123456789_123456789_123456789_123456789_123456789_

Module: GC

Relationships & Source Files
Namespace Children
Modules:
Defined in: gc.rb,
gc.c

Overview

The GC module provides an interface to Ruby’s mark and sweep garbage collection mechanism.

Some of the underlying methods are also available via the ::ObjectSpace module.

You may obtain information about the operation of the GC through Profiler.

Constant Summary

Class Attribute Summary

Class Method Summary

Instance Method Summary

Class Attribute Details

.auto_compactBoolean (rw)

Returns whether or not automatic compaction has been enabled.

[ GitHub ]

  
# File 'gc.c', line 11926

static VALUE
gc_get_auto_compact(VALUE _)
{
    return RBOOL(ruby_enable_autocompact);
}

.auto_compact=(flag) (rw)

Updates automatic compaction mode.

When enabled, the compactor will execute on every major collection.

Enabling compaction will degrade performance on major collections.

[ GitHub ]

  
# File 'gc.c', line 11895

static VALUE
gc_set_auto_compact(VALUE _, VALUE v)
{
    GC_ASSERT(GC_COMPACTION_SUPPORTED);

    ruby_enable_autocompact = RTEST(v);

#if RGENGC_CHECK_MODE
    ruby_autocompact_compare_func = NULL;

    if (SYMBOL_P(v)) {
        ID id = RB_SYM2ID(v);
        if (id == rb_intern("empty")) {
            ruby_autocompact_compare_func = compare_free_slots;
        }
    }
#endif

    return v;
}

.measure_total_timeBoolean (rw)

Return measure_total_time flag (default: true). Note that measurement can affect the application performance.

[ GitHub ]

  
# File 'gc.rb', line 308

def self.measure_total_time
  Primitive.cexpr! %{
    RBOOL(rb_objspace.flags.measure_gc)
  }
end

.measure_total_time=(true/false) (rw)

Enable to measure GC time. You can get the result with GC.stat(:time). Note that GC time measurement can cause some performance overhead.

[ GitHub ]

  
# File 'gc.rb', line 296

def self.measure_total_time=(flag)
  Primitive.cstmt! %{
    rb_objspace.flags.measure_gc = RTEST(flag) ? TRUE : FALSE;
    return flag;
  }
end

.stressBoolean (rw)

Returns current status of GC stress mode.

[ GitHub ]

  
# File 'gc.rb', line 77

def self.stress
  Primitive.gc_stress_get
end

.stress=(flag) ⇒ flag (rw)

Updates the GC stress mode.

When stress mode is enabled, the GC is invoked at every GC opportunity: all memory and object allocations.

Enabling stress mode will degrade performance, it is only for debugging.

flag can be true, false, or an integer bit-ORed following flags.

0x01:: no major GC
0x02:: no immediate sweep
0x04:: full mark after malloc/calloc/realloc
[ GitHub ]

  
# File 'gc.rb', line 95

def self.stress=(flag)
  Primitive.gc_stress_set_m flag
end

Class Method Details

.add_stress_to_class(class[, ...])

Raises NoMemoryError when allocating an instance of the given classes.

[ GitHub ]

  
# File 'gc.c', line 14215

static VALUE
rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self)
{
    rb_objspace_t *objspace = &rb_objspace;

    if (!stress_to_class) {
        set_stress_to_class(rb_ary_hidden_new(argc));
    }
    rb_ary_cat(stress_to_class, argv, argc);
    return self;
}

.compact

This function compacts objects together in Ruby’s heap. It eliminates unused space (or fragmentation) in the heap by moving objects in to that unused space. This function returns a hash which contains statistics about which objects were moved. See .latest_gc_info for details about compaction statistics.

This method is implementation specific and not expected to be implemented in any implementation besides MRI.

To test whether GC compaction is supported, use the idiom:

GC.respond_to?(:compact)
[ GitHub ]

  
# File 'gc.c', line 11118

static VALUE
gc_compact(VALUE self)
{
    /* Run GC with compaction enabled */
    gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue);

    return gc_compact_stats(self);
}

.countInteger

The number of times GC occurred.

It returns the number of times GC occurred since the process started.

[ GitHub ]

  
# File 'gc.rb', line 105

def self.count
  Primitive.gc_count
end

.disableBoolean

Disables garbage collection, returning true if garbage collection was already disabled.

GC.disable   #=> false
GC.disable   #=> true
[ GitHub ]

  
# File 'gc.rb', line 69

def self.disable
  Primitive.gc_disable
end

.enableBoolean

Enables garbage collection, returning true if garbage collection was previously disabled.

GC.disable   #=> false
GC.enable    #=> true
GC.enable    #=> false
[ GitHub ]

  
# File 'gc.rb', line 57

def self.enable
  Primitive.gc_enable
end

.latest_compact_infoHash

Returns information about object moved in the most recent GC compaction.

The returned hash has two keys :considered and :moved. The hash for :considered lists the number of objects that were considered for movement by the compactor, and the :moved hash lists the number of objects that were actually moved. Some objects can’t be moved (maybe they were pinned) so these numbers can be used to calculate compaction efficiency.

[ GitHub ]

  
# File 'gc.c', line 11012

static VALUE
gc_compact_stats(VALUE self)
{
    size_t i;
    rb_objspace_t *objspace = &rb_objspace;
    VALUE h = rb_hash_new();
    VALUE considered = rb_hash_new();
    VALUE moved = rb_hash_new();
    VALUE moved_up = rb_hash_new();
    VALUE moved_down = rb_hash_new();

    for (i=0; i<T_MASK; i++) {
        if (objspace->rcompactor.considered_count_table[i]) {
            rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i]));
        }

        if (objspace->rcompactor.moved_count_table[i]) {
            rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i]));
        }

        if (objspace->rcompactor.moved_up_count_table[i]) {
            rb_hash_aset(moved_up, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_up_count_table[i]));
        }

        if (objspace->rcompactor.moved_down_count_table[i]) {
            rb_hash_aset(moved_down, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_down_count_table[i]));
        }
    }

    rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered);
    rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved);
    rb_hash_aset(h, ID2SYM(rb_intern("moved_up")), moved_up);
    rb_hash_aset(h, ID2SYM(rb_intern("moved_down")), moved_down);

    return h;
}

.latest_gc_infoHash .latest_gc_info(hash) ⇒ Hash .latest_gc_info(:major_by) ⇒ :malloc

Returns information about the most recent garbage collection.

If the optional argument, hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

[ GitHub ]

  
# File 'gc.rb', line 266

def self.latest_gc_info hash_or_key = nil
  Primitive.gc_latest_gc_info hash_or_key
end

.malloc_allocated_sizeInteger

Returns the size of memory allocated by malloc().

Only available if ruby was built with CALC_EXACT_MALLOC_SIZE.

[ GitHub ]

  
# File 'gc.c', line 13077

static VALUE
gc_malloc_allocated_size(VALUE self)
{
    return UINT2NUM(rb_objspace.malloc_params.allocated_size);
}

.malloc_allocationsInteger

Returns the number of malloc() allocations.

Only available if ruby was built with CALC_EXACT_MALLOC_SIZE.

[ GitHub ]

  
# File 'gc.c', line 13092

static VALUE
gc_malloc_allocations(VALUE self)
{
    return UINT2NUM(rb_objspace.malloc_params.allocations);
}

.remove_stress_to_class(class[, ...])

No longer raises ::NoMemoryError when allocating an instance of the given classes.

[ GitHub ]

  
# File 'gc.c', line 14235

static VALUE
rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self)
{
    rb_objspace_t *objspace = &rb_objspace;
    int i;

    if (stress_to_class) {
        for (i = 0; i < argc; ++i) {
            rb_ary_delete_same(stress_to_class, argv[i]);
        }
        if (RARRAY_LEN(stress_to_class) == 0) {
            set_stress_to_class(0);
        }
    }
    return Qnil;
}

.start(full_mark: true, immediate_mark: true, immediate_sweep: true)

Initiates garbage collection, even if manually disabled.

The full_mark keyword argument determines whether or not to perform a major garbage collection cycle. When set to true, a major garbage collection cycle is ran, meaning all objects are marked. When set to false, a minor garbage collection cycle is ran, meaning only young objects are marked.

The immediate_mark keyword argument determines whether or not to perform incremental marking. When set to true, marking is completed during the call to this method. When set to false, marking is performed in steps that is interleaved with future Ruby code execution, so marking might not be completed during this method call. Note that if full_mark is false then marking will always be immediate, regardless of the value of immediate_mark.

The immedate_sweep keyword argument determines whether or not to defer sweeping (using lazy sweep). When set to true, sweeping is performed in steps that is interleaved with future Ruby code execution, so sweeping might not be completed during this method call. When set to false, sweeping is completed during the call to this method.

Note: These keyword arguments are implementation and version dependent. They are not guaranteed to be future-compatible, and may be ignored if the underlying implementation does not support them.

[ GitHub ]

  
# File 'gc.rb', line 38

def self.start full_mark: true, immediate_mark: true, immediate_sweep: true
  Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false
end

.statHash .stat(hash) ⇒ Hash .stat(:key) ⇒ Numeric

Returns a ::Hash containing information about the GC.

The contents of the hash are implementation specific and may change in the future without notice.

The hash includes information about internal statistics about GC such as:

count

The total number of garbage collections ran since application start (count includes both minor and major garbage collections)

time

The total time spent in garbage collections (in milliseconds)

heap_allocated_pages

The total number of :heap_eden_pages + :heap_tomb_pages

heap_sorted_length

The number of pages that can fit into the buffer that holds references to all pages

heap_allocatable_pages

The total number of pages the application could allocate without additional GC

heap_available_slots

The total number of slots in all :heap_allocated_pages

heap_live_slots

The total number of slots which contain live objects

heap_free_slots

The total number of slots which do not contain live objects

heap_final_slots

The total number of slots with pending finalizers to be run

heap_marked_slots

The total number of objects marked in the last GC

heap_eden_pages

The total number of pages which contain at least one live slot

heap_tomb_pages

The total number of pages which do not contain any live slots

total_allocated_pages

The cumulative number of pages allocated since application start

total_freed_pages

The cumulative number of pages freed since application start

total_allocated_objects

The cumulative number of objects allocated since application start

total_freed_objects

The cumulative number of objects freed since application start

malloc_increase_bytes

Amount of memory allocated on the heap for objects. Decreased by any GC

malloc_increase_bytes_limit

When :malloc_increase_bytes crosses this limit, GC is triggered

minor_gc_count

The total number of minor garbage collections run since process start

major_gc_count

The total number of major garbage collections run since process start

compact_count

The total number of compactions run since process start

read_barrier_faults

The total number of times the read barrier was triggered during compaction

total_moved_objects

The total number of objects compaction has moved

remembered_wb_unprotected_objects

The total number of objects without write barriers

remembered_wb_unprotected_objects_limit

When :remembered_wb_unprotected_objects crosses this limit, major GC is triggered

old_objects

Number of live, old objects which have survived at least 3 garbage collections

old_objects_limit

When :old_objects crosses this limit, major GC is triggered

oldmalloc_increase_bytes

Amount of memory allocated on the heap for objects. Decreased by major GC

oldmalloc_increase_bytes_limit

When :old_malloc_increase_bytes crosses this limit, major GC is triggered

If the optional argument, hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

This method is only expected to work on CRuby.

[ GitHub ]

  
# File 'gc.rb', line 189

def self.stat hash_or_key = nil
  Primitive.gc_stat hash_or_key
end

.stat_heapHash .stat_heap(nil, hash) ⇒ Hash .stat_heap(heap_name) ⇒ Hash .stat_heap(heap_name, hash) ⇒ Hash .stat_heap(heap_name, :key) ⇒ Numeric

Returns information for heaps in the GC.

If the first optional argument, heap_name, is passed in and not nil, it returns a ::Hash containing information about the particular heap. Otherwise, it will return a ::Hash with heap names as keys and a ::Hash containing information about the heap as values.

If the second optional argument, hash_or_key, is given as ::Hash, it will be overwritten and returned. This is intended to avoid the probe effect.

If both optional arguments are passed in and the second optional argument is a symbol, it will return a ::Numeric of the value for the particular heap.

On CRuby, heap_name is of the type ::Integer but may be of type ::String on other implementations.

The contents of the hash are implementation specific and may change in the future without notice.

If the optional argument, hash, is given, it is overwritten and returned.

This method is only expected to work on CRuby.

The hash includes the following keys about the internal information in the GC:

slot_size

The slot size of the heap in bytes.

heap_allocatable_pages

The number of pages that can be allocated without triggering a new garbage collection cycle.

heap_eden_pages

The number of pages in the eden heap.

heap_eden_slots

The total number of slots in all of the pages in the eden heap.

heap_tomb_pages

The number of pages in the tomb heap. The tomb heap only contains pages that do not have any live objects.

heap_tomb_slots

The total number of slots in all of the pages in the tomb heap.

total_allocated_pages

The total number of pages that have been allocated in the heap.

total_freed_pages

The total number of pages that have been freed and released back to the system in the heap.

force_major_gc_count

The number of times major garbage collection cycles this heap has forced to start due to running out of free slots.

force_incremental_marking_finish_count

The number of times this heap has forced incremental marking to complete due to running out of pooled slots.

[ GitHub ]

  
# File 'gc.rb', line 252

def self.stat_heap heap_name = nil, hash_or_key = nil
  Primitive.gc_stat_heap heap_name, hash_or_key
end

.total_timeInteger

Return measured GC total time in nano seconds.

[ GitHub ]

  
# File 'gc.rb', line 318

def self.total_time
  Primitive.cexpr! %{
    ULL2NUM(rb_objspace.profile.marking_time_ns + rb_objspace.profile.sweeping_time_ns)
  }
end

.verify_compaction_references(toward: nil, double_heap: false) ⇒ Hash

Verify compaction reference consistency.

This method is implementation specific. During compaction, objects that were moved are replaced with T_MOVED objects. No object should have a reference to a T_MOVED object after compaction.

This function expands the heap to ensure room to move all objects, compacts the heap to make sure everything moves, updates all references, then performs a full GC. If any object contains a reference to a T_MOVED object, that object should be pushed on the mark stack, and will make a SEGV.

[ GitHub ]

.verify_internal_consistencynil

Verify internal consistency.

This method is implementation specific. Now this method checks generational consistency if RGenGC is supported.

[ GitHub ]

  
# File 'gc.c', line 8182

static VALUE
gc_verify_internal_consistency_m(VALUE dummy)
{
    gc_verify_internal_consistency(&rb_objspace);
    return Qnil;
}

Instance Method Details

#garbage_collect(full_mark: true, immediate_mark: true, immediate_sweep: true)

Alias of .start

[ GitHub ]

  
# File 'gc.rb', line 43

def garbage_collect full_mark: true, immediate_mark: true, immediate_sweep: true
  Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false
end