Class: Integer
| Relationships & Source Files | |
| Super Chains via Extension / Inclusion / Inheritance | |
| Class Chain: 
          self,
           ::Numeric | |
| Instance Chain: 
          self,
           ::Numeric,::Comparable | |
| Inherits: | Numeric | 
| Defined in: | numeric.c, bignum.c, rational.c | 
Overview
Holds Integer values.  You cannot add a singleton method to an Integer object, any attempt to do so will raise a ::TypeError.
Constant Summary
- 
    GMP_VERSION =
    # File 'bignum.c', line 7190The version of loaded GMP. rb_sprintf("GMP %s", gmp_version) 
Class Method Summary
- 
    
      .sqrt(n)  ⇒ Integer 
    
    Returns the integer square root of the non-negative integer n, i.e. the largest non-negative integer less than or equal to the square root ofn.
Instance Attribute Summary
- 
    
      #even?  ⇒ Boolean 
    
    readonly
    Returns trueifintis an even number.
- 
    
      #integer?  ⇒ Boolean 
    
    readonly
    Since intis already anInteger, this always returnstrue.
- 
    
      #odd?  ⇒ Boolean 
    
    readonly
    Returns trueifintis an odd number.
::Numeric - Inherited
| #finite? | Returns  | 
| #infinite? | Returns  | 
| #integer? | Returns  | 
| #negative? | Returns  | 
| #nonzero? | Returns  | 
| #positive? | Returns  | 
| #real | Returns self. | 
| #real? | Returns  | 
| #zero? | Returns  | 
Instance Method Summary
- 
    
      #%(other)  ⇒ Numeric 
      (also: #modulo)
    
    Returns intmoduloother.
- 
    
      #&(other_int)  ⇒ Integer 
    
    Bitwise AND. 
- 
    
      #*(numeric)  ⇒ numeric_result 
    
    Performs multiplication: the class of the resulting object depends on the class of numeric.
- 
    
      #**(numeric)  ⇒ numeric_result 
    
    Raises intto the power ofnumeric, which may be negative or fractional.
- 
    
      #+(numeric)  ⇒ numeric_result 
    
    Performs addition: the class of the resulting object depends on the class of numeric.
- 
    
      #-(numeric)  ⇒ numeric_result 
    
    Performs subtraction: the class of the resulting object depends on the class of numeric.
- 
    
      #-  ⇒ Integer 
    
    Returns int, negated.
- 
    
      #/(numeric)  ⇒ numeric_result 
    
    Performs division: the class of the resulting object depends on the class of numeric.
- 
    
      #<(real)  ⇒ Boolean 
    
    Returns trueif the value ofintis less than that ofreal.
- 
    
      #<<(count)  ⇒ Integer 
    
    Returns intshifted leftcountpositions, or right ifcountis negative.
- 
    
      #<=(real)  ⇒ Boolean 
    
    Returns trueif the value ofintis less than or equal to that ofreal.
- 
    
      #<=>(numeric)  ⇒ 1, ... 
    
    Comparison—Returns -1, 0, or +1 depending on whether intis less than, equal to, or greater thannumeric.
- 
    
      #==(other)  ⇒ Boolean 
      (also: #===)
    
    Returns trueifintequalsothernumerically.
- 
    
      #===(other)  ⇒ Boolean 
    
    Alias for #==. 
- 
    
      #>(real)  ⇒ Boolean 
    
    Returns trueif the value ofintis greater than that ofreal.
- 
    
      #>=(real)  ⇒ Boolean 
    
    Returns trueif the value ofintis greater than or equal to that ofreal.
- 
    
      #>>(count)  ⇒ Integer 
    
    Returns intshifted rightcountpositions, or left ifcountis negative.
- 
    
      #[](n)  ⇒ 0, 1 
    
    Bit Reference—Returns the nth bit in the binary representation ofint, whereint[0]is the least significant bit.
- 
    
      #^(other_int)  ⇒ Integer 
    
    Bitwise EXCLUSIVE OR. 
- 
    
      #abs  ⇒ Integer 
      (also: #magnitude)
    
    Returns the absolute value of int.
- 
    
      #allbits?(mask)  ⇒ Boolean 
    
    Returns trueif all bits ofint & {mask}are 1.
- 
    
      #anybits?(mask)  ⇒ Boolean 
    
    Returns trueif any bits ofint & {mask}are 1.
- 
    
      #bit_length  ⇒ Integer 
    
    Returns the number of bits of the value of int.
- 
    
      #ceil([ndigits])  ⇒ Integer, Float 
    
    Returns the smallest number greater than or equal to intwith a precision ofndigitsdecimal digits (default: 0).
- 
    
      #chr([encoding])  ⇒ String 
    
    Returns a string containing the character represented by the int‘s value according toencoding.
- 
    
      #coerce(numeric)  ⇒ Array 
    
    Returns an array with both a numericand abigrepresented as Bignum objects.
- 
    
      #denominator  ⇒ 1 
    
    Returns 1. 
- 
    
      #digits  ⇒ Array 
    
    Returns the digits of int‘s place-value representation with radixbase(default: 10).
- 
    
      #div(numeric)  ⇒ Integer 
    
    Performs integer division: returns the integer result of dividing intbynumeric.
- 
    
      #divmod(numeric)  ⇒ Array 
    
    See Numeric#divmod. 
- 
    
      #downto(limit) {|i| ... } ⇒ self 
    
    Iterates the given block, passing in decreasing values from intdown to and includinglimit.
- 
    
      #fdiv(numeric)  ⇒ Float 
    
    Returns the floating point result of dividing intbynumeric.
- 
    
      #floor([ndigits])  ⇒ Integer, Float 
    
    Returns the largest number less than or equal to intwith a precision ofndigitsdecimal digits (default: 0).
- 
    
      #gcd(other_int)  ⇒ Integer 
    
    Returns the greatest common divisor of the two integers. 
- 
    
      #gcdlcm(other_int)  ⇒ Array 
    
    Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm]. 
- 
    
      #inspect(base = 10)  ⇒ String 
    
    Alias for #to_s. 
- 
    
      #lcm(other_int)  ⇒ Integer 
    
    Returns the least common multiple of the two integers. 
- 
    
      #magnitude  ⇒ Integer 
    
    Alias for #abs. 
- 
    
      #modulo(other)  ⇒ Numeric 
    
    Alias for #%. 
- 
    
      #next  ⇒ Integer 
      (also: #succ)
    
    Returns the successor of int, i.e. theIntegerequal toint1</code>.
- 
    
      #nobits?(mask)  ⇒ Boolean 
    
    Returns trueif no bits ofint & {mask}are 1.
- 
    
      #numerator  ⇒ self 
    
    Returns self. 
- 
    
      #ord  ⇒ self 
    
    Returns the intitself.
- 
    
      #pow(numeric)  ⇒ Numeric 
    
    Returns (modular) exponentiation as: 
- 
    
      #pred  ⇒ Integer 
    
    Returns the predecessor of int, i.e. theIntegerequal toint-1.
- 
    
      #rationalize([eps])  ⇒ Rational 
    
    Returns the value as a rational. 
- 
    
      #remainder(numeric)  ⇒ Numeric 
    
    Returns the remainder after dividing intbynumeric.
- 
    
      #round([ndigits] [, half: mode])  ⇒ Integer, Float 
    
    Returns introunded to the nearest value with a precision ofndigitsdecimal digits (default: 0).
- 
    
      #size  ⇒ Integer 
    
    Returns the number of bytes in the machine representation of int(machine dependent).
- 
    
      #succ  ⇒ Integer 
    
    Alias for #next. 
- 
    
      #times {|i| ... } ⇒ self 
    
    Iterates the given block inttimes, passing in values from zero toint - 1.
- 
    
      #to_f  ⇒ Float 
    
    Converts intto a::Float.
- 
    
      #to_i  ⇒ Integer 
      (also: #to_int)
    
    Since intis already anInteger, returnsself.
- 
    
      #to_int  ⇒ Integer 
    
    Alias for #to_i. 
- 
    
      #to_r  ⇒ Rational 
    
    Returns the value as a rational. 
- 
    
      #to_s(base = 10)  ⇒ String 
      (also: #inspect)
    
    Returns a string containing the place-value representation of intwith radixbase(between 2 and 36).
- 
    
      #truncate([ndigits])  ⇒ Integer, Float 
    
    Returns inttruncated (toward zero) to a precision ofndigitsdecimal digits (default: 0).
- 
    
      #upto(limit) {|i| ... } ⇒ self 
    
    Iterates the given block, passing in integer values from intup to and includinglimit.
- 
    
      #|(other_int)  ⇒ Integer 
    
    Bitwise OR. 
- 
    
      #~  ⇒ Integer 
    
    One’s complement: returns a number where each bit is flipped. 
::Numeric - Inherited
| #% | 
 | 
| #+@ | Unary Plus—Returns the receiver. | 
| #-@ | Unary Minus—Returns the receiver, negated. | 
| #<=> | Returns zero if  | 
| #abs | Returns the absolute value of  | 
| #abs2 | Returns square of self. | 
| #angle | Alias for Numeric#arg. | 
| #arg | Returns 0 if the value is positive, pi otherwise. | 
| #ceil | Returns the smallest number greater than or equal to  | 
| #clone | Returns the receiver. | 
| #coerce | If  | 
| #conj | Returns self. | 
| #conjugate | Alias for Numeric#conj. | 
| #denominator | Returns the denominator (always positive). | 
| #div | Uses  | 
| #divmod | Returns an array containing the quotient and modulus obtained by dividing  | 
| #dup | Returns the receiver. | 
| #eql? | Returns  | 
| #fdiv | Returns float division. | 
| #floor | Returns the largest number less than or equal to  | 
| #i | Returns the corresponding imaginary number. | 
| #imag | Returns zero. | 
| #imaginary | Alias for Numeric#imag. | 
| #magnitude | Alias for Numeric#abs. | 
| #modulo | Alias for Numeric#%. | 
| #numerator | Returns the numerator. | 
| #phase | Alias for Numeric#arg. | 
| #polar | Returns an array; [num.abs, num.arg]. | 
| #quo | Returns the most exact division (rational for integers, float for floats). | 
| #rect | Returns an array; [num, 0]. | 
| #rectangular | Alias for Numeric#rect. | 
| #remainder | 
 | 
| #round | Returns  | 
| #step | Invokes the given block with the sequence of numbers starting at  | 
| #to_c | Returns the value as a complex. | 
| #to_int | Invokes the child class’s #to_i method to convert  | 
| #truncate | Returns  | 
| #singleton_method_added | Trap attempts to add methods to  | 
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. | 
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. | 
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. | 
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. | 
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. | 
| #between? | |
| #clamp | 
Class Method Details
    .sqrt(n)  ⇒ Integer   
Returns the integer square root of the non-negative integer n, i.e. the largest non-negative integer less than or equal to the square root of n.
Integer.sqrt(0)        #=> 0
Integer.sqrt(1)        #=> 1
Integer.sqrt(24)       #=> 4
Integer.sqrt(25)       #=> 5
Integer.sqrt(10**400)  #=> 10**200Equivalent to Math.sqrt(n).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46)     #=> 100000000000000000000000
Math.sqrt(10**46).floor  #=>  99999999999999991611392 (!)If n is not an Integer, it is converted to an Integer first. If n is negative, a ::Math::DomainError is raised.
# File 'numeric.c', line 5436
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
    unsigned long n, sq;
    num = rb_to_int(num);
    if (FIXNUM_P(num)) {
	if (FIXNUM_NEGATIVE_P(num)) {
	    domain_error("isqrt");
	}
	n = FIX2ULONG(num);
	sq = rb_ulong_isqrt(n);
	return LONG2FIX(sq);
    }
    else {
	size_t biglen;
	if (RBIGNUM_NEGATIVE_P(num)) {
	    domain_error("isqrt");
	}
	biglen = BIGNUM_LEN(num);
	if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
	/* short-circuit */
	if (biglen == 1) {
	    n = BIGNUM_DIGITS(num)[0];
	    sq = rb_ulong_isqrt(n);
	    return ULONG2NUM(sq);
	}
#endif
	return rb_big_isqrt(num);
    }
}
  Instance Attribute Details
    #even?  ⇒ Boolean  (readonly)  
Returns true if int is an even number.
# File 'numeric.c', line 3250
static VALUE
int_even_p(VALUE num)
{
    if (FIXNUM_P(num)) {
	if ((num & 2) == 0) {
	    return Qtrue;
	}
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_even_p(num);
    }
    else if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
	return Qtrue;
    }
    return Qfalse;
}
  
    #integer?  ⇒ Boolean  (readonly)  
Since int is already an Integer, this always returns true.
# File 'numeric.c', line 3213
static VALUE
int_int_p(VALUE num)
{
    return Qtrue;
}
  
    #odd?  ⇒ Boolean  (readonly)  
Returns true if int is an odd number.
# File 'numeric.c', line 3226
VALUE
rb_int_odd_p(VALUE num)
{
    if (FIXNUM_P(num)) {
	if (num & 2) {
	    return Qtrue;
	}
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_odd_p(num);
    }
    else if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
	return Qtrue;
    }
    return Qfalse;
}
  Instance Method Details
Also known as: #modulo
Returns int modulo other.
See Numeric#divmod for more information.
# File 'numeric.c', line 3890
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_mod(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_modulo(x, y);
    }
    return num_modulo(x, y);
}
  
    #&(other_int)  ⇒ Integer   
Bitwise AND.
# File 'numeric.c', line 4471
VALUE
rb_int_and(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_and(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_and(x, y);
    }
    return Qnil;
}
  
    #*(numeric)  ⇒ numeric_result   
Performs multiplication: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3703
VALUE
rb_int_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_mul(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_mul(x, y);
    }
    return rb_num_coerce_bin(x, y, '*');
}
  
    #**(numeric)  ⇒ numeric_result   
Raises int to the power of numeric, which may be negative or fractional. The result may be an Integer, a ::Float, a ::Rational, or a complex number.
2 ** 3        #=> 8
2 ** -1       #=> (1/2)
2 ** 0.5      #=> 1.4142135623730951
(-1) ** 0.5   #=> (0.0+1.0i)
123456789 ** 2     #=> 15241578750190521
123456789 ** 1.2   #=> 5126464716.0993185
123456789 ** -2    #=> (1/15241578750190521)# File 'numeric.c', line 4110
VALUE
rb_int_pow(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_pow(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_pow(x, y);
    }
    return Qnil;
}
  
    #+(numeric)  ⇒ numeric_result   
Performs addition: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3614
VALUE
rb_int_plus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_plus(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_plus(x, y);
    }
    return rb_num_coerce_bin(x, y, '+');
}
  
    #-(numeric)  ⇒ numeric_result   
Performs subtraction: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3653
VALUE
rb_int_minus(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_minus(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_minus(x, y);
    }
    return rb_num_coerce_bin(x, y, '-');
}
  
    #-  ⇒ Integer   
Returns int, negated.
# File 'numeric.c', line 3483
VALUE
rb_int_uminus(VALUE num)
{
    if (FIXNUM_P(num)) {
	return fix_uminus(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_uminus(num);
    }
    return num_funcall0(num, idUMinus);
}
  
    #/(numeric)  ⇒ numeric_result   
Performs division: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3820
VALUE
rb_int_div(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_div(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_div(x, y);
    }
    return Qnil;
}
  
    #<(real)  ⇒ Boolean   
Returns true if the value of int is less than that of real.
# File 'numeric.c', line 4334
static VALUE
int_lt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_lt(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_lt(x, y);
    }
    return Qnil;
}
  
    #<<(count)  ⇒ Integer   
Returns int shifted left count positions, or right if count is negative.
# File 'numeric.c', line 4588
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return rb_fix_lshift(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_lshift(x, y);
    }
    return Qnil;
}
  
    #<=(real)  ⇒ Boolean   
Returns true if the value of int is less than or equal to that of real.
# File 'numeric.c', line 4374
static VALUE
int_le(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_le(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_le(x, y);
    }
    return Qnil;
}
  
    #<=>(numeric)  ⇒ 1, ...   
Comparison—Returns -1, 0, or +1 depending on whether int is less than, equal to, or greater than numeric.
This is the basis for the tests in the ::Comparable module.
nil is returned if the two values are incomparable.
# File 'numeric.c', line 4216
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_cmp(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_cmp(x, y);
    }
    else {
	rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
    }
}
  
    #==(other)  ⇒ Boolean     Also known as: #===
  
Returns true if int equals other numerically. Contrast this with Integer#eql?, which requires other to be an Integer.
1 == 2     #=> false
1 == 1.0   #=> true# File 'numeric.c', line 4167
VALUE
rb_int_equal(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_equal(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_eq(x, y);
    }
    return Qnil;
}
  
    
      #==(other)  ⇒ Boolean 
      #===(other)  ⇒ Boolean 
    
  
Boolean 
      #===(other)  ⇒ Boolean 
    Alias for #==.
    #>(real)  ⇒ Boolean   
Returns true if the value of int is greater than that of real.
# File 'numeric.c', line 4256
VALUE
rb_int_gt(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_gt(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_gt(x, y);
    }
    return Qnil;
}
  
    #>=(real)  ⇒ Boolean   
Returns true if the value of int is greater than or equal to that of real.
# File 'numeric.c', line 4296
VALUE
rb_int_ge(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_ge(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_ge(x, y);
    }
    return Qnil;
}
  
    #>>(count)  ⇒ Integer   
Returns int shifted right count positions, or left if count is negative.
# File 'numeric.c', line 4636
static VALUE
rb_int_rshift(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return rb_fix_rshift(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_rshift(x, y);
    }
    return Qnil;
}
  Bit Reference—Returns the nth bit in the binary representation of int, where int[0] is the least significant bit.
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
#=> 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
#=> 000101110110100000111000011110010100111100010111001In principle, n[i] is equivalent to (n >> i) & 1. Thus, any negative index always returns zero:
p 255[-1] #=> 0::Range operations n[i, len] and n[i..j] are naturally extended.
- 
n[i, len]equals to(n >> i) & ((1 << len) - 1).
- 
n[i..j]equals to(n >> i) & ((1 << (j - i + 1)) - 1).
- 
n[i...j]equals to(n >> i) & ((1 << (j - i)) - 1).
- 
n[i..]equals to(n >> i).
- 
n[..j]is zero ifn & ((1 << (j + 1)) - 1)is zero. Otherwise, raises an::ArgumentError.
- 
n[...j]is zero ifn & ((1 << j) - 1)is zero. Otherwise, raises an::ArgumentError.
Note that range operation may exhaust memory. For example, -1[0, 1000000000000] will raise ::NoMemoryError.
# File 'numeric.c', line 4796
static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return int_aref2(num, argv[0], argv[1]);
    }
    return int_aref1(num, argv[0]);
    return Qnil;
}
  
    #^(other_int)  ⇒ Integer   
Bitwise EXCLUSIVE OR.
# File 'numeric.c', line 4541
static VALUE
int_xor(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_xor(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_xor(x, y);
    }
    return Qnil;
}
  
    
      #abs  ⇒ Integer 
      #magnitude  ⇒ Integer 
    
    Also known as: #magnitude
  
Integer 
      #magnitude  ⇒ Integer 
    Returns the absolute value of int.
(-12345).abs   #=> 12345
-12345.abs     #=> 12345
12345.abs      #=> 12345#magnitude is an alias for abs.
# File 'numeric.c', line 4861
VALUE
rb_int_abs(VALUE num)
{
    if (FIXNUM_P(num)) {
	return fix_abs(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_abs(num);
    }
    return Qnil;
}
  
    #allbits?(mask)  ⇒ Boolean   
Returns true if all bits of int & {mask} are 1.
# File 'numeric.c', line 3274
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return rb_int_equal(rb_int_and(num, mask), mask);
}
  
    #anybits?(mask)  ⇒ Boolean   
Returns true if any bits of int & {mask} are 1.
# File 'numeric.c', line 3288
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return num_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
}
  
    #bit_length  ⇒ Integer   
Returns the number of bits of the value of int.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length   #=> 1001
(-2**1000).bit_length     #=> 1000
(-2**1000+1).bit_length   #=> 1000
(-2**12-1).bit_length     #=> 13
(-2**12).bit_length       #=> 12
(-2**12+1).bit_length     #=> 12
-0x101.bit_length         #=> 9
-0x100.bit_length         #=> 8
-0xff.bit_length          #=> 8
-2.bit_length             #=> 1
-1.bit_length             #=> 0
0.bit_length              #=> 0
1.bit_length              #=> 1
0xff.bit_length           #=> 8
0x100.bit_length          #=> 9
(2**12-1).bit_length      #=> 12
(2**12).bit_length        #=> 13
(2**12+1).bit_length      #=> 13
(2**1000-1).bit_length    #=> 1000
(2**1000).bit_length      #=> 1001
(2**1000+1).bit_length    #=> 1001This method can be used to detect overflow in Array#pack as follows:
if n.bit_length < 32
  [n].pack("l") # no overflow
else
  raise "overflow"
end# File 'numeric.c', line 4961
static VALUE
rb_int_bit_length(VALUE num)
{
    if (FIXNUM_P(num)) {
	return rb_fix_bit_length(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_bit_length(num);
    }
    return Qnil;
}
  
    #ceil([ndigits])  ⇒ Integer, Float   
Returns the smallest number greater than or equal to int with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.ceil           #=> 1
1.ceil(2)        #=> 1
18.ceil(-1)      #=> 20
(-18).ceil(-1)   #=> -10# File 'numeric.c', line 5322
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
	return num;
    }
    return rb_int_ceil(num, ndigits);
}
  #chr([encoding]) ⇒ String
Returns a string containing the character represented by the int‘s value according to encoding.
65.chr    #=> "A"
230.chr   #=> "\xE6"
255.chr(Encoding::UTF_8)   #=> "\u00FF"# File 'numeric.c', line 3401
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
    char c;
    unsigned int i;
    rb_encoding *enc;
    if (rb_num_to_uint(num, &i) == 0) {
    }
    else if (FIXNUM_P(num)) {
	rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
    }
    else {
	rb_raise(rb_eRangeError, "bignum out of char range");
    }
    switch (argc) {
      case 0:
	if (0xff < i) {
	    enc = rb_default_internal_encoding();
	    if (!enc) {
		rb_raise(rb_eRangeError, "%d out of char range", i);
	    }
	    goto decode;
	}
	c = (char)i;
	if (i < 0x80) {
	    return rb_usascii_str_new(&c, 1);
	}
	else {
	    return rb_str_new(&c, 1);
	}
      case 1:
	break;
      default:
        rb_error_arity(argc, 0, 1);
    }
    enc = rb_to_encoding(argv[0]);
    if (!enc) enc = rb_ascii8bit_encoding();
  decode:
    return rb_enc_uint_chr(i, enc);
}
  #coerce(numeric) ⇒ Array
Returns an array with both a numeric and a big represented as Bignum objects.
This is achieved by converting numeric to a Bignum.
A TypeError is raised if the numeric is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]# File 'bignum.c', line 6748
static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(y)) {
        return rb_assoc_new(y, x);
    }
    else {
        x = rb_Float(x);
        y = rb_Float(y);
        return rb_assoc_new(y, x);
    }
}
  
    #denominator  ⇒ 1   
Returns 1.
# File 'rational.c', line 2073
static VALUE
integer_denominator(VALUE self)
{
    return INT2FIX(1);
}
  Returns the digits of int‘s place-value representation with radix base (default: 10). The digits are returned as an array with the least significant digit as the first array element.
base must be greater than or equal to 2.
12345.digits      #=> [5, 4, 3, 2, 1]
12345.digits(7)   #=> [4, 6, 6, 0, 5]
12345.digits(100) #=> [45, 23, 1]
-12345.digits(7)  #=> Math::DomainError# File 'numeric.c', line 5048
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
    VALUE base_value;
    long base;
    if (rb_num_negative_p(num))
        rb_raise(rb_eMathDomainError, "out of domain");
    if (rb_check_arity(argc, 0, 1)) {
        base_value = rb_to_int(argv[0]);
        if (!RB_INTEGER_TYPE_P(base_value))
            rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
                     rb_obj_classname(argv[0]));
        if (RB_TYPE_P(base_value, T_BIGNUM))
            return rb_int_digits_bigbase(num, base_value);
        base = FIX2LONG(base_value);
        if (base < 0)
            rb_raise(rb_eArgError, "negative radix");
        else if (base < 2)
            rb_raise(rb_eArgError, "invalid radix %ld", base);
    }
    else
        base = 10;
    if (FIXNUM_P(num))
        return rb_fix_digits(num, base);
    else if (RB_TYPE_P(num, T_BIGNUM))
        return rb_int_digits_bigbase(num, LONG2FIX(base));
    return Qnil;
}
  
    #div(numeric)  ⇒ Integer   
Performs integer division: returns the integer result of dividing int by numeric.
# File 'numeric.c', line 3847
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_idiv(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_idiv(x, y);
    }
    return num_div(x, y);
}
  #divmod(numeric) ⇒ Array
See Numeric#divmod.
# File 'numeric.c', line 3967
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_divmod(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_divmod(x, y);
    }
    return Qnil;
}
  
    
      #downto(limit) {|i| ... } ⇒ self 
      #downto(limit)  ⇒ Enumerator 
    
  
self 
      #downto(limit)  ⇒ Enumerator 
    Iterates the given block, passing in decreasing values from int down to and including limit.
If no block is given, an ::Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
puts "Liftoff!"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"# File 'numeric.c', line 5148
static VALUE
int_downto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
	long i, end;
	end = FIX2LONG(to);
	for (i=FIX2LONG(from); i >= end; i--) {
	    rb_yield(LONG2FIX(i));
	}
    }
    else {
	VALUE i = from, c;
	while (!(c = rb_funcall(i, '<', 1, to))) {
	    rb_yield(i);
	    i = rb_funcall(i, '-', 1, INT2FIX(1));
	}
	if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}
  #fdiv(numeric) ⇒ Float
Returns the floating point result of dividing int by numeric.
654321.fdiv(13731)      #=> 47.652829364212366
654321.fdiv(13731.24)   #=> 47.65199646936475
-654321.fdiv(13731)     #=> -47.652829364212366# File 'numeric.c', line 3765
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
    if (RB_INTEGER_TYPE_P(x)) {
        return DBL2NUM(rb_int_fdiv_double(x, y));
    }
    return Qnil;
}
  
    #floor([ndigits])  ⇒ Integer, Float   
Returns the largest number less than or equal to int with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.floor           #=> 1
1.floor(2)        #=> 1
18.floor(-1)      #=> 10
(-18).floor(-1)   #=> -20# File 'numeric.c', line 5290
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
	return num;
    }
    return rb_int_floor(num, ndigits);
}
  
    #gcd(other_int)  ⇒ Integer   
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60)                  #=> 12
2.gcd(2)                    #=> 2
3.gcd(-7)                   #=> 1
((1<<31)-1).gcd((1<<61)-1)  #=> 1# File 'rational.c', line 1905
VALUE
rb_gcd(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_gcd(self, other);
}
  #gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60)                  #=> [12, 180]
2.gcdlcm(2)                    #=> [2, 2]
3.gcdlcm(-7)                   #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1)  #=> [1, 4951760154835678088235319297]# File 'rational.c', line 1943
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
  Alias for #to_s.
    #lcm(other_int)  ⇒ Integer   
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60)                  #=> 180
2.lcm(2)                    #=> 2
3.lcm(-7)                   #=> 21
((1<<31)-1).lcm((1<<61)-1)  #=> 4951760154835678088235319297# File 'rational.c', line 1924
VALUE
rb_lcm(VALUE self, VALUE other)
{
    other = nurat_int_value(other);
    return f_lcm(self, other);
}
  
    
      #abs  ⇒ Integer 
      #magnitude  ⇒ Integer 
    
  
Integer 
      #magnitude  ⇒ Integer 
    Alias for #%.
    
      #next  ⇒ Integer 
      #succ  ⇒ Integer 
    
    Also known as: #succ
  
Integer 
      #succ  ⇒ Integer 
    # File 'numeric.c', line 3325
VALUE
rb_int_succ(VALUE num)
{
    if (FIXNUM_P(num)) {
	long i = FIX2LONG(num) + 1;
	return LONG2NUM(i);
    }
    if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_plus(num, INT2FIX(1));
    }
    return num_funcall1(num, '+', INT2FIX(1));
}
  
    #nobits?(mask)  ⇒ Boolean   
Returns true if no bits of int & {mask} are 1.
# File 'numeric.c', line 3302
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
    mask = rb_to_int(mask);
    return num_zero_p(rb_int_and(num, mask));
}
  
    #numerator  ⇒ self   
Returns self.
# File 'rational.c', line 2061
static VALUE
integer_numerator(VALUE self)
{
    return self;
}
  
    #ord  ⇒ self   
Returns the int itself.
97.ord   #=> 97This method is intended for compatibility to character literals in Ruby 1.9.
For example, ?a.ord returns 97 both in 1.8 and 1.9.
# File 'numeric.c', line 3458
static VALUE
int_ord(VALUE num)
{
    return num;
}
  
    
      #pow(numeric)  ⇒ Numeric 
      #pow(integer, integer)  ⇒ Integer 
    
  
Integer 
    Returns (modular) exponentiation as:
a.pow(b)     #=> same as a**b
a.pow(b, m)  #=> same as (a**b) % m, but avoids huge temporary values# File 'bignum.c', line 7111
VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 1) {
        return rb_int_pow(num, argv[0]);
    }
    else {
        VALUE const a = num;
        VALUE const b = argv[0];
        VALUE m = argv[1];
        int nega_flg = 0;
        if ( ! RB_INTEGER_TYPE_P(b)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
        }
        if (rb_int_negative_p(b)) {
            rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
        }
        if (!RB_INTEGER_TYPE_P(m)) {
            rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
        }
        if (rb_int_negative_p(m)) {
            m = rb_int_uminus(m);
            nega_flg = 1;
        }
        if (FIXNUM_P(m)) {
            long const half_val = (long)HALF_LONG_MSB;
            long const mm = FIX2LONG(m);
            if (!mm) rb_num_zerodiv();
            if (mm <= half_val) {
                return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
            }
            else {
                return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
            }
        }
        else {
            if (rb_bigzero_p(m)) rb_num_zerodiv();
            return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
        }
    }
    UNREACHABLE_RETURN(Qnil);
}
  
    #pred  ⇒ Integer   
Returns the predecessor of int, i.e. the Integer equal to int-1.
1.pred      #=> 0
(-1).pred   #=> -2# File 'numeric.c', line 3351
static VALUE
rb_int_pred(VALUE num)
{
    if (FIXNUM_P(num)) {
	long i = FIX2LONG(num) - 1;
	return LONG2NUM(i);
    }
    if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_minus(num, INT2FIX(1));
    }
    return num_funcall1(num, '-', INT2FIX(1));
}
  #rationalize([eps]) ⇒ Rational
Returns the value as a rational.  The optional argument eps is always ignored.
# File 'rational.c', line 2177
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 1);
    return integer_to_r(self);
}
  #remainder(numeric) ⇒ Numeric
Returns the remainder after dividing int by numeric.
x.remainder(y) means x-y*(x/y).truncate.
5.remainder(3)     #=> 2
-5.remainder(3)    #=> -2
5.remainder(-3)    #=> 2
-5.remainder(-3)   #=> -2
5.remainder(1.5)   #=> 0.5See Numeric#divmod.
# File 'numeric.c', line 3919
static VALUE
int_remainder(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return num_remainder(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_remainder(x, y);
    }
    return Qnil;
}
  
    #round([ndigits] [, half: mode])  ⇒ Integer, Float   
Returns int rounded to the nearest value with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.round           #=> 1
1.round(2)        #=> 1
15.round(-1)      #=> 20
(-15).round(-1)   #=> -20The optional half keyword argument is available similar to Float#round.
25.round(-1, half: :up)      #=> 30
25.round(-1, half: :down)    #=> 20
25.round(-1, half: :even)    #=> 20
35.round(-1, half: :up)      #=> 40
35.round(-1, half: :down)    #=> 30
35.round(-1, half: :even)    #=> 40
(-25).round(-1, half: :up)   #=> -30
(-25).round(-1, half: :down) #=> -20
(-25).round(-1, half: :even) #=> -20# File 'numeric.c', line 5255
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    int mode;
    VALUE nd, opt;
    if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
    ndigits = NUM2INT(nd);
    mode = rb_num_get_rounding_option(opt);
    if (ndigits >= 0) {
	return num;
    }
    return rb_int_round(num, ndigits, mode);
}
  
    #size  ⇒ Integer   
Returns the number of bytes in the machine representation of int (machine dependent).
1.size               #=> 8
-1.size              #=> 8
2147483647.size      #=> 8
(256**10 - 1).size   #=> 10
(256**20 - 1).size   #=> 20
(256**40 - 1).size   #=> 40# File 'numeric.c', line 4895
static VALUE
int_size(VALUE num)
{
    if (FIXNUM_P(num)) {
	return fix_size(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_size_m(num);
    }
    return Qnil;
}
  
    
      #next  ⇒ Integer 
      #succ  ⇒ Integer 
    
  
Integer 
      #succ  ⇒ Integer 
    Alias for #next.
    
      #times {|i| ... } ⇒ self 
      #times  ⇒ Enumerator 
    
  
self 
      #times  ⇒ Enumerator 
    Iterates the given block int times, passing in values from zero to int - 1.
If no block is given, an ::Enumerator is returned instead.
5.times {|i| print i, " " }   #=> 0 1 2 3 4# File 'numeric.c', line 5198
static VALUE
int_dotimes(VALUE num)
{
    RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
    if (FIXNUM_P(num)) {
	long i, end;
	end = FIX2LONG(num);
	for (i=0; i<end; i++) {
	    rb_yield_1(LONG2FIX(i));
	}
    }
    else {
	VALUE i = INT2FIX(0);
	for (;;) {
	    if (!RTEST(rb_funcall(i, '<', 1, num))) break;
	    rb_yield(i);
	    i = rb_funcall(i, '+', 1, INT2FIX(1));
	}
    }
    return num;
}
  #to_f ⇒ Float
[ GitHub ]# File 'numeric.c', line 4817
static VALUE
int_to_f(VALUE num)
{
    double val;
    if (FIXNUM_P(num)) {
	val = (double)FIX2LONG(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	val = rb_big2dbl(num);
    }
    else {
	rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
    }
    return DBL2NUM(val);
}
  
    
      #to_i  ⇒ Integer 
      #to_int  ⇒ Integer 
    
    Also known as: #to_int
  
Integer 
      #to_int  ⇒ Integer 
    Since int is already an Integer, returns self.
#to_int is an alias for #to_i.
# File 'numeric.c', line 3200
static VALUE
int_to_i(VALUE num)
{
    return num;
}
  
    
      #to_i  ⇒ Integer 
      #to_int  ⇒ Integer 
    
  
Integer 
      #to_int  ⇒ Integer 
    Alias for #to_i.
#to_r ⇒ Rational
Returns the value as a rational.
1.to_r        #=> (1/1)
(1<<64).to_r  #=> (18446744073709551616/1)# File 'rational.c', line 2164
static VALUE
integer_to_r(VALUE self)
{
    return rb_rational_new1(self);
}
  #to_s(base = 10) ⇒ String Also known as: #inspect
Returns a string containing the place-value representation of int with radix base (between 2 and 36).
12345.to_s       #=> "12345"
12345.to_s(2)    #=> "11000000111001"
12345.to_s(8)    #=> "30071"
12345.to_s(10)   #=> "12345"
12345.to_s(16)   #=> "3039"
12345.to_s(36)   #=> "9ix"
78546939656932.to_s(36)  #=> "rubyrules"# File 'numeric.c', line 3554
static VALUE
int_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;
    if (rb_check_arity(argc, 0, 1))
	base = NUM2INT(argv[0]);
    else
	base = 10;
    return rb_int2str(x, base);
}
  
    #truncate([ndigits])  ⇒ Integer, Float   
Returns int truncated (toward zero) to a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.truncate           #=> 1
1.truncate(2)        #=> 1
18.truncate(-1)      #=> 10
(-18).truncate(-1)   #=> -10# File 'numeric.c', line 5354
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
    int ndigits;
    if (!rb_check_arity(argc, 0, 1)) return num;
    ndigits = NUM2INT(argv[0]);
    if (ndigits >= 0) {
	return num;
    }
    return rb_int_truncate(num, ndigits);
}
  
    
      #upto(limit) {|i| ... } ⇒ self 
      #upto(limit)  ⇒ Enumerator 
    
  
self 
      #upto(limit)  ⇒ Enumerator 
    Iterates the given block, passing in integer values from int up to and including limit.
If no block is given, an ::Enumerator is returned instead.
5.upto(10) {|i| print i, " " }   #=> 5 6 7 8 9 10# File 'numeric.c', line 5102
static VALUE
int_upto(VALUE from, VALUE to)
{
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
	long i, end;
	end = FIX2LONG(to);
	for (i = FIX2LONG(from); i <= end; i++) {
	    rb_yield(LONG2FIX(i));
	}
    }
    else {
	VALUE i = from, c;
	while (!(c = rb_funcall(i, '>', 1, to))) {
	    rb_yield(i);
	    i = rb_funcall(i, '+', 1, INT2FIX(1));
	}
	if (NIL_P(c)) rb_cmperr(i, to);
    }
    return from;
}
  
    #|(other_int)  ⇒ Integer   
Bitwise OR.
# File 'numeric.c', line 4506
static VALUE
int_or(VALUE x, VALUE y)
{
    if (FIXNUM_P(x)) {
	return fix_or(x, y);
    }
    else if (RB_TYPE_P(x, T_BIGNUM)) {
	return rb_big_or(x, y);
    }
    return Qnil;
}
  
    #~  ⇒ Integer   
One’s complement: returns a number where each bit is flipped.
Inverts the bits in an Integer. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"# File 'numeric.c', line 4407
static VALUE
int_comp(VALUE num)
{
    if (FIXNUM_P(num)) {
	return fix_comp(num);
    }
    else if (RB_TYPE_P(num, T_BIGNUM)) {
	return rb_big_comp(num);
    }
    return Qnil;
}