Class: Numeric
Relationships & Source Files | |
Extension / Inclusion / Inheritance Descendants | |
Subclasses:
|
|
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
::Comparable
|
|
Inherits: | Object |
Defined in: | numeric.c, complex.c, rational.c |
Overview
Numeric
is the class from which all higher-level numeric classes should inherit.
Numeric
allows instantiation of heap-allocated objects. Other core numeric classes such as ::Integer
are implemented as immediates, which means that each ::Integer
is a single immutable object which is always passed by value.
a = 1
1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1
, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class
1.dup #=> 1
1.object_id == 1.dup.object_id #=> true
For this reason, Numeric
should be used when defining other numeric classes.
Classes which inherit from Numeric
must implement #coerce, which returns a two-member ::Array
containing an object that has been coerced into an instance of the new class and self
(see #coerce).
Inheriting classes should also implement arithmetic operator methods (+
, -
, *
and /
) and the #<=> operator (see ::Comparable
). These methods may rely on #coerce to ensure interoperability with instances of other numeric classes.
class Tally < Numeric
def initialize(string)
@string = string
end
def to_s
@string
end
def to_i
@string.size
end
def coerce(other)
[self.class.new('|' * other.to_i), self]
end
def <=>(other)
to_i <=> other.to_i
end
def +(other)
self.class.new('|' * (to_i + other.to_i))
end
def -(other)
self.class.new('|' * (to_i - other.to_i))
end
def *(other)
self.class.new('|' * (to_i * other.to_i))
end
def /(other)
self.class.new('|' * (to_i / other.to_i))
end
end
tally = Tally.new('||')
puts tally * 2 #=> "||||"
puts tally > 1 #=> true
Instance Attribute Summary
-
#finite? ⇒ Boolean
readonly
Returns
true
ifnum
is a finite number, otherwise returnsfalse
. -
#infinite? ⇒ Boolean
readonly
Returns
nil
, -1, or 1 depending on whether the value is finite,-Infinity
, or+Infinity
. -
#integer? ⇒ Boolean
readonly
Returns
true
ifnum
is an::Integer
. -
#negative? ⇒ Boolean
readonly
Returns
true
ifnum
is less than 0. -
#nonzero? ⇒ Boolean
readonly
Returns
self
ifnum
is not zero,nil
otherwise. -
#positive? ⇒ Boolean
readonly
Returns
true
ifnum
is greater than 0. -
#real ⇒ self
readonly
Returns self.
-
#real? ⇒ Boolean
readonly
Returns
true
ifnum
is a real number (i.e. -
#zero? ⇒ Boolean
readonly
Returns
true
ifnum
has a zero value.
Instance Method Summary
-
#modulo(numeric) ⇒ Numeric
(also: #modulo)
x.modulo(y)
meansx-y*(x/y).floor
. -
#+ ⇒ Numeric
Unary Plus—Returns the receiver.
-
#- ⇒ Numeric
Unary Minus—Returns the receiver, negated.
-
#<=>(other) ⇒ 0?
Returns zero if
number
equalsother
, otherwise returnsnil
. -
#abs ⇒ Numeric
(also: #magnitude)
Returns the absolute value of
num
. -
#abs2 ⇒ Numeric
Returns square of self.
-
#angle ⇒ 0, Float
Alias for #arg.
-
#arg ⇒ 0, Float
(also: #angle, #phase)
Returns 0 if the value is positive, pi otherwise.
-
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
num
with a precision ofndigits
decimal digits (default: 0). -
#clone(freeze: true) ⇒ Numeric
Returns the receiver.
-
#coerce(numeric) ⇒ Array
If
numeric
is the same type asnum
, returns an array[numeric, num]
. -
#conj ⇒ self
(also: #conjugate)
Returns self.
-
#conjugate ⇒ self
Alias for #conj.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing
num
bynumeric
. -
#dup ⇒ Numeric
Returns the receiver.
-
#eql?(numeric) ⇒ Boolean
Returns
true
ifnum
andnumeric
are the same type and have equal values. -
#fdiv(numeric) ⇒ Float
Returns float division.
-
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
num
with a precision ofndigits
decimal digits (default: 0). -
#i ⇒ Complex(0, num)
Returns the corresponding imaginary number.
-
#imag ⇒ 0
(also: #imaginary)
Returns zero.
-
#imaginary ⇒ 0
Alias for #imag.
-
#magnitude ⇒ Numeric
Alias for #abs.
-
#modulo(numeric) ⇒ Numeric
Alias for #%.
-
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ 0, Float
Alias for #arg.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#quo(int_or_rat) ⇒ rat
Returns the most exact division (rational for integers, float for floats).
-
#rect ⇒ Array
(also: #rectangular)
Returns an array; [num, 0].
-
#rectangular ⇒ Array
Alias for #rect.
-
#remainder(numeric) ⇒ Numeric
x.remainder(y)
meansx-y*(x/y).truncate
. -
#round([ndigits]) ⇒ Integer, Float
Returns
num
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#step(by: step, to: limit) {|i| ... } ⇒ self
Invokes the given block with the sequence of numbers starting at
num
, incremented bystep
(defaulted to1
) on each call. -
#to_c ⇒ Complex
Returns the value as a complex.
-
#to_int ⇒ Integer
Invokes the child class’s
to_i
method to convertnum
to an integer. -
#truncate([ndigits]) ⇒ Integer, Float
Returns
num
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). -
#singleton_method_added(name)
Internal use only
Trap attempts to add methods to
Numeric
objects.
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Instance Attribute Details
#finite? ⇒ Boolean
(readonly)
Returns true
if num
is a finite number, otherwise returns false
.
# File 'numeric.c', line 806
static VALUE num_finite_p(VALUE num) { return Qtrue; }
#infinite? ⇒ Boolean
(readonly)
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
# File 'numeric.c', line 819
static VALUE num_infinite_p(VALUE num) { return Qnil; }
#integer? ⇒ Boolean
(readonly)
Returns true
if num
is an ::Integer
.
1.0.integer? #=> false
1.integer? #=> true
# File 'numeric.c', line 722
static VALUE num_int_p(VALUE num) { return Qfalse; }
#negative? ⇒ Boolean
(readonly)
Returns true
if num
is less than 0.
# File 'numeric.c', line 872
static VALUE num_negative_p(VALUE num) { return rb_num_negative_int_p(num) ? Qtrue : Qfalse; }
#nonzero? ⇒ Boolean
(readonly)
Returns self
if num
is not zero, nil
otherwise.
This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
# File 'numeric.c', line 791
static VALUE num_nonzero_p(VALUE num) { if (RTEST(num_funcall0(num, rb_intern("zero?")))) { return Qnil; } return num; }
#positive? ⇒ Boolean
(readonly)
Returns true
if num
is greater than 0.
# File 'numeric.c', line 849
static VALUE num_positive_p(VALUE num) { const ID mid = '>'; if (FIXNUM_P(num)) { if (method_basic_p(rb_cInteger)) return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse; } else if (RB_TYPE_P(num, T_BIGNUM)) { if (method_basic_p(rb_cInteger)) return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse; } return rb_num_compare_with_zero(num, mid); }
#real ⇒ self
(readonly)
Returns self.
# File 'complex.c', line 2152
static VALUE numeric_real(VALUE self) { return self; }
#real? ⇒ Boolean
(readonly)
Returns true
if num
is a real number (i.e. not ::Complex
).
# File 'numeric.c', line 706
static VALUE num_real_p(VALUE num) { return Qtrue; }
#zero? ⇒ Boolean
(readonly)
Returns true
if num
has a zero value.
# File 'numeric.c', line 758
static VALUE num_zero_p(VALUE num) { if (FIXNUM_P(num)) { if (FIXNUM_ZERO_P(num)) { return Qtrue; } } else if (RB_TYPE_P(num, T_BIGNUM)) { if (rb_bigzero_p(num)) { /* this should not happen usually */ return Qtrue; } } else if (rb_equal(num, INT2FIX(0))) { return Qtrue; } return Qfalse; }
Instance Method Details
#modulo(numeric) ⇒ Numeric
Also known as: #modulo
# File 'numeric.c', line 618
static VALUE num_modulo(VALUE x, VALUE y) { VALUE q = num_funcall1(x, id_div, y); return rb_funcall(x, '-', 1, rb_funcall(y, '*', 1, q)); }
#+ ⇒ Numeric
Unary Plus—Returns the receiver.
# File 'numeric.c', line 534
static VALUE num_uplus(VALUE num) { return num; }
#- ⇒ Numeric
Unary Minus—Returns the receiver, negated.
# File 'numeric.c', line 564
static VALUE num_uminus(VALUE num) { VALUE zero; zero = INT2FIX(0); do_coerce(&zero, &num, TRUE); return num_funcall1(zero, '-', num); }
#<=>(other) ⇒ 0
?
Returns zero if number
equals other
, otherwise returns nil
.
# File 'numeric.c', line 1352
static VALUE num_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); return Qnil; }
#abs ⇒ Numeric
#magnitude ⇒ Numeric
Also known as: #magnitude
Numeric
#magnitude ⇒ Numeric
Returns the absolute value of num
.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
#magnitude is an alias for abs
.
# File 'numeric.c', line 742
static VALUE num_abs(VALUE num) { if (rb_num_negative_int_p(num)) { return num_funcall0(num, idUMinus); } return num; }
#abs2 ⇒ Numeric
Returns square of self.
# File 'complex.c', line 2177
static VALUE numeric_abs2(VALUE self) { return f_mul(self, self); }
Alias for #arg.
Also known as: #angle, #phase
Returns 0 if the value is positive, pi otherwise.
# File 'complex.c', line 2191
static VALUE numeric_arg(VALUE self) { if (f_positive_p(self)) return INT2FIX(0); return DBL2NUM(M_PI); }
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to num
with a precision of ndigits
decimal digits (default: 0).
Numeric
implements this by converting its value to a ::Float
and invoking Float#ceil.
# File 'numeric.c', line 2459
static VALUE num_ceil(int argc, VALUE *argv, VALUE num) { return flo_ceil(argc, argv, rb_Float(num)); }
#clone(freeze: true) ⇒ Numeric
Returns the receiver. freeze
cannot be false
.
# File 'numeric.c', line 502
static VALUE num_clone(int argc, VALUE *argv, VALUE x) { return rb_immutable_obj_clone(argc, argv, x); }
#coerce(numeric) ⇒ Array
If numeric
is the same type as num
, returns an array [numeric, num]
. Otherwise, returns an array with both numeric
and num
represented as ::Float
objects.
This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
# File 'numeric.c', line 399
static VALUE num_coerce(VALUE x, VALUE y) { if (CLASS_OF(x) == CLASS_OF(y)) return rb_assoc_new(y, x); x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x); }
#conj ⇒ self
#conjugate ⇒ self
Also known as: #conjugate
self
#conjugate ⇒ self
Returns self.
# File 'complex.c', line 2251
static VALUE numeric_conj(VALUE self) { return self; }
#conj ⇒ self
#conjugate ⇒ self
self
#conjugate ⇒ self
Alias for #conj.
#denominator ⇒ Integer
Returns the denominator (always positive).
# File 'rational.c', line 2010
static VALUE numeric_denominator(VALUE self) { return f_denominator(f_to_r(self)); }
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. Numeric
does not define the /
operator; this is left to subclasses.
Equivalent to num.divmod(numeric)[0]
.
See #divmod.
# File 'numeric.c', line 600
static VALUE num_div(VALUE x, VALUE y) { if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv(); return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0); }
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num
by numeric
.
If q, r = x.divmod(y)
, then
q = floor(x/y)
x = q*y + r
The quotient is rounded toward negative infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------------------------------------------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------------------------------------------------+---------------
13 | -4 | -4, -3 | -4 | -3 | 1
------------------------------------------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------------------------------------------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------------------------------------------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------------------------------------------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------------------------------------------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------------------------------------------------+---------------
-11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
11.5.divmod(3.5) #=> [3, 1.0]
# File 'numeric.c', line 693
static VALUE num_divmod(VALUE x, VALUE y) { return rb_assoc_new(num_div(x, y), num_modulo(x, y)); }
#dup ⇒ Numeric
Returns the receiver.
# File 'numeric.c', line 518
static VALUE num_dup(VALUE x) { return x; }
#eql?(numeric) ⇒ Boolean
Returns true
if num
and numeric
are the same type and have equal values. Contrast this with Numeric#==
, which performs type conversions.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
1.0.eql?(1.0) #=> true
# File 'numeric.c', line 1333
static VALUE num_eql(VALUE x, VALUE y) { if (TYPE(x) != TYPE(y)) return Qfalse; if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_eql(x, y); } return rb_equal(x, y); }
#fdiv(numeric) ⇒ Float
Returns float division.
# File 'numeric.c', line 582
static VALUE num_fdiv(VALUE x, VALUE y) { return rb_funcall(rb_Float(x), '/', 1, y); }
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to num
with a precision of ndigits
decimal digits (default: 0).
Numeric
implements this by converting its value to a ::Float
and invoking Float#floor.
# File 'numeric.c', line 2442
static VALUE num_floor(int argc, VALUE *argv, VALUE num) { return flo_floor(argc, argv, rb_Float(num)); }
#i ⇒ Complex(0
, num
)
Returns the corresponding imaginary number. Not available for complex numbers.
-42.i #=> (0-42i)
2.0.i #=> (0+2.0i)
# File 'numeric.c', line 551
static VALUE num_imaginary(VALUE num) { return rb_complex_new(INT2FIX(0), num); }
#imag ⇒ 0
#imaginary ⇒ 0
Also known as: #imaginary
0
#imaginary ⇒ 0
Returns zero.
# File 'complex.c', line 2165
static VALUE numeric_imag(VALUE self) { return INT2FIX(0); }
#imag ⇒ 0
#imaginary ⇒ 0
0
#imaginary ⇒ 0
Alias for #imag.
#abs ⇒ Numeric
#magnitude ⇒ Numeric
Numeric
#magnitude ⇒ Numeric
Alias for #abs.
#modulo(numeric) ⇒ Numeric
#modulo(numeric) ⇒ Numeric
Numeric
#modulo(numeric) ⇒ Numeric
Alias for #%.
#numerator ⇒ Integer
Returns the numerator.
# File 'rational.c', line 1998
static VALUE numeric_numerator(VALUE self) { return f_numerator(f_to_r(self)); }
Alias for #arg.
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
# File 'complex.c', line 2220
static VALUE numeric_polar(VALUE self) { VALUE abs, arg; if (RB_INTEGER_TYPE_P(self)) { abs = rb_int_abs(self); arg = numeric_arg(self); } else if (RB_FLOAT_TYPE_P(self)) { abs = rb_float_abs(self); arg = float_arg(self); } else if (RB_TYPE_P(self, T_RATIONAL)) { abs = rb_rational_abs(self); arg = numeric_arg(self); } else { abs = f_abs(self); arg = f_arg(self); } return rb_assoc_new(abs, arg); }
#quo(int_or_rat) ⇒ rat
#quo(flo) ⇒ flo
rat
#quo(flo) ⇒ flo
Returns the most exact division (rational for integers, float for floats).
# File 'rational.c', line 2025
VALUE rb_numeric_quo(VALUE x, VALUE y) { if (RB_TYPE_P(x, T_COMPLEX)) { return rb_complex_div(x, y); } if (RB_FLOAT_TYPE_P(y)) { return rb_funcallv(x, idFdiv, 1, &y); } if (canonicalization) { x = rb_rational_raw1(x); } else { x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r"); } return rb_rational_div(x, y); }
Also known as: #rectangular
Returns an array; [num, 0].
# File 'complex.c', line 2206
static VALUE numeric_rect(VALUE self) { return rb_assoc_new(self, INT2FIX(0)); }
Alias for #rect.
#remainder(numeric) ⇒ Numeric
x.remainder(y)
means x-y*(x/y).truncate
.
See #divmod.
# File 'numeric.c', line 635
static VALUE num_remainder(VALUE x, VALUE y) { VALUE z = num_funcall1(x, '%', y); if ((!rb_equal(z, INT2FIX(0))) && ((rb_num_negative_int_p(x) && rb_num_positive_int_p(y)) || (rb_num_positive_int_p(x) && rb_num_negative_int_p(y)))) { return rb_funcall(z, '-', 1, y); } return z; }
#round([ndigits]) ⇒ Integer, Float
Returns num
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
Numeric
implements this by converting its value to a ::Float
and invoking Float#round.
# File 'numeric.c', line 2476
static VALUE num_round(int argc, VALUE* argv, VALUE num) { return flo_round(argc, argv, rb_Float(num)); }
#singleton_method_added(name)
Trap attempts to add methods to Numeric
objects. Always raises a ::TypeError
.
Numerics should be values; singleton_methods should not be added to them.
# File 'numeric.c', line 481
static VALUE num_sadded(VALUE x, VALUE name) { ID mid = rb_to_id(name); /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */ rb_remove_method_id(rb_singleton_class(x), mid); rb_raise(rb_eTypeError, "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE, rb_id2str(mid), rb_obj_class(x)); UNREACHABLE_RETURN(Qnil); }
#step(by: step, to: limit) {|i| ... } ⇒ self
#step(by: step, to: limit) ⇒ Enumerator
#step(by: step, to: limit) ⇒ an_arithmetic_sequence
#step(limit = nil, step = 1) {|i| ... } ⇒ self
#step(limit = nil, step = 1) ⇒ Enumerator
#step(limit = nil, step = 1) ⇒ an_arithmetic_sequence
self
#step(by: step, to: limit) ⇒ Enumerator
#step(by: step, to: limit) ⇒ an_arithmetic_sequence
#step(limit = nil, step = 1) {|i| ... } ⇒ self
#step(limit = nil, step = 1) ⇒ Enumerator
#step(limit = nil, step = 1) ⇒ an_arithmetic_sequence
Invokes the given block with the sequence of numbers starting at num
, incremented by step
(defaulted to 1
) on each call.
The loop finishes when the value to be passed to the block is greater than limit
(if step
is positive) or less than limit
(if step
is negative), where limit
is defaulted to infinity.
In the recommended keyword argument style, either or both of step
and limit
(default infinity) can be omitted. In the fixed position argument style, zero as a step (i.e. num.step(limit, 0)
) is not allowed for historical compatibility reasons.
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - num)/step.
Otherwise, the loop starts at num
, uses either the less-than (<
) or greater-than (>
) operator to compare the counter against limit
, and increments itself using the +
operator.
If no block is given, an ::Enumerator
is returned instead. Especially, the enumerator is an ::Enumerator::ArithmeticSequence
if both limit
and step
are kind of Numeric
or nil
.
For example:
p 1.step.take(4)
p 10.step(by: -1).take(4)
3.step(to: 5) {|i| print i, " " }
1.step(10, 2) {|i| print i, " " }
Math::E.step(to: Math::PI, by: 0.2) {|f| print f, " " }
Will produce:
[1, 2, 3, 4]
[10, 9, 8, 7]
3 4 5
1 3 5 7 9
2.718281828459045 2.9182818284590453 3.118281828459045
# File 'numeric.c', line 2755
static VALUE num_step(int argc, VALUE *argv, VALUE from) { VALUE to, step; int desc, inf; if (!rb_block_given_p()) { VALUE by = Qundef; num_step_extract_args(argc, argv, &to, &step, &by); if (by != Qundef) { step = by; } if (NIL_P(step)) { step = INT2FIX(1); } if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) && rb_obj_is_kind_of(step, rb_cNumeric)) { return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv, num_step_size, from, to, step, FALSE); } return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size); } desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE); if (rb_equal(step, INT2FIX(0))) { inf = 1; } else if (RB_TYPE_P(to, T_FLOAT)) { double f = RFLOAT_VALUE(to); inf = isinf(f) && (signbit(f) ? desc : !desc); } else inf = 0; if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) { long i = FIX2LONG(from); long diff = FIX2LONG(step); if (inf) { for (;; i += diff) rb_yield(LONG2FIX(i)); } else { long end = FIX2LONG(to); if (desc) { for (; i >= end; i += diff) rb_yield(LONG2FIX(i)); } else { for (; i <= end; i += diff) rb_yield(LONG2FIX(i)); } } } else if (!ruby_float_step(from, to, step, FALSE, FALSE)) { VALUE i = from; if (inf) { for (;; i = rb_funcall(i, '+', 1, step)) rb_yield(i); } else { ID cmp = desc ? '<' : '>'; for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step)) rb_yield(i); } } return from; }
#to_c ⇒ Complex
Returns the value as a complex.
# File 'complex.c', line 1697
static VALUE numeric_to_c(VALUE self) { return rb_complex_new1(self); }
#to_int ⇒ Integer
Invokes the child class’s to_i
method to convert num
to an integer.
1.0.class #=> Float
1.0.to_int.class #=> Integer
1.0.to_i.class #=> Integer
# File 'numeric.c', line 836
static VALUE num_to_int(VALUE num) { return num_funcall0(num, id_to_i); }
#truncate([ndigits]) ⇒ Integer, Float
Returns num
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
Numeric
implements this by converting its value to a ::Float
and invoking Float#truncate.
# File 'numeric.c', line 2493
static VALUE num_truncate(int argc, VALUE *argv, VALUE num) { return flo_truncate(argc, argv, rb_Float(num)); }