Class: Integer
| Relationships & Source Files | |
| Super Chains via Extension / Inclusion / Inheritance | |
|
Class Chain:
self,
::Numeric
|
|
|
Instance Chain:
self,
::Numeric,
::Comparable
|
|
| Inherits: | Numeric |
| Defined in: | numeric.c, bignum.c, rational.c |
Overview
Holds Integer values. You cannot add a singleton method to an Integer object, any attempt to do so will raise a ::TypeError.
Constant Summary
-
GMP_VERSION =
# File 'bignum.c', line 7175
The version of loaded GMP.
rb_sprintf("GMP %s", gmp_version)
Class Method Summary
-
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer
n, i.e. the largest non-negative integer less than or equal to the square root ofn.
Instance Attribute Summary
-
#even? ⇒ Boolean
readonly
Returns
trueifintis an even number. -
#integer? ⇒ Boolean
readonly
Since
intis already anInteger, this always returnstrue. -
#odd? ⇒ Boolean
readonly
Returns
trueifintis an odd number.
::Numeric - Inherited
| #finite? | Returns |
| #infinite? | Returns |
| #integer? | Returns |
| #negative? | Returns |
| #nonzero? | Returns |
| #positive? | Returns |
| #real | Returns self. |
| #real? | Returns |
| #zero? | Returns |
Instance Method Summary
-
#%(other) ⇒ Numeric
(also: #modulo)
Returns
intmoduloother. -
#&(other_int) ⇒ Integer
Bitwise AND.
-
#*(numeric) ⇒ numeric_result
Performs multiplication: the class of the resulting object depends on the class of
numeric. -
#**(numeric) ⇒ numeric_result
Raises
intto the power ofnumeric, which may be negative or fractional. -
#+(numeric) ⇒ numeric_result
Performs addition: the class of the resulting object depends on the class of
numeric. -
#-(numeric) ⇒ numeric_result
Performs subtraction: the class of the resulting object depends on the class of
numeric. -
#- ⇒ Integer
Returns
int, negated. -
#/(numeric) ⇒ numeric_result
Performs division: the class of the resulting object depends on the class of
numeric. -
#<(real) ⇒ Boolean
Returns
trueif the value ofintis less than that ofreal. -
#<<(count) ⇒ Integer
Returns
intshifted leftcountpositions, or right ifcountis negative. -
#<=(real) ⇒ Boolean
Returns
trueif the value ofintis less than or equal to that ofreal. -
#<=>(numeric) ⇒ 1, ...
Comparison—Returns -1, 0, or +1 depending on whether
intis less than, equal to, or greater thannumeric. -
#==(other) ⇒ Boolean
(also: #===)
Returns
trueifintequalsothernumerically. -
#===(other) ⇒ Boolean
Alias for #==.
-
#>(real) ⇒ Boolean
Returns
trueif the value ofintis greater than that ofreal. -
#>=(real) ⇒ Boolean
Returns
trueif the value ofintis greater than or equal to that ofreal. -
#>>(count) ⇒ Integer
Returns
intshifted rightcountpositions, or left ifcountis negative. -
#[](n) ⇒ 0, 1
Bit Reference—Returns the
nth bit in the binary representation ofint, whereint[0]is the least significant bit. -
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
-
#abs ⇒ Integer
(also: #magnitude)
Returns the absolute value of
int. -
#allbits?(mask) ⇒ Boolean
Returns
trueif all bits ofint & {mask}are 1. -
#anybits?(mask) ⇒ Boolean
Returns
trueif any bits ofint & {mask}are 1. -
#bit_length ⇒ Integer
Returns the number of bits of the value of
int. -
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
intwith a precision ofndigitsdecimal digits (default: 0). -
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the
int‘s value according toencoding. -
#coerce(numeric) ⇒ Array
Returns an array with both a
numericand abigrepresented as Bignum objects. -
#denominator ⇒ 1
Returns 1.
-
#digits ⇒ Array
Returns the digits of
int‘s place-value representation with radixbase(default: 10). -
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing
intbynumeric. -
#divmod(numeric) ⇒ Array
See Numeric#divmod.
-
#downto(limit) {|i| ... } ⇒ self
Iterates the given block, passing in decreasing values from
intdown to and includinglimit. -
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing
intbynumeric. -
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
intwith a precision ofndigitsdecimal digits (default: 0). -
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers.
-
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
-
#inspect(base = 10) ⇒ String
Alias for #to_s.
-
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers.
-
#magnitude ⇒ Integer
Alias for #abs.
-
#modulo(other) ⇒ Numeric
Alias for #%.
-
#next ⇒ Integer
(also: #succ)
Returns the successor of
int, i.e. theIntegerequal toint1</code>. -
#nobits?(mask) ⇒ Boolean
Returns
trueif no bits ofint & {mask}are 1. -
#numerator ⇒ self
Returns self.
-
#ord ⇒ self
Returns the
intitself. -
#pow(numeric) ⇒ Numeric
Returns (modular) exponentiation as:
-
#pred ⇒ Integer
Returns the predecessor of
int, i.e. theIntegerequal toint-1. -
#rationalize([eps]) ⇒ Rational
Returns the value as a rational.
-
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing
intbynumeric. -
#round([ndigits] [, half: mode]) ⇒ Integer, Float
Returns
introunded to the nearest value with a precision ofndigitsdecimal digits (default: 0). -
#size ⇒ Integer
Returns the number of bytes in the machine representation of
int(machine dependent). -
#succ ⇒ Integer
Alias for #next.
-
#times {|i| ... } ⇒ self
Iterates the given block
inttimes, passing in values from zero toint - 1. -
#to_f ⇒ Float
Converts
intto a::Float. -
#to_i ⇒ Integer
(also: #to_int)
Since
intis already anInteger, returnsself. -
#to_int ⇒ Integer
Alias for #to_i.
-
#to_r ⇒ Rational
Returns the value as a rational.
-
#to_s(base = 10) ⇒ String
(also: #inspect)
Returns a string containing the place-value representation of
intwith radixbase(between 2 and 36). -
#truncate([ndigits]) ⇒ Integer, Float
Returns
inttruncated (toward zero) to a precision ofndigitsdecimal digits (default: 0). -
#upto(limit) {|i| ... } ⇒ self
Iterates the given block, passing in integer values from
intup to and includinglimit. -
#|(other_int) ⇒ Integer
Bitwise OR.
-
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
::Numeric - Inherited
| #% |
|
| #+@ | Unary Plus—Returns the receiver. |
| #-@ | Unary Minus—Returns the receiver, negated. |
| #<=> | Returns zero if |
| #abs | Returns the absolute value of |
| #abs2 | Returns square of self. |
| #angle | Alias for Numeric#arg. |
| #arg | Returns 0 if the value is positive, pi otherwise. |
| #ceil | Returns the smallest number greater than or equal to |
| #clone | Returns the receiver. |
| #coerce | If |
| #conj | Returns self. |
| #conjugate | Alias for Numeric#conj. |
| #denominator | Returns the denominator (always positive). |
| #div | Uses #/ to perform division, then converts the result to an integer. |
| #divmod | Returns an array containing the quotient and modulus obtained by dividing |
| #dup | Returns the receiver. |
| #eql? | Returns |
| #fdiv | Returns float division. |
| #floor | Returns the largest number less than or equal to |
| #i | Returns the corresponding imaginary number. |
| #imag | Returns zero. |
| #imaginary | Alias for Numeric#imag. |
| #magnitude | Alias for Numeric#abs. |
| #modulo | Alias for Numeric#%. |
| #numerator | Returns the numerator. |
| #phase | Alias for Numeric#arg. |
| #polar | Returns an array; [num.abs, num.arg]. |
| #quo | Returns the most exact division (rational for integers, float for floats). |
| #rect | Returns an array; [num, 0]. |
| #rectangular | Alias for Numeric#rect. |
| #remainder |
|
| #round | Returns |
| #step | Invokes the given block with the sequence of numbers starting at |
| #to_c | Returns the value as a complex. |
| #to_int | Invokes the child class’s #to_i method to convert |
| #truncate | Returns |
| #singleton_method_added | Trap attempts to add methods to |
::Comparable - Included
| #< | Compares two objects based on the receiver’s #<=> method, returning true if it returns -1. |
| #<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns -1 or 0. |
| #== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
| #> | Compares two objects based on the receiver’s #<=> method, returning true if it returns 1. |
| #>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0 or 1. |
| #between? | |
| #clamp |
Class Method Details
.sqrt(n) ⇒ Integer
Returns the integer square root of the non-negative integer n, i.e. the largest non-negative integer less than or equal to the square root of n.
Integer.sqrt(0) #=> 0
Integer.sqrt(1) #=> 1
Integer.sqrt(24) #=> 4
Integer.sqrt(25) #=> 5
Integer.sqrt(10**400) #=> 10**200
Equivalent to Math.sqrt(n).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) #=> 100000000000000000000000
Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
If n is not an Integer, it is converted to an Integer first. If n is negative, a ::Math::DomainError is raised.
# File 'numeric.c', line 5323
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
if (FIXNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
n = FIX2ULONG(num);
sq = rb_ulong_isqrt(n);
return LONG2FIX(sq);
}
else {
size_t biglen;
if (RBIGNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
biglen = BIGNUM_LEN(num);
if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
/* short-circuit */
if (biglen == 1) {
n = BIGNUM_DIGITS(num)[0];
sq = rb_ulong_isqrt(n);
return ULONG2NUM(sq);
}
#endif
return rb_big_isqrt(num);
}
}
Instance Attribute Details
#even? ⇒ Boolean (readonly)
Returns true if int is an even number.
# File 'numeric.c', line 3240
static VALUE
int_even_p(VALUE num)
{
if (FIXNUM_P(num)) {
if ((num & 2) == 0) {
return Qtrue;
}
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_even_p(num);
}
else if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
#integer? ⇒ Boolean (readonly)
Since int is already an Integer, this always returns true.
# File 'numeric.c', line 3203
static VALUE
int_int_p(VALUE num)
{
return Qtrue;
}
#odd? ⇒ Boolean (readonly)
Returns true if int is an odd number.
# File 'numeric.c', line 3216
VALUE
rb_int_odd_p(VALUE num)
{
if (FIXNUM_P(num)) {
if (num & 2) {
return Qtrue;
}
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_odd_p(num);
}
else if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
Instance Method Details
Also known as: #modulo
Returns int modulo other.
See Numeric#divmod for more information.
# File 'numeric.c', line 3881
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
#&(other_int) ⇒ Integer
Bitwise AND.
# File 'numeric.c', line 4463
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_and(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_and(x, y);
}
return Qnil;
}
#*(numeric) ⇒ numeric_result
Performs multiplication: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3694
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mul(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
#**(numeric) ⇒ numeric_result
Raises int to the power of numeric, which may be negative or fractional. The result may be an Integer, a ::Float, a ::Rational, or a complex number.
2 ** 3 #=> 8
2 ** -1 #=> (1/2)
2 ** 0.5 #=> 1.4142135623730951
(-1) ** 0.5 #=> (0.0+1.0i)
123456789 ** 2 #=> 15241578750190521
123456789 ** 1.2 #=> 5126464716.0993185
123456789 ** -2 #=> (1/15241578750190521)
# File 'numeric.c', line 4101
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_pow(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_pow(x, y);
}
return Qnil;
}
#+(numeric) ⇒ numeric_result
Performs addition: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3605
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_plus(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
#-(numeric) ⇒ numeric_result
Performs subtraction: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3644
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_minus(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
#- ⇒ Integer
Returns int, negated.
# File 'numeric.c', line 3474
VALUE
rb_int_uminus(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_uminus(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_uminus(num);
}
return num_funcall0(num, idUMinus);
}
#/(numeric) ⇒ numeric_result
Performs division: the class of the resulting object depends on the class of numeric.
# File 'numeric.c', line 3811
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_div(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_div(x, y);
}
return Qnil;
}
#<(real) ⇒ Boolean
Returns true if the value of int is less than that of real.
# File 'numeric.c', line 4326
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_lt(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_lt(x, y);
}
return Qnil;
}
#<<(count) ⇒ Integer
Returns int shifted left count positions, or right if count is negative.
# File 'numeric.c', line 4579
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_lshift(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_lshift(x, y);
}
return Qnil;
}
#<=(real) ⇒ Boolean
Returns true if the value of int is less than or equal to that of real.
# File 'numeric.c', line 4366
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_le(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_le(x, y);
}
return Qnil;
}
#<=>(numeric) ⇒ 1, ...
Comparison—Returns -1, 0, or +1 depending on whether int is less than, equal to, or greater than numeric.
This is the basis for the tests in the ::Comparable module.
nil is returned if the two values are incomparable.
# File 'numeric.c', line 4208
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_cmp(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_cmp(x, y);
}
else {
rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
}
}
#==(other) ⇒ Boolean Also known as: #===
Returns true if int equals other numerically. Contrast this with Integer#eql?, which requires other to be an Integer.
1 == 2 #=> false
1 == 1.0 #=> true
# File 'numeric.c', line 4158
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_eq(x, y);
}
return Qnil;
}
#==(other) ⇒ Boolean
#===(other) ⇒ Boolean
Boolean
#===(other) ⇒ Boolean
Alias for #==.
#>(real) ⇒ Boolean
Returns true if the value of int is greater than that of real.
# File 'numeric.c', line 4248
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_gt(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_gt(x, y);
}
return Qnil;
}
#>=(real) ⇒ Boolean
Returns true if the value of int is greater than or equal to that of real.
# File 'numeric.c', line 4288
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_ge(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_ge(x, y);
}
return Qnil;
}
#>>(count) ⇒ Integer
Returns int shifted right count positions, or left if count is negative.
# File 'numeric.c', line 4626
static VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_rshift(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_rshift(x, y);
}
return Qnil;
}
#[](n) ⇒ 0, 1
# File 'numeric.c', line 4683
static VALUE
int_aref(VALUE num, VALUE idx)
{
if (FIXNUM_P(num)) {
return fix_aref(num, idx);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_aref(num, idx);
}
return Qnil;
}
#^(other_int) ⇒ Integer
Bitwise EXCLUSIVE OR.
# File 'numeric.c', line 4533
static VALUE
int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_xor(x, y);
}
return Qnil;
}
#abs ⇒ Integer
#magnitude ⇒ Integer
Also known as: #magnitude
Integer
#magnitude ⇒ Integer
Returns the absolute value of int.
(-12345).abs #=> 12345
-12345.abs #=> 12345
12345.abs #=> 12345
#magnitude is an alias for abs.
# File 'numeric.c', line 4748
VALUE
rb_int_abs(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_abs(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_abs(num);
}
return Qnil;
}
#allbits?(mask) ⇒ Boolean
Returns true if all bits of int & {mask} are 1.
# File 'numeric.c', line 3264
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return rb_int_equal(rb_int_and(num, mask), mask);
}
#anybits?(mask) ⇒ Boolean
Returns true if any bits of int & {mask} are 1.
# File 'numeric.c', line 3278
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return num_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
}
#bit_length ⇒ Integer
Returns the number of bits of the value of int.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001
(-2**1000).bit_length #=> 1000
(-2**1000+1).bit_length #=> 1000
(-2**12-1).bit_length #=> 13
(-2**12).bit_length #=> 12
(-2**12+1).bit_length #=> 12
-0x101.bit_length #=> 9
-0x100.bit_length #=> 8
-0xff.bit_length #=> 8
-2.bit_length #=> 1
-1.bit_length #=> 0
0.bit_length #=> 0
1.bit_length #=> 1
0xff.bit_length #=> 8
0x100.bit_length #=> 9
(2**12-1).bit_length #=> 12
(2**12).bit_length #=> 13
(2**12+1).bit_length #=> 13
(2**1000-1).bit_length #=> 1000
(2**1000).bit_length #=> 1001
(2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack as follows:
if n.bit_length < 32
[n].pack("l") # no overflow
else
raise "overflow"
end
# File 'numeric.c', line 4848
static VALUE
rb_int_bit_length(VALUE num)
{
if (FIXNUM_P(num)) {
return rb_fix_bit_length(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_bit_length(num);
}
return Qnil;
}
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to int with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.ceil #=> 1
1.ceil(2) #=> 1
18.ceil(-1) #=> 20
(-18).ceil(-1) #=> -10
# File 'numeric.c', line 5209
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_ceil(num, ndigits);
}
#chr([encoding]) ⇒ String
Returns a string containing the character represented by the int‘s value according to encoding.
65.chr #=> "A"
230.chr #=> "\xE6"
255.chr(Encoding::UTF_8) #=> "\u00FF"
# File 'numeric.c', line 3391
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%d out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_check_arity(argc, 0, 1);
break;
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
#coerce(numeric) ⇒ Array
Returns an array with both a numeric and a big represented as Bignum objects.
This is achieved by converting numeric to a Bignum.
A TypeError is raised if the numeric is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
# File 'bignum.c', line 6733
static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y)) {
return rb_assoc_new(y, x);
}
else {
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
}
#denominator ⇒ 1
Returns 1.
# File 'rational.c', line 2059
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
Returns the digits of int‘s place-value representation with radix base (default: 10). The digits are returned as an array with the least significant digit as the first array element.
base must be greater than or equal to 2.
12345.digits #=> [5, 4, 3, 2, 1]
12345.digits(7) #=> [4, 6, 6, 0, 5]
12345.digits(100) #=> [45, 23, 1]
-12345.digits(7) #=> Math::DomainError
# File 'numeric.c', line 4935
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
VALUE base_value;
long base;
if (rb_num_negative_p(num))
rb_raise(rb_eMathDomainError, "out of domain");
if (rb_check_arity(argc, 0, 1)) {
base_value = rb_to_int(argv[0]);
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
if (RB_TYPE_P(base_value, T_BIGNUM))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
if (base < 0)
rb_raise(rb_eArgError, "negative radix");
else if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
}
else
base = 10;
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
else if (RB_TYPE_P(num, T_BIGNUM))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
#div(numeric) ⇒ Integer
Performs integer division: returns the integer result of dividing int by numeric.
# File 'numeric.c', line 3838
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_idiv(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_idiv(x, y);
}
return num_div(x, y);
}
#divmod(numeric) ⇒ Array
See Numeric#divmod.
# File 'numeric.c', line 3958
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_divmod(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_divmod(x, y);
}
return Qnil;
}
#downto(limit) {|i| ... } ⇒ self
#downto(limit) ⇒ Enumerator
self
#downto(limit) ⇒ Enumerator
Iterates the given block, passing in decreasing values from int down to and including limit.
If no block is given, an ::Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
puts "Liftoff!"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
# File 'numeric.c', line 5035
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
#fdiv(numeric) ⇒ Float
Returns the floating point result of dividing int by numeric.
654321.fdiv(13731) #=> 47.652829364212366
654321.fdiv(13731.24) #=> 47.65199646936475
-654321.fdiv(13731) #=> -47.652829364212366
# File 'numeric.c', line 3756
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
return DBL2NUM(rb_int_fdiv_double(x, y));
}
return Qnil;
}
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to int with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.floor #=> 1
1.floor(2) #=> 1
18.floor(-1) #=> 10
(-18).floor(-1) #=> -20
# File 'numeric.c', line 5177
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_floor(num, ndigits);
}
#gcd(other_int) ⇒ Integer
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
# File 'rational.c', line 1895
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
#gcdlcm(other_int) ⇒ Array
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180]
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
# File 'rational.c', line 1933
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Alias for #to_s.
#lcm(other_int) ⇒ Integer
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
# File 'rational.c', line 1914
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
#abs ⇒ Integer
#magnitude ⇒ Integer
Integer
#magnitude ⇒ Integer
Alias for #%.
#next ⇒ Integer
#succ ⇒ Integer
Also known as: #succ
Integer
#succ ⇒ Integer
# File 'numeric.c', line 3315
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_plus(num, INT2FIX(1));
}
return num_funcall1(num, '+', INT2FIX(1));
}
#nobits?(mask) ⇒ Boolean
Returns true if no bits of int & {mask} are 1.
# File 'numeric.c', line 3292
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return num_zero_p(rb_int_and(num, mask));
}
#numerator ⇒ self
Returns self.
# File 'rational.c', line 2047
static VALUE
integer_numerator(VALUE self)
{
return self;
}
#ord ⇒ self
Returns the int itself.
97.ord #=> 97
This method is intended for compatibility to character literals in Ruby 1.9.
For example, ?a.ord returns 97 both in 1.8 and 1.9.
# File 'numeric.c', line 3449
static VALUE
int_ord(VALUE num)
{
return num;
}
#pow(numeric) ⇒ Numeric
#pow(integer, integer) ⇒ Integer
Integer
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b
a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
# File 'bignum.c', line 7096
VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 1) {
return rb_int_pow(num, argv[0]);
}
else {
VALUE const a = num;
VALUE const b = argv[0];
VALUE m = argv[1];
int nega_flg = 0;
if ( ! RB_INTEGER_TYPE_P(b)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
}
if (rb_int_negative_p(b)) {
rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
}
if (!RB_INTEGER_TYPE_P(m)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
}
if (rb_int_negative_p(m)) {
m = rb_int_uminus(m);
nega_flg = 1;
}
if (FIXNUM_P(m)) {
long const half_val = (long)HALF_LONG_MSB;
long const mm = FIX2LONG(m);
if (!mm) rb_num_zerodiv();
if (mm <= half_val) {
return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
}
else {
return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
}
}
else {
if (rb_bigzero_p(m)) rb_num_zerodiv();
return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
}
}
UNREACHABLE_RETURN(Qnil);
}
#pred ⇒ Integer
Returns the predecessor of int, i.e. the Integer equal to int-1.
1.pred #=> 0
(-1).pred #=> -2
# File 'numeric.c', line 3341
VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_minus(num, INT2FIX(1));
}
return num_funcall1(num, '-', INT2FIX(1));
}
#rationalize([eps]) ⇒ Rational
Returns the value as a rational. The optional argument eps is always ignored.
# File 'rational.c', line 2163
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 1);
return integer_to_r(self);
}
#remainder(numeric) ⇒ Numeric
Returns the remainder after dividing int by numeric.
x.remainder(y) means x-y*(x/y).truncate.
5.remainder(3) #=> 2
-5.remainder(3) #=> -2
5.remainder(-3) #=> 2
-5.remainder(-3) #=> -2
5.remainder(1.5) #=> 0.5
See Numeric#divmod.
# File 'numeric.c', line 3910
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return num_remainder(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_remainder(x, y);
}
return Qnil;
}
#round([ndigits] [, half: mode]) ⇒ Integer, Float
Returns int rounded to the nearest value with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.round #=> 1
1.round(2) #=> 1
15.round(-1) #=> 20
(-15).round(-1) #=> -20
The optional half keyword argument is available similar to Float#round.
25.round(-1, half: :up) #=> 30
25.round(-1, half: :down) #=> 20
25.round(-1, half: :even) #=> 20
35.round(-1, half: :up) #=> 40
35.round(-1, half: :down) #=> 30
35.round(-1, half: :even) #=> 40
(-25).round(-1, half: :up) #=> -30
(-25).round(-1, half: :down) #=> -20
(-25).round(-1, half: :even) #=> -20
# File 'numeric.c', line 5142
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
int ndigits;
int mode;
VALUE nd, opt;
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
return num;
}
return rb_int_round(num, ndigits, mode);
}
#size ⇒ Integer
Returns the number of bytes in the machine representation of int (machine dependent).
1.size #=> 8
-1.size #=> 8
2147483647.size #=> 8
(256**10 - 1).size #=> 10
(256**20 - 1).size #=> 20
(256**40 - 1).size #=> 40
# File 'numeric.c', line 4782
static VALUE
int_size(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_size(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_size_m(num);
}
return Qnil;
}
#next ⇒ Integer
#succ ⇒ Integer
Integer
#succ ⇒ Integer
Alias for #next.
#times {|i| ... } ⇒ self
#times ⇒ Enumerator
self
#times ⇒ Enumerator
Iterates the given block int times, passing in values from zero to int - 1.
If no block is given, an ::Enumerator is returned instead.
5.times {|i| print i, " " } #=> 0 1 2 3 4
# File 'numeric.c', line 5085
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield_1(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(rb_funcall(i, '<', 1, num))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
}
return num;
}
#to_f ⇒ Float
[ GitHub ]# File 'numeric.c', line 4704
static VALUE
int_to_f(VALUE num)
{
double val;
if (FIXNUM_P(num)) {
val = (double)FIX2LONG(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
val = rb_big2dbl(num);
}
else {
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
#to_i ⇒ Integer
#to_int ⇒ Integer
Also known as: #to_int
Integer
#to_int ⇒ Integer
Since int is already an Integer, returns self.
#to_int is an alias for #to_i.
# File 'numeric.c', line 3190
static VALUE
int_to_i(VALUE num)
{
return num;
}
#to_i ⇒ Integer
#to_int ⇒ Integer
Integer
#to_int ⇒ Integer
Alias for #to_i.
#to_r ⇒ Rational
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
# File 'rational.c', line 2150
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
#to_s(base = 10) ⇒ String Also known as: #inspect
Returns a string containing the place-value representation of int with radix base (between 2 and 36).
12345.to_s #=> "12345"
12345.to_s(2) #=> "11000000111001"
12345.to_s(8) #=> "30071"
12345.to_s(10) #=> "12345"
12345.to_s(16) #=> "3039"
12345.to_s(36) #=> "9ix"
78546939656932.to_s(36) #=> "rubyrules"
# File 'numeric.c', line 3545
static VALUE
int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
base = NUM2INT(argv[0]);
else
base = 10;
return rb_int2str(x, base);
}
#truncate([ndigits]) ⇒ Integer, Float
Returns int truncated (toward zero) to a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns self when ndigits is zero or positive.
1.truncate #=> 1
1.truncate(2) #=> 1
18.truncate(-1) #=> 10
(-18).truncate(-1) #=> -10
# File 'numeric.c', line 5241
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_truncate(num, ndigits);
}
#upto(limit) {|i| ... } ⇒ self
#upto(limit) ⇒ Enumerator
self
#upto(limit) ⇒ Enumerator
Iterates the given block, passing in integer values from int up to and including limit.
If no block is given, an ::Enumerator is returned instead.
5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
# File 'numeric.c', line 4989
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
#|(other_int) ⇒ Integer
Bitwise OR.
# File 'numeric.c', line 4498
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_or(x, y);
}
else if (RB_TYPE_P(x, T_BIGNUM)) {
return rb_big_or(x, y);
}
return Qnil;
}
#~ ⇒ Integer
One’s complement: returns a number where each bit is flipped.
Inverts the bits in an Integer. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
# File 'numeric.c', line 4399
static VALUE
int_comp(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_comp(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_comp(num);
}
return Qnil;
}