Class: Complex
Relationships & Source Files | |
Namespace Children | |
Classes:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
::Numeric
|
|
Instance Chain:
self,
::Numeric ,
::Comparable
|
|
Inherits: | Numeric |
Defined in: | complex.c |
Overview
A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.
Rectangular Coordinates
The rectangular coordinates of a complex number are called the real and imaginary parts; see number definition.
You can create a Complex object from rectangular coordinates with:
-
A
complex literal
. -
Method .rect.
-
Method Kernel.Complex, either with numeric arguments or with certain string arguments.
-
Method String#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex
, ::Float
, ::Integer
, or Rational; they may be retrieved:
-
Separately, with methods #real and #imaginary.
-
Together, with method #rect.
The corresponding (computed) polar values may be retrieved:
Polar Coordinates
The polar coordinates of a complex number are called the absolute and argument parts; see polar plane.
In this class, the argument part in expressed radians (not ) degrees).
You can create a Complex object from polar coordinates with:
-
Method .polar.
-
Method Kernel.Complex, with certain string arguments.
-
Method String#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex
, ::Float
, ::Integer
, or Rational; they may be retrieved:
The corresponding (computed) rectangular values may be retrieved:
Constant Summary
-
I =
I
# => (0+1i)Equivalent to <tt>Complex(0, 1)</tt>
Class Method Summary
-
.polar(abs, arg = 0) ⇒ Complex
Returns a new Complex object formed from the arguments, each of which must be an instance of
::Numeric
, or an instance of one of its subclasses: Complex,::Float
,::Integer
,::Rational
. - .rect(real, imag = 0) ⇒ Complex (also: .rectangular)
-
.rectangular(real, imag = 0) ⇒ Complex
Alias for .rect.
Instance Attribute Summary
-
#finite? ⇒ Boolean
readonly
Returns
true
if bothself.real.finite?
andself.imag.finite?
are true,false
otherwise: -
#infinite? ⇒ Boolean
readonly
Returns
1
if eitherself.real.infinite?
orself.imag.infinite?
is true,nil
otherwise: -
#real ⇒ Numeric
readonly
Returns the real value for
self
: -
#real? ⇒ Boolean
readonly
Returns
false
; for compatibility with Numeric#real?.
::Numeric
- Inherited
#finite? | Returns |
#infinite? | Returns |
#integer? | Returns |
#negative? | Returns |
#nonzero? | Returns |
#positive? | Returns |
#real? | Returns |
#zero? | Returns |
Instance Method Summary
-
#*(numeric) ⇒ Complex
Returns the product of
self
andnumeric
: -
#**(numeric) ⇒ Complex
Returns
self
raised to powernumeric
: -
#+(numeric) ⇒ Complex
Returns the sum of
self
andnumeric
: -
#-(numeric) ⇒ Complex
Returns the difference of
self
andnumeric
: -
#- ⇒ Complex
Returns the negation of
self
, which is the negation of each of its parts: -
#/(numeric) ⇒ Complex
Returns the quotient of
self
andnumeric
: -
#<=>(object) ⇒ 1, ...
Returns:
-
#==(object) ⇒ Boolean
Returns
true
ifself.real == object.real
andself.imag == object.imag
: -
#abs ⇒ Float
(also: #magnitude)
Returns the absolute value (magnitude) for
self
; seepolar coordinates
: -
#abs2 ⇒ Float
Returns square of the absolute value (magnitude) for
self
; seepolar coordinates
: -
#angle ⇒ Float
Alias for #arg.
-
#arg ⇒ Float
(also: #angle, #phase)
Returns the argument (angle) for
self
in radians; seepolar coordinates
: -
#conj ⇒ Complex
(also: #conjugate)
Returns the conjugate of
self
,Complex.rect(self.imag, self.real)
: -
#conjugate ⇒ Complex
Alias for #conj.
-
#denominator ⇒ Integer
Returns the denominator of
self
, which is the least common multiple ofself.real.denominator
andself.imag.denominator
: -
#fdiv(numeric) ⇒ Complex
Returns
Complex(self.real/numeric, self.imag/numeric)
: -
#hash ⇒ Integer
Returns the integer hash value for
self
. -
#imag ⇒ Numeric
(also: #imaginary)
Returns the imaginary value for
self
: -
#imaginary ⇒ Numeric
Alias for #imag.
-
#inspect ⇒ String
Returns a string representation of
self
: -
#magnitude ⇒ Float
Alias for #abs.
-
#numerator ⇒ Complex
Returns the Complex object created from the numerators of the real and imaginary parts of
self
, after converting each part to the lowest common denominator of the two: -
#phase ⇒ Float
Alias for #arg.
-
#polar ⇒ Array
Returns the array
[self.abs, self.arg]
: - #quo
-
#rationalize(epsilon = nil) ⇒ Rational
Returns a
::Rational
object whose value is exactly or approximately equivalent to that ofself.real
. -
#rect ⇒ Array
(also: #rectangular)
Returns the array
[self.real, self.imag]
: -
#rectangular ⇒ Array
Alias for #rect.
-
#to_c ⇒ self
Returns
self
. -
#to_f ⇒ Float
Returns the value of
self.real
as a::Float
, if possible: -
#to_i ⇒ Integer
Returns the value of
self.real
as an::Integer
, if possible: -
#to_r ⇒ Rational
Returns the value of
self.real
as a::Rational
, if possible: -
#to_s ⇒ String
Returns a string representation of
self
: - #coerce(other) Internal use only
- #eql?(other) ⇒ Boolean Internal use only
- #marshal_dump private Internal use only
::Numeric
- Inherited
#% | Returns |
#+@ | Returns |
#-@ | Unary Minus—Returns the receiver, negated. |
#<=> | Returns zero if |
#abs | Returns the absolute value of |
#abs2 | Returns the square of |
#angle | Alias for Numeric#arg. |
#arg | Returns zero if |
#ceil | Returns the smallest number that is greater than or equal to |
#clone | Returns |
#coerce | Returns a 2-element array containing two numeric elements, formed from the two operands |
#conj | Alias for Numeric#conjugate. |
#conjugate | Returns |
#denominator | Returns the denominator (always positive). |
#div | Returns the quotient |
#divmod | Returns a 2-element array |
#dup | Returns |
#eql? | Returns |
#fdiv | Returns the quotient |
#floor | Returns the largest number that is less than or equal to |
#i | Returns |
#imag | Alias for Numeric#imaginary. |
#imaginary | Returns zero. |
#magnitude | Alias for Numeric#abs. |
#modulo | Alias for Numeric#%. |
#numerator | Returns the numerator. |
#phase | Alias for Numeric#arg. |
#polar | Returns array |
#quo | Returns the most exact division (rational for integers, float for floats). |
#real | Returns |
#rect | Returns array |
#rectangular | Alias for Numeric#rect. |
#remainder | Returns the remainder after dividing |
#round | Returns |
#step | Generates a sequence of numbers; with a block given, traverses the sequence. |
#to_c | Returns |
#to_int | Returns |
#truncate | Returns |
#singleton_method_added | Trap attempts to add methods to |
::Comparable
- Included
#< | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than 0. |
#<= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value less than or equal to 0. |
#== | Compares two objects based on the receiver’s #<=> method, returning true if it returns 0. |
#> | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than 0. |
#>= | Compares two objects based on the receiver’s #<=> method, returning true if it returns a value greater than or equal to 0. |
#between? | |
#clamp |
Class Method Details
.polar(abs, arg = 0) ⇒ Complex
Returns a new Complex object formed from the arguments, each of which must be an instance of ::Numeric
, or an instance of one of its subclasses: Complex, ::Float
, ::Integer
, ::Rational
. Argument #arg is given in radians; see Polar Coordinates
:
Complex.polar(3) # => (3+0i)
Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
# File 'complex.c', line 738
static VALUE nucomp_s_polar(int argc, VALUE *argv, VALUE klass) { VALUE abs, arg; argc = rb_scan_args(argc, argv, "11", &abs, &arg); abs = nucomp_real_check(abs); if (argc == 2) { arg = nucomp_real_check(arg); } else { arg = ZERO; } return f_complex_polar_real(klass, abs, arg); }
.rect(real, imag = 0) ⇒ Complex
Also known as: .rectangular
Returns a new Complex object formed from the arguments, each of which must be an instance of ::Numeric
, or an instance of one of its subclasses: Complex, ::Float
, ::Integer
, Rational; see Rectangular Coordinates
:
Complex.rect(3) # => (3+0i)
Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
# File 'complex.c', line 492
static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: real = nucomp_real_check(real); imag = ZERO; break; default: real = nucomp_real_check(real); imag = nucomp_real_check(imag); break; } return nucomp_s_new_internal(klass, real, imag); }
.rect(real, imag = 0) ⇒ Complex
.rectangular(real, imag = 0) ⇒ Complex
Complex
.rectangular(real, imag = 0) ⇒ Complex
Alias for .rect.
Instance Attribute Details
#finite? ⇒ Boolean
(readonly)
Returns true
if both self.real.finite?
and self.imag.finite?
are true, false
otherwise:
Complex(1, 1).finite? # => true
Complex(Float::INFINITY, 0).finite? # => false
Related: Numeric#finite?, Float#finite?.
# File 'complex.c', line 1672
static VALUE rb_complex_finite_p(VALUE self) { get_dat1(self); return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag)); }
#infinite? ⇒ Boolean
(readonly)
Returns 1
if either self.real.infinite?
or self.imag.infinite?
is true, nil
otherwise:
Complex(Float::INFINITY, 0).infinite? # => 1
Complex(1, 1).infinite? # => nil
Related: Numeric#infinite?, Float#infinite?.
# File 'complex.c', line 1692
static VALUE rb_complex_infinite_p(VALUE self) { get_dat1(self); if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) { return Qnil; } return ONE; }
#real ⇒ Numeric (readonly)
# File 'complex.c', line 770
VALUE rb_complex_real(VALUE self) { get_dat1(self); return dat->real; }
#real? ⇒ Boolean
(readonly)
Returns false
; for compatibility with Numeric#real?.
# File 'complex.c', line 1466
static VALUE nucomp_real_p_m(VALUE self) { return Qfalse; }
Instance Method Details
#*(numeric) ⇒ Complex
Returns the product of self
and numeric
:
Complex(2, 3) * Complex(2, 3) # => (-5+12i)
Complex(900) * Complex(1) # => (900+0i)
Complex(-2, 9) * Complex(-9, 2) # => (0-85i)
Complex(9, 8) * 4 # => (36+32i)
Complex(20, 9) * 9.8 # => (196.0+88.2i)
# File 'complex.c', line 927
VALUE rb_complex_mul(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_mul(dat->real, other), f_mul(dat->imag, other)); } return rb_num_coerce_bin(self, other, '*'); }
#**(numeric) ⇒ Complex
Returns self
raised to power numeric
:
Complex('i') ** 2 # => (-1+0i)
Complex(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
# File 'complex.c', line 1120
VALUE rb_complex_pow(VALUE self, VALUE other) { if (k_numeric_p(other) && k_exact_zero_p(other)) return f_complex_new_bang1(CLASS_OF(self), ONE); if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1)) other = RRATIONAL(other)->num; /* c14n */ if (RB_TYPE_P(other, T_COMPLEX)) { get_dat1(other); if (k_exact_zero_p(dat->imag)) other = dat->real; /* c14n */ } if (other == ONE) { get_dat1(self); return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag); } VALUE result = complex_pow_for_special_angle(self, other); if (result != Qundef) return result; if (RB_TYPE_P(other, T_COMPLEX)) { VALUE r, theta, nr, ntheta; get_dat1(other); r = f_abs(self); theta = f_arg(self); nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), f_mul(dat->imag, theta))); ntheta = f_add(f_mul(theta, dat->real), f_mul(dat->imag, m_log_bang(r))); return f_complex_polar(CLASS_OF(self), nr, ntheta); } if (FIXNUM_P(other)) { long n = FIX2LONG(other); if (n == 0) { return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO); } if (n < 0) { self = f_reciprocal(self); other = rb_int_uminus(other); n = -n; } { get_dat1(self); VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi; if (f_zero_p(xi)) { zr = rb_num_pow(zr, other); } else if (f_zero_p(xr)) { zi = rb_num_pow(zi, other); if (n & 2) zi = f_negate(zi); if (!(n & 1)) { VALUE tmp = zr; zr = zi; zi = tmp; } } else { while (--n) { long q, r; for (; q = n / 2, r = n % 2, r == 0; n = q) { VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi)); xi = f_mul(f_mul(TWO, xr), xi); xr = tmp; } comp_mul(zr, zi, xr, xi, &zr, &zi); } } return nucomp_s_new_internal(CLASS_OF(self), zr, zi); } } if (k_numeric_p(other) && f_real_p(other)) { VALUE r, theta; if (RB_BIGNUM_TYPE_P(other)) rb_warn("in a**b, b may be too big"); r = f_abs(self); theta = f_arg(self); return f_complex_polar(CLASS_OF(self), f_expt(r, other), f_mul(theta, other)); } return rb_num_coerce_bin(self, other, id_expt); }
#+(numeric) ⇒ Complex
Returns the sum of self
and numeric
:
Complex(2, 3) + Complex(2, 3) # => (4+6i)
Complex(900) + Complex(1) # => (901+0i)
Complex(-2, 9) + Complex(-9, 2) # => (-11+11i)
Complex(9, 8) + 4 # => (13+8i)
Complex(20, 9) + 9.8 # => (29.8+9i)
# File 'complex.c', line 831
VALUE rb_complex_plus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_add(adat->real, bdat->real); imag = f_add(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_add(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '+'); }
#-(numeric) ⇒ Complex
Returns the difference of self
and numeric
:
Complex(2, 3) - Complex(2, 3) # => (0+0i)
Complex(900) - Complex(1) # => (899+0i)
Complex(-2, 9) - Complex(-9, 2) # => (7+7i)
Complex(9, 8) - 4 # => (5+8i)
Complex(20, 9) - 9.8 # => (10.2+9i)
# File 'complex.c', line 866
VALUE rb_complex_minus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_sub(adat->real, bdat->real); imag = f_sub(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_sub(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '-'); }
#- ⇒ Complex
Returns the negation of self
, which is the negation of each of its parts:
-Complex(1, 2) # => (-1-2i)
-Complex(-1, -2) # => (1+2i)
# File 'complex.c', line 810
VALUE rb_complex_uminus(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_negate(dat->real), f_negate(dat->imag)); }
#/(numeric) ⇒ Complex
Returns the quotient of self
and numeric
:
Complex(2, 3) / Complex(2, 3) # => ((1/1)+(0/1)*i)
Complex(900) / Complex(1) # => ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2) # => ((36/85)-(77/85)*i)
Complex(9, 8) / 4 # => ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
# File 'complex.c', line 1003
VALUE rb_complex_div(VALUE self, VALUE other) { return f_divide(self, other, f_quo, id_quo); }
#<=>(object) ⇒ 1
, ...
Returns:
-
self.real <=> object.real
if both of the following are true:-
self.imag == 0
. -
object.imag == 0
. # Always true if object is numeric but not complex.
-
-
nil
otherwise.
Examples:
Complex(2) <=> 3 # => -1
Complex(2) <=> 2 # => 0
Complex(2) <=> 1 # => 1
Complex(2, 1) <=> 1 # => nil # self.imag not zero.
Complex(1) <=> Complex(1, 1) # => nil # object.imag not zero.
Complex(1) <=> 'Foo' # => nil # object.imag not defined.
# File 'complex.c', line 1271
static VALUE nucomp_cmp(VALUE self, VALUE other) { if (!k_numeric_p(other)) { return rb_num_coerce_cmp(self, other, idCmp); } if (!nucomp_real_p(self)) { return Qnil; } if (RB_TYPE_P(other, T_COMPLEX)) { if (nucomp_real_p(other)) { get_dat2(self, other); return rb_funcall(adat->real, idCmp, 1, bdat->real); } } else { get_dat1(self); if (f_real_p(other)) { return rb_funcall(dat->real, idCmp, 1, other); } else { return rb_num_coerce_cmp(dat->real, other, idCmp); } } return Qnil; }
#==(object) ⇒ Boolean
Returns true
if self.real == object.real
and self.imag == object.imag
:
Complex(2, 3) == Complex(2.0, 3.0) # => true
# File 'complex.c', line 1224
static VALUE nucomp_eqeq_p(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return RBOOL(f_eqeq_p(adat->real, bdat->real) && f_eqeq_p(adat->imag, bdat->imag)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); } return RBOOL(f_eqeq_p(other, self)); }
#abs ⇒ Float Also known as: #magnitude
Returns the absolute value (magnitude) for self
; see polar coordinates
:
Complex.polar(-1, 0).abs # => 1.0
If self
was created with rectangular coordinates
, the returned value is computed, and may be inexact:
Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
# File 'complex.c', line 1328
VALUE rb_complex_abs(VALUE self) { get_dat1(self); if (f_zero_p(dat->real)) { VALUE a = f_abs(dat->imag); if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } if (f_zero_p(dat->imag)) { VALUE a = f_abs(dat->real); if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } return rb_math_hypot(dat->real, dat->imag); }
#abs2 ⇒ Float
Returns square of the absolute value (magnitude) for self
; see polar coordinates
:
Complex.polar(2, 2).abs2 # => 4.0
If self
was created with rectangular coordinates
, the returned value is computed, and may be inexact:
Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
# File 'complex.c', line 1364
static VALUE nucomp_abs2(VALUE self) { get_dat1(self); return f_add(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag)); }
Alias for #arg.
#arg ⇒ Float Also known as: #angle, #phase
# File 'complex.c', line 1388
VALUE rb_complex_arg(VALUE self) { get_dat1(self); return rb_math_atan2(dat->imag, dat->real); }
#coerce(other)
# File 'complex.c', line 1299
static VALUE nucomp_coerce(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) return rb_assoc_new(other, self); if (k_numeric_p(other) && f_real_p(other)) return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self); rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE, rb_obj_class(other), rb_obj_class(self)); return Qnil; }
#conj ⇒ Complex
Also known as: #conjugate
Returns the conjugate of self
, Complex.rect(self.imag, self.real)
:
Complex.rect(1, 2).conj # => (1-2i)
# File 'complex.c', line 1453
VALUE rb_complex_conjugate(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); }
#conj ⇒ Complex
#conjugate ⇒ Complex
Complex
#conjugate ⇒ Complex
Alias for #conj.
#denominator ⇒ Integer
Returns the denominator of self
, which is the least common multiple of self.real.denominator
and self.imag.denominator
:
Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
Note that n.denominator
of a non-rational numeric is 1
.
Related: #numerator.
# File 'complex.c', line 1486
static VALUE nucomp_denominator(VALUE self) { get_dat1(self); return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); }
#eql?(other) ⇒ Boolean
# File 'complex.c', line 1563
static VALUE nucomp_eql_p(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) && (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) && f_eqeq_p(self, other)); } return Qfalse; }
#fdiv(numeric) ⇒ Complex
Returns Complex(self.real/numeric, self.imag/numeric)
:
Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
# File 'complex.c', line 1020
static VALUE nucomp_fdiv(VALUE self, VALUE other) { return f_divide(self, other, f_fdiv, id_fdiv); }
#hash ⇒ Integer
Returns the integer hash value for self
.
Two Complex objects created from the same values will have the same hash value (and will compare using #eql?):
Complex(1, 2).hash == Complex(1, 2).hash # => true
# File 'complex.c', line 1556
static VALUE nucomp_hash(VALUE self) { return ST2FIX(rb_complex_hash(self)); }
#imag ⇒ Numeric Also known as: #imaginary
# File 'complex.c', line 793
VALUE rb_complex_imag(VALUE self) { get_dat1(self); return dat->imag; }
Alias for #imag.
#inspect ⇒ String
# File 'complex.c', line 1646
static VALUE nucomp_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, rb_inspect)); rb_str_cat2(s, ")"); return s; }
Alias for #abs.
#marshal_dump (private)
# File 'complex.c', line 1724
static VALUE nucomp_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->real, dat->imag); rb_copy_generic_ivar(a, self); return a; }
#numerator ⇒ Complex
Returns the Complex object created from the numerators of the real and imaginary parts of self
, after converting each part to the lowest common denominator of the two:
c = Complex(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator # => (8+9i)
In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator
is Complex(8, 9)
.
Related: #denominator.
# File 'complex.c', line 1513
static VALUE nucomp_numerator(VALUE self) { VALUE cd; get_dat1(self); cd = nucomp_denominator(self); return f_complex_new2(CLASS_OF(self), f_mul(f_numerator(dat->real), f_div(cd, f_denominator(dat->real))), f_mul(f_numerator(dat->imag), f_div(cd, f_denominator(dat->imag)))); }
Alias for #arg.
#polar ⇒ Array
# File 'complex.c', line 1438
static VALUE nucomp_polar(VALUE self) { return rb_assoc_new(f_abs(self), f_arg(self)); }
#quo
[ GitHub ]#rationalize(epsilon = nil) ⇒ Rational
Returns a ::Rational
object whose value is exactly or approximately equivalent to that of self.real
.
With no argument epsilon
given, returns a Rational object whose value is exactly equal to that of self.real.rationalize
:
Complex(1, 0).rationalize # => (1/1)
Complex(1, Rational(0, 1)).rationalize # => (1/1)
Complex(3.14159, 0).rationalize # => (314159/100000)
With argument epsilon
given, returns a Rational object whose value is exactly or approximately equal to that of self.real
to the given precision:
Complex(3.14159, 0).rationalize(0.1) # => (16/5)
Complex(3.14159, 0).rationalize(0.01) # => (22/7)
Complex(3.14159, 0).rationalize(0.001) # => (201/64)
Complex(3.14159, 0).rationalize(0.0001) # => (333/106)
Complex(3.14159, 0).rationalize(0.00001) # => (355/113)
Complex(3.14159, 0).rationalize(0.000001) # => (7433/2366)
Complex(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
Complex(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
Complex(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
Complex(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
Complex(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
Related: #to_r.
# File 'complex.c', line 1892
static VALUE nucomp_rationalize(int argc, VALUE *argv, VALUE self) { get_dat1(self); rb_check_arity(argc, 0, 1); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return rb_funcallv(dat->real, id_rationalize, argc, argv); }
#rect ⇒ Array Also known as: #rectangular
Returns the array [self.real, self.imag]
:
Complex.rect(1, 2).rect # => [1, 2]
See Rectangular Coordinates
.
If self
was created with polar coordinates
, the returned value is computed, and may be inexact:
Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
#rectangular is an alias for rect
.
# File 'complex.c', line 1414
static VALUE nucomp_rect(VALUE self) { get_dat1(self); return rb_assoc_new(dat->real, dat->imag); }
Alias for #rect.
#to_c ⇒ self
Returns self
.
# File 'complex.c', line 1912
static VALUE nucomp_to_c(VALUE self) { return self; }
#to_f ⇒ Float
# File 'complex.c', line 1822
static VALUE nucomp_to_f(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float", self); } return f_to_f(dat->real); }
#to_i ⇒ Integer
# File 'complex.c', line 1798
static VALUE nucomp_to_i(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer", self); } return f_to_i(dat->real); }
#to_r ⇒ Rational
Returns the value of self.real
as a ::Rational
, if possible:
Complex(1, 0).to_r # => (1/1)
Complex(1, Rational(0, 1)).to_r # => (1/1)
Raises RangeError if self.imag
is not exactly zero (either Integer(0)
or Rational(0, n)
).
Related: #rationalize.
# File 'complex.c', line 1848
static VALUE nucomp_to_r(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return f_to_r(dat->real); }
#to_s ⇒ String
# File 'complex.c', line 1627
static VALUE nucomp_to_s(VALUE self) { return f_format(self, rb_String); }