2813
static VALUE rb_hash_keep_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, keep_if_i, hash); } return hash; }
#key(value) ⇒ key?
Returns the key for the first-found entry with the given value
(see Entry Order):
h = {foo: 0, bar: 2, baz: 2}
h.key(0) # => :foo
h.key(2) # => :bar
Returns nil
if so such value is found.
# File 'hash.c', line 2298
static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; }
#include?(key) ⇒ Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Also known as: #include?, #member?, #has_key?
Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
# File 'hash.c', line 3656
MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (hash_stlike_lookup(hash, key, NULL)) { return Qtrue; } else { return Qfalse; } }
#keys ⇒ Array
Returns a new Array containing all keys in self
:
h = {foo: 0, bar: 1, baz: 2}
h.keys # => [:foo, :bar, :baz]
# File 'hash.c', line 3567
MJIT_FUNC_EXPORTED VALUE rb_hash_keys(VALUE hash) { st_index_t size = RHASH_SIZE(hash); VALUE keys = rb_ary_new_capa(size); if (size == 0) return keys; if (ST_DATA_COMPATIBLE_P(VALUE)) { RARRAY_PTR_USE_TRANSIENT(keys, ptr, { if (RHASH_AR_TABLE_P(hash)) { size = ar_keys(hash, ptr, size); } else { st_table *table = RHASH_ST_TABLE(hash); size = st_keys(table, ptr, size); } }); rb_gc_writebarrier_remember(keys); rb_ary_set_len(keys, size); } else { rb_hash_foreach(hash, keys_i, keys); } return keys; }
Also known as: #size
Returns the count of entries in self
:
{foo: 0, bar: 1, baz: 2}.length # => 3
length
is an alias for #size.
# File 'hash.c', line 2999
VALUE rb_hash_size(VALUE hash) { return INT2FIX(RHASH_SIZE(hash)); }
#include?(key) ⇒ Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Boolean
#has_key?(key) ⇒ Boolean
#key?(key) ⇒ Boolean
#member?(key) ⇒ Boolean
Alias for #key?.
#merge ⇒ copy_of_self
#merge(*other_hashes) ⇒ Hash
#merge(*other_hashes) {|key, old_value, new_value| ... } ⇒ Hash
copy_of_self
#merge(*other_hashes) ⇒ Hash
#merge(*other_hashes) {|key, old_value, new_value| ... } ⇒ Hash
Returns the new Hash formed by merging each of other_hashes
into a copy of self
.
Each argument in other_hashes
must be a Hash.
With arguments and no block:
-
Returns the new Hash object formed by merging each successive Hash in
other_hashes
intoself
. -
Each new-key entry is added at the end.
-
Each duplicate-key entry’s value overwrites the previous value.
Example:
h = {foo: 0, bar: 1, baz: 2}
h1 = {bat: 3, bar: 4}
h2 = {bam: 5, bat:6}
h.merge(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
With arguments and a block:
-
Returns a new Hash object that is the merge of
self
and each given hash. -
The given hashes are merged left to right.
-
Each new-key entry is added at the end.
-
For each duplicate key:
-
Calls the block with the key and the old and new values.
-
The block’s return value becomes the new value for the entry.
-
Example:
h = {foo: 0, bar: 1, baz: 2}
h1 = {bat: 3, bar: 4}
h2 = {bam: 5, bat:6}
h3 = h.merge(h1, h2) { |key, old_value, new_value| old_value + new_value }
h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
With no arguments:
-
Returns a copy of
self
. -
The block, if given, is ignored.
Example:
h = {foo: 0, bar: 1, baz: 2}
h.merge # => {:foo=>0, :bar=>1, :baz=>2}
h1 = h.merge { |key, old_value, new_value| raise 'Cannot happen' }
h1 # => {:foo=>0, :bar=>1, :baz=>2}
# File 'hash.c', line 4122
static VALUE rb_hash_merge(int argc, VALUE *argv, VALUE self) { return rb_hash_update(argc, argv, rb_hash_dup(self)); }
#merge! ⇒ self
#merge!(*other_hashes) ⇒ self
#merge!(*other_hashes) {|key, old_value, new_value| ... } ⇒ self
Also known as: #update
self
#merge!(*other_hashes) ⇒ self
#merge!(*other_hashes) {|key, old_value, new_value| ... } ⇒ self
Merges each of other_hashes
into self
; returns self
.
Each argument in other_hashes
must be a Hash.
Method #update is an alias for #merge!.
With arguments and no block:
-
Returns
self
, after the given hashes are merged into it. -
The given hashes are merged left to right.
-
Each new entry is added at the end.
-
Each duplicate-key entry’s value overwrites the previous value.
Example:
h = {foo: 0, bar: 1, baz: 2}
h1 = {bat: 3, bar: 4}
h2 = {bam: 5, bat:6}
h.merge!(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
With arguments and a block:
-
Returns
self
, after the given hashes are merged. -
The given hashes are merged left to right.
-
Each new-key entry is added at the end.
-
For each duplicate key:
-
Calls the block with the key and the old and new values.
-
The block’s return value becomes the new value for the entry.
-
Example:
h = {foo: 0, bar: 1, baz: 2}
h1 = {bat: 3, bar: 4}
h2 = {bam: 5, bat:6}
h3 = h.merge!(h1, h2) { |key, old_value, new_value| old_value + new_value }
h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
With no arguments:
-
Returns
self
, unmodified. -
The block, if given, is ignored.
Example:
h = {foo: 0, bar: 1, baz: 2}
h.merge # => {:foo=>0, :bar=>1, :baz=>2}
h1 = h.merge! { |key, old_value, new_value| raise 'Cannot happen' }
h1 # => {:foo=>0, :bar=>1, :baz=>2}
# File 'hash.c', line 3998
static VALUE rb_hash_update(int argc, VALUE *argv, VALUE self) { int i; bool block_given = rb_block_given_p(); rb_hash_modify(self); for (i = 0; i < argc; i++){ VALUE hash = to_hash(argv[i]); if (block_given) { rb_hash_foreach(hash, rb_hash_update_block_i, self); } else { rb_hash_foreach(hash, rb_hash_update_i, self); } } return self; }
#rassoc(value) ⇒ Array?
Returns a new 2-element Array consisting of the key and value of the first-found entry whose value is #== to value (see Entry Order):
h = {foo: 0, bar: 1, baz: 1}
h.rassoc(1) # => [:bar, 1]
Returns nil
if no such value found.
# File 'hash.c', line 4239
VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; }
#rehash ⇒ self
Rebuilds the hash table by recomputing the hash index for each key; returns self
.
The hash table becomes invalid if the hash value of a key has changed after the entry was created. See Modifying an Active Hash Key.
# File 'hash.c', line 1978
VALUE rb_hash_rehash(VALUE hash) { VALUE tmp; st_table *tbl; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { tmp = hash_alloc(0); ar_alloc_table(tmp); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); ar_free_and_clear_table(hash); ar_copy(hash, tmp); ar_free_and_clear_table(tmp); } else if (RHASH_ST_TABLE_P(hash)) { st_table *old_tab = RHASH_ST_TABLE(hash); tmp = hash_alloc(0); tbl = st_init_table_with_size(old_tab->type, old_tab->num_entries); RHASH_ST_TABLE_SET(tmp, tbl); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(old_tab); RHASH_ST_TABLE_SET(hash, tbl); RHASH_ST_CLEAR(tmp); } hash_verify(hash); return hash; }
#reject {|key, value| ... } ⇒ Hash
#reject ⇒ Enumerator
Hash
#reject ⇒ Enumerator
Returns a new Hash object whose entries are all those from self
for which the block returns false
or nil
:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.reject {|key, value| key.start_with?('b') }
h1 # => {:foo=>0}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.reject # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:reject>
h1 = e.each {|key, value| key.start_with?('b') }
h1 # => {:foo=>0}
# File 'hash.c', line 2578
VALUE rb_hash_reject(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (RTEST(ruby_verbose)) { VALUE klass; if (HAS_EXTRA_STATES(hash, klass)) { rb_warn("extra states are no longer copied: %+"PRIsVALUE, hash); } } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, reject_i, result); } return result; }
#reject! {|key, value| ... } ⇒ self
?
#reject! ⇒ Enumerator
self
?
#reject! ⇒ Enumerator
Returns self
, whose remaining entries are those for which the block returns false
or nil
:
h = {foo: 0, bar: 1, baz: 2}
h.reject! {|key, value| value < 2 } # => {:baz=>2}
Returns nil
if no entries are removed.
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.reject! # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:reject!>
e.each {|key, value| key.start_with?('b') } # => {:foo=>0}
# File 'hash.c', line 2537
VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; }
#replace(other_hash) ⇒ self
Also known as: #initialize_copy
Replaces the entire contents of self
with the contents of other_hash
; returns self
:
h = {foo: 0, bar: 1, baz: 2}
h.replace({bat: 3, bam: 4}) # => {:bat=>3, :bam=>4}
# File 'hash.c', line 2950
static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { rb_hash_modify_check(hash); if (hash == hash2) return hash; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "can't replace hash during iteration"); } hash2 = to_hash(hash2); COPY_DEFAULT(hash, hash2); if (RHASH_AR_TABLE_P(hash)) { if (RHASH_AR_TABLE_P(hash2)) { ar_clear(hash); } else { ar_free_and_clear_table(hash); RHASH_ST_TABLE_SET(hash, st_init_table_with_size(RHASH_TYPE(hash2), RHASH_SIZE(hash2))); } } else { if (RHASH_AR_TABLE_P(hash2)) { st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_CLEAR(hash); } else { st_clear(RHASH_ST_TABLE(hash)); RHASH_TBL_RAW(hash)->type = RHASH_ST_TABLE(hash2)->type; } } rb_hash_foreach(hash2, rb_hash_rehash_i, (VALUE)hash); rb_gc_writebarrier_remember(hash); return hash; }
#select {|key, value| ... } ⇒ Hash
#select ⇒ Enumerator
Hash
#select ⇒ Enumerator
Alias for #filter.
#select! {|key, value| ... } ⇒ self
?
#select! ⇒ Enumerator
self
?
#select! ⇒ Enumerator
Alias for #filter!.
#shift ⇒ Array, value
Removes the first hash entry (see Entry Order); returns a 2-element Array containing the removed key and value:
h = {foo: 0, bar: 1, baz: 2}
h.shift # => [:foo, 0]
h # => {:bar=>1, :baz=>2}
Returns the default value if the hash is empty (see Default Values).
# File 'hash.c', line 2436
static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (ar_shift(hash, &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } if (RHASH_ST_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } return rb_hash_default_value(hash, Qnil); }
Alias for #length.
#slice(*keys) ⇒ Hash
# File 'hash.c', line 2608
static VALUE rb_hash_slice(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, value, result; if (argc == 0 || RHASH_EMPTY_P(hash)) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_hash_lookup2(hash, key, Qundef); if (value != Qundef) rb_hash_aset(result, key, value); } return result; }
#[]=(key, value) ⇒ value
#store(key, value)
value
#store(key, value)
Alias for #[]=.
#to_a ⇒ Array
Returns a new Array of 2-element Array objects; each nested Array contains a key-value pair from self
:
h = {foo: 0, bar: 1, baz: 2}
h.to_a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
# File 'hash.c', line 3411
static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new_capa(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_a_i, ary); return ary; }
#to_h ⇒ self
, Hash
#to_h {|key, value| ... } ⇒ Hash
self
, Hash
#to_h {|key, value| ... } ⇒ Hash
For an instance of Hash, returns self
.
For a subclass of Hash, returns a new Hash containing the content of self
.
When a block is given, returns a new Hash object whose content is based on the block; the block should return a 2-element Array object specifying the key-value pair to be included in the returned Array:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.to_h {|key, value| [value, key] }
h1 # => {0=>:foo, 1=>:bar, 2=>:baz}
# File 'hash.c', line 3538
static VALUE rb_hash_to_h(VALUE hash) { if (rb_block_given_p()) { return rb_hash_to_h_block(hash); } if (rb_obj_class(hash) != rb_cHash) { const VALUE flags = RBASIC(hash)->flags; hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT); } return hash; }
#to_hash ⇒ self
Returns self
.
# File 'hash.c', line 3480
static VALUE rb_hash_to_hash(VALUE hash) { return hash; }
#to_proc ⇒ Proc
Returns a Proc object that maps a key to its value:
h = {foo: 0, bar: 1, baz: 2}
proc = h.to_proc
proc.class # => Proc
proc.call(:foo) # => 0
proc.call(: ) # => 1
proc.call(:nosuch) # => nil
# File 'hash.c', line 4726
static VALUE rb_hash_to_proc(VALUE hash) { return rb_func_lambda_new(hash_proc_call, hash, 1, 1); }
#to_s ⇒ String Also known as: #inspect
# File 'hash.c', line 3466
static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); }
#transform_keys {|key| ... } ⇒ Hash
#transform_keys(hash2) ⇒ Hash
#transform_keys(hash2) {|other_key| ... } ⇒ Hash
#transform_keys ⇒ Enumerator
Hash
#transform_keys(hash2) ⇒ Hash
#transform_keys(hash2) {|other_key| ... } ⇒ Hash
#transform_keys ⇒ Enumerator
Returns a new Hash object; each entry has:
-
A key provided by the block.
-
The value from
self
.
An optional hash argument can be provided to map keys to new keys. Any key not given will be mapped using the provided block, or remain the same if no block is given.
Transform keys:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.transform_keys {|key| key.to_s }
h1 # => {"foo"=>0, "bar"=>1, "baz"=>2}
h.transform_keys(foo: :, bar: :foo)
#=> {bar: 0, foo: 1, baz: 2}
h.transform_keys(foo: :hello, &:to_s)
#=> {:hello=>0, "bar"=>1, "baz"=>2}
Overwrites values for duplicate keys:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.transform_keys {|key| :bat }
h1 # => {:bat=>2}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.transform_keys # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:transform_keys>
h1 = e.each { |key| key.to_s }
h1 # => {"foo"=>0, "bar"=>1, "baz"=>2}
# File 'hash.c', line 3226
static VALUE rb_hash_transform_keys(int argc, VALUE *argv, VALUE hash) { VALUE result; struct transform_keys_args transarg = {0}; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { transarg.trans = to_hash(argv[0]); transarg.block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { if (transarg.trans) { transarg.result = result; rb_hash_foreach(hash, transform_keys_hash_i, (VALUE)&transarg); } else { rb_hash_foreach(hash, transform_keys_i, result); } } return result; }
#transform_keys! {|key| ... } ⇒ self
#transform_keys!(hash2) ⇒ self
#transform_keys!(hash2) {|other_key| ... } ⇒ self
#transform_keys! ⇒ Enumerator
self
#transform_keys!(hash2) ⇒ self
#transform_keys!(hash2) {|other_key| ... } ⇒ self
#transform_keys! ⇒ Enumerator
Same as #transform_keys but modifies the receiver in place instead of returning a new hash.
# File 'hash.c', line 3266
static VALUE rb_hash_transform_keys_bang(int argc, VALUE *argv, VALUE hash) { VALUE trans = 0; int block_given = 0; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { trans = to_hash(argv[0]); block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { long i; VALUE new_keys = hash_alloc(0); VALUE pairs = rb_ary_tmp_new(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, pairs); for (i = 0; i < RARRAY_LEN(pairs); i += 2) { VALUE key = RARRAY_AREF(pairs, i), new_key, val; if (!trans) { new_key = rb_yield(key); } else if ((new_key = rb_hash_lookup2(trans, key, Qundef)) != Qundef) { /* use the transformed key */ } else if (block_given) { new_key = rb_yield(key); } else { new_key = key; } val = RARRAY_AREF(pairs, i+1); if (!hash_stlike_lookup(new_keys, key, NULL)) { rb_hash_stlike_delete(hash, &key, NULL); } rb_hash_aset(hash, new_key, val); rb_hash_aset(new_keys, new_key, Qnil); } rb_ary_clear(pairs); rb_hash_clear(new_keys); } return hash; }
#transform_values {|value| ... } ⇒ Hash
#transform_values ⇒ Enumerator
Hash
#transform_values ⇒ Enumerator
Returns a new Hash object; each entry has:
-
A key from
self
. -
A value provided by the block.
Transform values:
h = {foo: 0, bar: 1, baz: 2}
h1 = h.transform_values {|value| value * 100}
h1 # => {:foo=>0, :bar=>100, :baz=>200}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.transform_values # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:transform_values>
h1 = e.each { |value| value * 100}
h1 # => {:foo=>0, :bar=>100, :baz=>200}
# File 'hash.c', line 3350
static VALUE rb_hash_transform_values(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_copy(hash_alloc(rb_cHash), hash); SET_DEFAULT(result, Qnil); if (!RHASH_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(result, transform_values_foreach_func, transform_values_foreach_replace, result); } return result; }
#transform_values! {|value| ... } ⇒ self
#transform_values! ⇒ Enumerator
self
#transform_values! ⇒ Enumerator
Returns self
, whose keys are unchanged, and whose values are determined by the given block.
h = {foo: 0, bar: 1, baz: 2}
h.transform_values! {|value| value * 100} # => {:foo=>0, :bar=>100, :baz=>200}
Returns a new Enumerator if no block given:
h = {foo: 0, bar: 1, baz: 2}
e = h.transform_values! # => #<Enumerator: {:foo=>0, :bar=>100, :baz=>200}:transform_values!>
h1 = e.each {|value| value * 100}
h1 # => {:foo=>0, :bar=>100, :baz=>200}
# File 'hash.c', line 3381
static VALUE rb_hash_transform_values_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(hash, transform_values_foreach_func, transform_values_foreach_replace, hash); } return hash; }
#merge! ⇒ self
#merge!(*other_hashes) ⇒ self
#merge!(*other_hashes) {|key, old_value, new_value| ... } ⇒ self
self
#merge!(*other_hashes) ⇒ self
#merge!(*other_hashes) {|key, old_value, new_value| ... } ⇒ self
Alias for #merge!.
#value?(value) ⇒ Boolean
Also known as: #has_value?
Returns true
if value
is a value in self
, otherwise false
.
# File 'hash.c', line 3686
static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data); return data[0]; }
#values ⇒ Array
Returns a new Array containing all values in self
:
h = {foo: 0, bar: 1, baz: 2}
h.values # => [0, 1, 2]
# File 'hash.c', line 3611
VALUE rb_hash_values(VALUE hash) { VALUE values; st_index_t size = RHASH_SIZE(hash); values = rb_ary_new_capa(size); if (size == 0) return values; if (ST_DATA_COMPATIBLE_P(VALUE)) { if (RHASH_AR_TABLE_P(hash)) { rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = ar_values(hash, ptr, size); }); } else if (RHASH_ST_TABLE_P(hash)) { st_table *table = RHASH_ST_TABLE(hash); rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = st_values(table, ptr, size); }); } rb_ary_set_len(values, size); } else { rb_hash_foreach(hash, values_i, values); } return values; }
#values_at(*keys) ⇒ Array
Returns a new Array containing values for the given #keys:
h = {foo: 0, bar: 1, baz: 2}
h.values_at(:baz, :foo) # => [2, 0]
The default values are returned for any keys that are not found:
h.values_at(:hello, :foo) # => [nil, 0]
# File 'hash.c', line 2670
VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i<argc; i++) { rb_ary_push(result, rb_hash_aref(hash, argv[i])); } return result; }