Class: Socket
Relationships & Source Files | |
Namespace Children | |
Modules:
| |
Classes:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
::BasicSocket ,
::IO
|
|
Instance Chain:
self,
::BasicSocket ,
::IO
|
|
Inherits: |
BasicSocket
|
Defined in: | ext/socket/socket.c, ext/socket/constdefs.c, ext/socket/ifaddr.c, ext/socket/lib/socket.rb |
Overview
Class Socket
provides access to the underlying operating system socket implementations. It can be used to provide more operating system specific functionality than the protocol-specific socket classes.
The constants defined under Constants
are also defined under Socket
. For example, AF_INET is usable as well as Constants::AF_INET. See Constants
for the list of constants.
What’s a socket?
Sockets are endpoints of a bidirectional communication channel. Sockets can communicate within a process, between processes on the same machine or between different machines. There are many types of socket: ::TCPSocket
, ::UDPSocket
or ::UNIXSocket
for example.
Sockets have their own vocabulary:
domain: The family of protocols:
type: The type of communications between the two endpoints, typically
protocol: Typically zero. This may be used to identify a variant of a protocol.
hostname: The identifier of a network interface:
-
a string (hostname, IPv4 or IPv6 address or
broadcast
which specifies a broadcast address) -
a zero-length string which specifies INADDR_ANY
-
an integer (interpreted as binary address in host byte order).
Quick start
Many of the classes, such as ::TCPSocket
, ::UDPSocket
or ::UNIXSocket
, ease the use of sockets comparatively to the equivalent C programming interface.
Let’s create an internet socket using the IPv4 protocol in a C-like manner:
require 'socket'
s = Socket.new Socket::AF_INET, Socket::SOCK_STREAM
s.connect Socket.pack_sockaddr_in(80, 'example.com')
You could also use the ::TCPSocket
class:
s = TCPSocket.new 'example.com', 80
A simple server might look like this:
require 'socket'
server = TCPServer.new 2000 # Server bound to port 2000
loop do
client = server.accept # Wait for a client to connect
client.puts "Hello !"
client.puts "Time is #{Time.now}"
client.close
end
A simple client may look like this:
require 'socket'
s = TCPSocket.new 'localhost', 2000
while line = s.gets # Read lines from socket
puts line # and print them
end
s.close # close socket when done
Exception Handling
Ruby’s Socket
implementation raises exceptions based on the error generated by the system dependent implementation. This is why the methods are documented in a way that isolate Unix-based system exceptions from Windows based exceptions. If more information on a particular exception is needed, please refer to the Unix manual pages or the Windows WinSock reference.
Convenience methods
Although the general way to create socket is .new, there are several methods of socket creation for most cases.
- TCP client socket
-
Socket.tcp, TCPSocket.open
- TCP server socket
-
Socket.tcp_server_loop, TCPServer.open
- UNIX client socket
-
Socket.unix, UNIXSocket.open
- UNIX server socket
-
Socket.unix_server_loop, UNIXServer.open
Documentation by
-
Zach Dennis
-
Sam Roberts
-
Programming Ruby from The Pragmatic Bookshelf.
Much material in this documentation is taken with permission from Programming Ruby from The Pragmatic Bookshelf.
Constant Summary
-
AF_ALG =
Interface to kernel crypto API
INTEGER2NUM(AF_ALG)
-
AF_APPLETALK =
AppleTalk protocol
INTEGER2NUM(AF_APPLETALK)
-
AF_ATM =
Asynchronous Transfer Mode
INTEGER2NUM(AF_ATM)
-
AF_AX25 =
AX.25
protocolINTEGER2NUM(AF_AX25)
-
AF_BLUETOOTH =
Bluetooth low-level socket protocol
INTEGER2NUM(AF_BLUETOOTH)
-
AF_CAN =
Controller Area Network automotive bus protocol
INTEGER2NUM(AF_CAN)
-
AF_CCITT =
CCITT (now ITU-T) protocols
INTEGER2NUM(AF_CCITT)
-
AF_CHAOS =
MIT CHAOS protocols
INTEGER2NUM(AF_CHAOS)
-
AF_CNT =
Computer Network Technology
INTEGER2NUM(AF_CNT)
-
AF_COIP =
Connection-oriented IP
INTEGER2NUM(AF_COIP)
-
AF_DATAKIT =
Datakit protocol
INTEGER2NUM(AF_DATAKIT)
-
AF_DEC =
DECnet protocol
INTEGER2NUM(AF_DEC)
-
AF_DECnet =
DECnet protocol
INTEGER2NUM(AF_DECnet)
-
AF_DLI =
DEC Direct Data Link Interface protocol
INTEGER2NUM(AF_DLI)
-
AF_E164 =
CCITT (ITU-T) E.164 recommendation
INTEGER2NUM(AF_E164)
-
AF_ECMA =
European Computer Manufacturers protocols
INTEGER2NUM(AF_ECMA)
-
AF_HYLINK =
NSC Hyperchannel protocol
INTEGER2NUM(AF_HYLINK)
-
AF_IB =
InfiniBand native addressing
INTEGER2NUM(AF_IB)
-
AF_IMPLINK =
ARPANET IMP protocol
INTEGER2NUM(AF_IMPLINK)
-
AF_INET =
IPv4 protocol
INTEGER2NUM(AF_INET)
-
AF_INET6 =
IPv6 protocol
INTEGER2NUM(AF_INET6)
-
AF_IPX =
IPX protocol
INTEGER2NUM(AF_IPX)
-
AF_ISDN =
Integrated Services Digital Network
INTEGER2NUM(AF_ISDN)
-
AF_ISO =
ISO Open Systems Interconnection protocols
INTEGER2NUM(AF_ISO)
-
AF_KCM =
KCM (kernel connection multiplexor) interface
INTEGER2NUM(AF_KCM)
-
AF_KEY =
Key management protocol, originally developed for usage with IPsec
INTEGER2NUM(AF_KEY)
-
AF_LAT =
Local Area Transport protocol
INTEGER2NUM(AF_LAT)
-
AF_LINK =
Link layer interface
INTEGER2NUM(AF_LINK)
-
AF_LLC =
Logical link control (IEEE 802.2 LLC) protocol
INTEGER2NUM(AF_LLC)
-
AF_LOCAL =
Host-internal protocols
INTEGER2NUM(AF_LOCAL)
-
AF_MAX =
Maximum address family for this platform
INTEGER2NUM(AF_MAX)
-
AF_MPLS =
Multiprotocol Label Switching
INTEGER2NUM(AF_MPLS)
-
AF_NATM =
Native ATM access
INTEGER2NUM(AF_NATM)
-
AF_NDRV =
Network driver raw access
INTEGER2NUM(AF_NDRV)
-
AF_NETBIOS =
NetBIOS
INTEGER2NUM(AF_NETBIOS)
-
AF_NETGRAPH =
Netgraph sockets
INTEGER2NUM(AF_NETGRAPH)
-
AF_NETLINK =
Kernel user interface device
INTEGER2NUM(AF_NETLINK)
-
AF_NS =
XEROX NS protocols
INTEGER2NUM(AF_NS)
-
AF_OSI =
ISO Open Systems Interconnection protocols
INTEGER2NUM(AF_OSI)
-
AF_PACKET =
Direct link-layer access
INTEGER2NUM(AF_PACKET)
-
AF_PPP =
Point-to-Point Protocol
INTEGER2NUM(AF_PPP)
-
AF_PPPOX =
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE)
INTEGER2NUM(AF_PPPOX)
-
AF_PUP =
PARC Universal Packet protocol
INTEGER2NUM(AF_PUP)
-
AF_RDS =
Reliable Datagram Sockets (RDS) protocol
INTEGER2NUM(AF_RDS)
-
AF_ROUTE =
Internal routing protocol
INTEGER2NUM(AF_ROUTE)
-
AF_SIP =
Simple Internet Protocol
INTEGER2NUM(AF_SIP)
-
AF_SNA =
IBM SNA protocol
INTEGER2NUM(AF_SNA)
-
AF_SYSTEM =
# File 'ext/socket/constdefs.c', line 2880INTEGER2NUM(AF_SYSTEM)
-
AF_TIPC =
TIPC, “cluster domain sockets” protocol
INTEGER2NUM(AF_TIPC)
-
AF_UNIX =
UNIX sockets
INTEGER2NUM(AF_UNIX)
-
AF_UNSPEC =
Unspecified protocol, any supported address family
INTEGER2NUM(AF_UNSPEC)
-
AF_VSOCK =
VSOCK (originally “VMWare VSockets”) protocol for hypervisor-guest communication
INTEGER2NUM(AF_VSOCK)
-
AF_XDP =
XDP (express data path) interface
INTEGER2NUM(AF_XDP)
-
AI_ADDRCONFIG =
Accept only if any address is assigned
INTEGER2NUM(AI_ADDRCONFIG)
-
AI_ALL =
Allow all addresses
INTEGER2NUM(AI_ALL)
-
AI_CANONNAME =
Fill in the canonical name
INTEGER2NUM(AI_CANONNAME)
-
AI_DEFAULT =
Default flags for getaddrinfo
INTEGER2NUM(AI_DEFAULT)
-
AI_MASK =
Valid flag mask for getaddrinfo (not for application use)
INTEGER2NUM(AI_MASK)
-
AI_NUMERICHOST =
Prevent host name resolution
INTEGER2NUM(AI_NUMERICHOST)
-
AI_NUMERICSERV =
Prevent service name resolution
INTEGER2NUM(AI_NUMERICSERV)
-
AI_PASSIVE =
Get address to use with bind()
INTEGER2NUM(AI_PASSIVE)
-
AI_V4MAPPED =
Accept IPv4-mapped IPv6 addresses
INTEGER2NUM(AI_V4MAPPED)
-
AI_V4MAPPED_CFG =
Accept IPv4 mapped addresses if the kernel supports it
INTEGER2NUM(AI_V4MAPPED_CFG)
-
EAI_ADDRFAMILY =
Address family for hostname not supported
INTEGER2NUM(EAI_ADDRFAMILY)
-
EAI_AGAIN =
Temporary failure in name resolution
INTEGER2NUM(EAI_AGAIN)
-
EAI_BADFLAGS =
Invalid flags
INTEGER2NUM(EAI_BADFLAGS)
-
EAI_BADHINTS =
Invalid value for hints
INTEGER2NUM(EAI_BADHINTS)
-
EAI_FAIL =
Non-recoverable failure in name resolution
INTEGER2NUM(EAI_FAIL)
-
EAI_FAMILY =
Address family not supported
INTEGER2NUM(EAI_FAMILY)
-
EAI_MAX =
Maximum error code from getaddrinfo
INTEGER2NUM(EAI_MAX)
-
EAI_MEMORY =
Memory allocation failure
INTEGER2NUM(EAI_MEMORY)
-
EAI_NODATA =
No address associated with hostname
INTEGER2NUM(EAI_NODATA)
-
EAI_NONAME =
Hostname nor servname, or not known
INTEGER2NUM(EAI_NONAME)
-
EAI_OVERFLOW =
Argument buffer overflow
INTEGER2NUM(EAI_OVERFLOW)
-
EAI_PROTOCOL =
Resolved protocol is unknown
INTEGER2NUM(EAI_PROTOCOL)
-
EAI_SERVICE =
Servname not supported for socket type
INTEGER2NUM(EAI_SERVICE)
-
EAI_SOCKTYPE =
Socket
type not supportedINTEGER2NUM(EAI_SOCKTYPE)
-
EAI_SYSTEM =
System error returned in errno
INTEGER2NUM(EAI_SYSTEM)
-
IFF_802_1Q_VLAN =
802.1Q VLAN device
INTEGER2NUM(IFF_802_1Q_VLAN)
-
IFF_ALLMULTI =
receive all multicast packets
INTEGER2NUM(IFF_ALLMULTI)
-
IFF_ALTPHYS =
use alternate physical connection
INTEGER2NUM(IFF_ALTPHYS)
-
IFF_AUTOMEDIA =
auto media select active
INTEGER2NUM(IFF_AUTOMEDIA)
-
IFF_BONDING =
bonding master or slave
INTEGER2NUM(IFF_BONDING)
-
IFF_BRIDGE_PORT =
device used as bridge port
INTEGER2NUM(IFF_BRIDGE_PORT)
-
IFF_BROADCAST =
broadcast address valid
INTEGER2NUM(IFF_BROADCAST)
-
IFF_CANTCHANGE =
flags not changeable
INTEGER2NUM(IFF_CANTCHANGE)
-
IFF_CANTCONFIG =
unconfigurable using ioctl(2)
INTEGER2NUM(IFF_CANTCONFIG)
-
IFF_DEBUG =
turn on debugging
INTEGER2NUM(IFF_DEBUG)
-
IFF_DISABLE_NETPOLL =
disable netpoll at run-time
INTEGER2NUM(IFF_DISABLE_NETPOLL)
-
IFF_DONT_BRIDGE =
disallow bridging this ether dev
INTEGER2NUM(IFF_DONT_BRIDGE)
-
IFF_DORMANT =
driver signals dormant
INTEGER2NUM(IFF_DORMANT)
-
IFF_DRV_OACTIVE =
tx hardware queue is full
INTEGER2NUM(IFF_DRV_OACTIVE)
-
IFF_DRV_RUNNING =
resources allocated
INTEGER2NUM(IFF_DRV_RUNNING)
-
IFF_DYING =
interface is winding down
INTEGER2NUM(IFF_DYING)
-
IFF_DYNAMIC =
dialup device with changing addresses
INTEGER2NUM(IFF_DYNAMIC)
-
IFF_EBRIDGE =
ethernet bridging device
INTEGER2NUM(IFF_EBRIDGE)
-
IFF_ECHO =
echo sent packets
INTEGER2NUM(IFF_ECHO)
-
IFF_ISATAP =
ISATAP interface (RFC4214)
INTEGER2NUM(IFF_ISATAP)
-
IFF_LINK0 =
per link layer defined bit 0
INTEGER2NUM(IFF_LINK0)
-
IFF_LINK1 =
per link layer defined bit 1
INTEGER2NUM(IFF_LINK1)
-
IFF_LINK2 =
per link layer defined bit 2
INTEGER2NUM(IFF_LINK2)
-
IFF_LIVE_ADDR_CHANGE =
hardware address change when it’s running
INTEGER2NUM(IFF_LIVE_ADDR_CHANGE)
-
IFF_LOOPBACK =
loopback net
INTEGER2NUM(IFF_LOOPBACK)
-
IFF_LOWER_UP =
driver signals L1 up
INTEGER2NUM(IFF_LOWER_UP)
-
IFF_MACVLAN_PORT =
device used as macvlan port
INTEGER2NUM(IFF_MACVLAN_PORT)
-
IFF_MASTER =
master of a load balancer
INTEGER2NUM(IFF_MASTER)
-
IFF_MASTER_8023AD =
bonding master, 802.3ad.
INTEGER2NUM(IFF_MASTER_8023AD)
-
IFF_MASTER_ALB =
bonding master, balance-alb.
INTEGER2NUM(IFF_MASTER_ALB)
-
IFF_MASTER_ARPMON =
bonding master, ARP mon in use
INTEGER2NUM(IFF_MASTER_ARPMON)
-
IFF_MONITOR =
user-requested monitor mode
INTEGER2NUM(IFF_MONITOR)
-
IFF_MULTICAST =
supports multicast
INTEGER2NUM(IFF_MULTICAST)
-
IFF_NOARP =
no address resolution protocol
INTEGER2NUM(IFF_NOARP)
-
IFF_NOTRAILERS =
avoid use of trailers
INTEGER2NUM(IFF_NOTRAILERS)
-
IFF_OACTIVE =
transmission in progress
INTEGER2NUM(IFF_OACTIVE)
-
IFF_OVS_DATAPATH =
device used as Open vSwitch datapath port
INTEGER2NUM(IFF_OVS_DATAPATH)
-
IFF_POINTOPOINT =
point-to-point link
INTEGER2NUM(IFF_POINTOPOINT)
-
IFF_PORTSEL =
can set media type
INTEGER2NUM(IFF_PORTSEL)
-
IFF_PPROMISC =
user-requested promisc mode
INTEGER2NUM(IFF_PPROMISC)
-
IFF_PROMISC =
receive all packets
INTEGER2NUM(IFF_PROMISC)
-
IFF_RENAMING =
interface is being renamed
INTEGER2NUM(IFF_RENAMING)
-
IFF_ROUTE =
routing entry installed
INTEGER2NUM(IFF_ROUTE)
-
IFF_RUNNING =
resources allocated
INTEGER2NUM(IFF_RUNNING)
-
IFF_SIMPLEX =
can’t hear own transmissions
INTEGER2NUM(IFF_SIMPLEX)
-
IFF_SLAVE =
slave of a load balancer
INTEGER2NUM(IFF_SLAVE)
-
IFF_SLAVE_INACTIVE =
bonding slave not the curr. active
INTEGER2NUM(IFF_SLAVE_INACTIVE)
-
IFF_SLAVE_NEEDARP =
need ARPs for validation
INTEGER2NUM(IFF_SLAVE_NEEDARP)
-
IFF_SMART =
interface manages own routes
INTEGER2NUM(IFF_SMART)
-
IFF_STATICARP =
static ARP
INTEGER2NUM(IFF_STATICARP)
-
IFF_SUPP_NOFCS =
sending custom FCS
INTEGER2NUM(IFF_SUPP_NOFCS)
-
IFF_TEAM_PORT =
used as team port
INTEGER2NUM(IFF_TEAM_PORT)
-
IFF_TX_SKB_SHARING =
sharing skbs on transmit
INTEGER2NUM(IFF_TX_SKB_SHARING)
-
IFF_UNICAST_FLT =
unicast filtering
INTEGER2NUM(IFF_UNICAST_FLT)
-
IFF_UP =
interface is up
INTEGER2NUM(IFF_UP)
-
IFF_VOLATILE =
volatile flags
INTEGER2NUM(IFF_VOLATILE)
-
IFF_WAN_HDLC =
WAN HDLC device
INTEGER2NUM(IFF_WAN_HDLC)
-
IFF_XMIT_DST_RELEASE =
dev_hard_start_xmit() is allowed to release skb->dst
INTEGER2NUM(IFF_XMIT_DST_RELEASE)
-
IFNAMSIZ =
Maximum interface name size
INTEGER2NUM(IFNAMSIZ)
-
IF_NAMESIZE =
Maximum interface name size
INTEGER2NUM(IF_NAMESIZE)
-
INADDR_ALLHOSTS_GROUP =
Multicast group for all systems on this subset
INTEGER2NUM(INADDR_ALLHOSTS_GROUP)
-
INADDR_ANY =
A socket bound to
INADDR_ANY
receives packets from all interfaces and sends from the default IP addressINTEGER2NUM(INADDR_ANY)
-
INADDR_BROADCAST =
The network broadcast address
INTEGER2NUM(INADDR_BROADCAST)
-
INADDR_LOOPBACK =
The loopback address
INTEGER2NUM(INADDR_LOOPBACK)
-
INADDR_MAX_LOCAL_GROUP =
The last local network multicast group
INTEGER2NUM(INADDR_MAX_LOCAL_GROUP)
-
INADDR_NONE =
A bitmask for matching no valid IP address
INTEGER2NUM(INADDR_NONE)
-
INADDR_UNSPEC_GROUP =
The reserved multicast group
INTEGER2NUM(INADDR_UNSPEC_GROUP)
-
INET6_ADDRSTRLEN =
Maximum length of an IPv6 address string
INTEGER2NUM(INET6_ADDRSTRLEN)
-
INET_ADDRSTRLEN =
Maximum length of an IPv4 address string
INTEGER2NUM(INET_ADDRSTRLEN)
-
IPPORT_RESERVED =
Default minimum address for bind or connect
INTEGER2NUM(IPPORT_RESERVED)
-
IPPORT_USERRESERVED =
Default maximum address for bind or connect
INTEGER2NUM(IPPORT_USERRESERVED)
-
IPPROTO_AH =
IP6 auth header
INTEGER2NUM(IPPROTO_AH)
-
IPPROTO_BIP =
# File 'ext/socket/constdefs.c', line 3426INTEGER2NUM(IPPROTO_BIP)
-
IPPROTO_DSTOPTS =
IP6 destination option
INTEGER2NUM(IPPROTO_DSTOPTS)
-
IPPROTO_EGP =
Exterior Gateway Protocol
INTEGER2NUM(IPPROTO_EGP)
-
IPPROTO_EON =
ISO cnlp
INTEGER2NUM(IPPROTO_EON)
-
IPPROTO_ESP =
IP6 Encapsulated Security Payload
INTEGER2NUM(IPPROTO_ESP)
-
IPPROTO_FRAGMENT =
IP6 fragmentation header
INTEGER2NUM(IPPROTO_FRAGMENT)
-
IPPROTO_GGP =
Gateway to Gateway Protocol
INTEGER2NUM(IPPROTO_GGP)
-
IPPROTO_HELLO =
“hello” routing protocol
INTEGER2NUM(IPPROTO_HELLO)
-
IPPROTO_HOPOPTS =
IP6 hop-by-hop options
INTEGER2NUM(IPPROTO_HOPOPTS)
-
IPPROTO_ICMP =
Control message protocol
INTEGER2NUM(IPPROTO_ICMP)
-
IPPROTO_ICMPV6 =
ICMP6
INTEGER2NUM(IPPROTO_ICMPV6)
-
IPPROTO_IDP =
XNS IDP
INTEGER2NUM(IPPROTO_IDP)
-
IPPROTO_IGMP =
Group Management Protocol
INTEGER2NUM(IPPROTO_IGMP)
-
IPPROTO_IP =
Dummy protocol for IP
INTEGER2NUM(IPPROTO_IP)
-
IPPROTO_IPV6 =
IP6 header
INTEGER2NUM(IPPROTO_IPV6)
-
IPPROTO_MAX =
Maximum IPPROTO constant
INTEGER2NUM(IPPROTO_MAX)
-
IPPROTO_ND =
Sun net disk protocol
INTEGER2NUM(IPPROTO_ND)
-
IPPROTO_NONE =
IP6 no next header
INTEGER2NUM(IPPROTO_NONE)
-
IPPROTO_PUP =
PARC Universal Packet protocol
INTEGER2NUM(IPPROTO_PUP)
-
IPPROTO_RAW =
Raw IP packet
INTEGER2NUM(IPPROTO_RAW)
-
IPPROTO_ROUTING =
IP6 routing header
INTEGER2NUM(IPPROTO_ROUTING)
-
IPPROTO_TCP =
TCP
INTEGER2NUM(IPPROTO_TCP)
-
IPPROTO_TP =
ISO transport protocol class 4
INTEGER2NUM(IPPROTO_TP)
-
IPPROTO_UDP =
UDP
INTEGER2NUM(IPPROTO_UDP)
-
IPPROTO_XTP =
Xpress Transport Protocol
INTEGER2NUM(IPPROTO_XTP)
-
IPV6_CHECKSUM =
Checksum offset for raw sockets
INTEGER2NUM(IPV6_CHECKSUM)
-
IPV6_DONTFRAG =
Don’t fragment packets
INTEGER2NUM(IPV6_DONTFRAG)
-
IPV6_DSTOPTS =
Destination option
INTEGER2NUM(IPV6_DSTOPTS)
-
IPV6_HOPLIMIT =
Hop limit
INTEGER2NUM(IPV6_HOPLIMIT)
-
IPV6_HOPOPTS =
Hop-by-hop option
INTEGER2NUM(IPV6_HOPOPTS)
-
IPV6_JOIN_GROUP =
Join a group membership
INTEGER2NUM(IPV6_JOIN_GROUP)
-
IPV6_LEAVE_GROUP =
Leave a group membership
INTEGER2NUM(IPV6_LEAVE_GROUP)
-
IPV6_MULTICAST_HOPS =
IP6 multicast hops
INTEGER2NUM(IPV6_MULTICAST_HOPS)
-
IPV6_MULTICAST_IF =
IP6 multicast interface
INTEGER2NUM(IPV6_MULTICAST_IF)
-
IPV6_MULTICAST_LOOP =
IP6 multicast loopback
INTEGER2NUM(IPV6_MULTICAST_LOOP)
-
IPV6_NEXTHOP =
Next hop address
INTEGER2NUM(IPV6_NEXTHOP)
-
IPV6_PATHMTU =
Retrieve current path MTU
INTEGER2NUM(IPV6_PATHMTU)
-
IPV6_PKTINFO =
Receive packet information with datagram
INTEGER2NUM(IPV6_PKTINFO)
-
IPV6_RECVDSTOPTS =
Receive all IP6 options for response
INTEGER2NUM(IPV6_RECVDSTOPTS)
-
IPV6_RECVHOPLIMIT =
Receive hop limit with datagram
INTEGER2NUM(IPV6_RECVHOPLIMIT)
-
IPV6_RECVHOPOPTS =
Receive hop-by-hop options
INTEGER2NUM(IPV6_RECVHOPOPTS)
-
IPV6_RECVPATHMTU =
Receive current path MTU with datagram
INTEGER2NUM(IPV6_RECVPATHMTU)
-
IPV6_RECVPKTINFO =
Receive destination IP address and incoming interface
INTEGER2NUM(IPV6_RECVPKTINFO)
-
IPV6_RECVRTHDR =
Receive routing header
INTEGER2NUM(IPV6_RECVRTHDR)
-
IPV6_RECVTCLASS =
Receive traffic class
INTEGER2NUM(IPV6_RECVTCLASS)
-
IPV6_RTHDR =
Allows removal of sticky routing headers
INTEGER2NUM(IPV6_RTHDR)
-
IPV6_RTHDRDSTOPTS =
Allows removal of sticky destination options header
INTEGER2NUM(IPV6_RTHDRDSTOPTS)
-
IPV6_RTHDR_TYPE_0 =
Routing header type 0
INTEGER2NUM(IPV6_RTHDR_TYPE_0)
-
IPV6_TCLASS =
Specify the traffic class
INTEGER2NUM(IPV6_TCLASS)
-
IPV6_UNICAST_HOPS =
IP6 unicast hops
INTEGER2NUM(IPV6_UNICAST_HOPS)
-
IPV6_USE_MIN_MTU =
Use the minimum MTU size
INTEGER2NUM(IPV6_USE_MIN_MTU)
-
IPV6_V6ONLY =
Only bind IPv6 with a wildcard bind
INTEGER2NUM(IPV6_V6ONLY)
-
IPX_TYPE =
# File 'ext/socket/constdefs.c', line 4248INTEGER2NUM(IPX_TYPE)
-
IP_ADD_MEMBERSHIP =
Add a multicast group membership
INTEGER2NUM(IP_ADD_MEMBERSHIP)
-
IP_ADD_SOURCE_MEMBERSHIP =
Add a multicast group membership
INTEGER2NUM(IP_ADD_SOURCE_MEMBERSHIP)
-
IP_BLOCK_SOURCE =
Block IPv4 multicast packets with a give source address
INTEGER2NUM(IP_BLOCK_SOURCE)
-
IP_DEFAULT_MULTICAST_LOOP =
Default multicast loopback
INTEGER2NUM(IP_DEFAULT_MULTICAST_LOOP)
-
IP_DEFAULT_MULTICAST_TTL =
Default multicast TTL
INTEGER2NUM(IP_DEFAULT_MULTICAST_TTL)
-
IP_DONTFRAG =
Don’t fragment packets
INTEGER2NUM(IP_DONTFRAG)
-
IP_DROP_MEMBERSHIP =
Drop a multicast group membership
INTEGER2NUM(IP_DROP_MEMBERSHIP)
-
IP_DROP_SOURCE_MEMBERSHIP =
Drop a multicast group membership
INTEGER2NUM(IP_DROP_SOURCE_MEMBERSHIP)
-
IP_FREEBIND =
Allow binding to nonexistent IP addresses
INTEGER2NUM(IP_FREEBIND)
-
IP_HDRINCL =
Header is included with data
INTEGER2NUM(IP_HDRINCL)
-
IP_IPSEC_POLICY =
IPsec security policy
INTEGER2NUM(IP_IPSEC_POLICY)
-
IP_MAX_MEMBERSHIPS =
Maximum number multicast groups a socket can join
INTEGER2NUM(IP_MAX_MEMBERSHIPS)
-
IP_MINTTL =
Minimum TTL allowed for received packets
INTEGER2NUM(IP_MINTTL)
-
IP_MSFILTER =
Multicast source filtering
INTEGER2NUM(IP_MSFILTER)
-
IP_MTU =
The Maximum Transmission Unit of the socket
INTEGER2NUM(IP_MTU)
-
IP_MTU_DISCOVER =
Path MTU discovery
INTEGER2NUM(IP_MTU_DISCOVER)
-
IP_MULTICAST_IF =
IP multicast interface
INTEGER2NUM(IP_MULTICAST_IF)
-
IP_MULTICAST_LOOP =
IP multicast loopback
INTEGER2NUM(IP_MULTICAST_LOOP)
-
IP_MULTICAST_TTL =
IP multicast TTL
INTEGER2NUM(IP_MULTICAST_TTL)
-
IP_ONESBCAST =
Force outgoing broadcast datagrams to have the undirected broadcast address
INTEGER2NUM(IP_ONESBCAST)
-
IP_OPTIONS =
IP options to be included in packets
INTEGER2NUM(IP_OPTIONS)
-
IP_PASSSEC =
Retrieve security context with datagram
INTEGER2NUM(IP_PASSSEC)
-
IP_PKTINFO =
Receive packet information with datagrams
INTEGER2NUM(IP_PKTINFO)
-
IP_PKTOPTIONS =
Receive packet options with datagrams
INTEGER2NUM(IP_PKTOPTIONS)
-
IP_PMTUDISC_DO =
Always send DF frames
INTEGER2NUM(IP_PMTUDISC_DO)
-
IP_PMTUDISC_DONT =
Never send DF frames
INTEGER2NUM(IP_PMTUDISC_DONT)
-
IP_PMTUDISC_WANT =
Use per-route hints
INTEGER2NUM(IP_PMTUDISC_WANT)
-
IP_PORTRANGE =
Set the port range for sockets with unspecified port numbers
INTEGER2NUM(IP_PORTRANGE)
-
IP_RECVDSTADDR =
Receive IP destination address with datagram
INTEGER2NUM(IP_RECVDSTADDR)
-
IP_RECVERR =
Enable extended reliable error message passing
INTEGER2NUM(IP_RECVERR)
-
IP_RECVIF =
Receive interface information with datagrams
INTEGER2NUM(IP_RECVIF)
-
IP_RECVOPTS =
Receive all IP options with datagram
INTEGER2NUM(IP_RECVOPTS)
-
IP_RECVRETOPTS =
Receive all IP options for response
INTEGER2NUM(IP_RECVRETOPTS)
-
IP_RECVSLLA =
Receive link-layer address with datagrams
INTEGER2NUM(IP_RECVSLLA)
-
IP_RECVTOS =
Receive TOS with incoming packets
INTEGER2NUM(IP_RECVTOS)
-
IP_RECVTTL =
Receive IP TTL with datagrams
INTEGER2NUM(IP_RECVTTL)
-
IP_RETOPTS =
IP options to be included in datagrams
INTEGER2NUM(IP_RETOPTS)
-
IP_ROUTER_ALERT =
Notify transit routers to more closely examine the contents of an IP packet
INTEGER2NUM(IP_ROUTER_ALERT)
-
IP_SENDSRCADDR =
Source address for outgoing UDP datagrams
INTEGER2NUM(IP_SENDSRCADDR)
-
IP_TOS =
IP type-of-service
INTEGER2NUM(IP_TOS)
-
IP_TRANSPARENT =
Transparent proxy
INTEGER2NUM(IP_TRANSPARENT)
-
IP_TTL =
IP time-to-live
INTEGER2NUM(IP_TTL)
-
IP_UNBLOCK_SOURCE =
Unblock IPv4 multicast packets with a give source address
INTEGER2NUM(IP_UNBLOCK_SOURCE)
-
IP_XFRM_POLICY =
# File 'ext/socket/constdefs.c', line 3750INTEGER2NUM(IP_XFRM_POLICY)
-
LOCAL_CONNWAIT =
Connect blocks until accepted
INTEGER2NUM(LOCAL_CONNWAIT)
-
LOCAL_CREDS =
Pass credentials to receiver
INTEGER2NUM(LOCAL_CREDS)
-
LOCAL_PEERCRED =
Retrieve peer credentials
INTEGER2NUM(LOCAL_PEERCRED)
-
MCAST_BLOCK_SOURCE =
Block multicast packets from this source
INTEGER2NUM(MCAST_BLOCK_SOURCE)
-
MCAST_EXCLUDE =
Exclusive multicast source filter
INTEGER2NUM(MCAST_EXCLUDE)
-
MCAST_INCLUDE =
Inclusive multicast source filter
INTEGER2NUM(MCAST_INCLUDE)
-
MCAST_JOIN_GROUP =
Join a multicast group
INTEGER2NUM(MCAST_JOIN_GROUP)
-
MCAST_JOIN_SOURCE_GROUP =
Join a multicast source group
INTEGER2NUM(MCAST_JOIN_SOURCE_GROUP)
-
MCAST_LEAVE_GROUP =
Leave a multicast group
INTEGER2NUM(MCAST_LEAVE_GROUP)
-
MCAST_LEAVE_SOURCE_GROUP =
Leave a multicast source group
INTEGER2NUM(MCAST_LEAVE_SOURCE_GROUP)
-
MCAST_MSFILTER =
Multicast source filtering
INTEGER2NUM(MCAST_MSFILTER)
-
MCAST_UNBLOCK_SOURCE =
Unblock multicast packets from this source
INTEGER2NUM(MCAST_UNBLOCK_SOURCE)
-
MSG_COMPAT =
End of record
INTEGER2NUM(MSG_COMPAT)
-
MSG_CONFIRM =
Confirm path validity
INTEGER2NUM(MSG_CONFIRM)
-
MSG_CTRUNC =
Control data lost before delivery
INTEGER2NUM(MSG_CTRUNC)
-
MSG_DONTROUTE =
Send without using the routing tables
INTEGER2NUM(MSG_DONTROUTE)
-
MSG_DONTWAIT =
This message should be non-blocking
INTEGER2NUM(MSG_DONTWAIT)
-
MSG_EOF =
Data completes connection
INTEGER2NUM(MSG_EOF)
-
MSG_EOR =
Data completes record
INTEGER2NUM(MSG_EOR)
-
MSG_ERRQUEUE =
Fetch message from error queue
INTEGER2NUM(MSG_ERRQUEUE)
-
MSG_FASTOPEN =
Reduce step of the handshake process
INTEGER2NUM(MSG_FASTOPEN)
-
MSG_FIN =
# File 'ext/socket/constdefs.c', line 3252INTEGER2NUM(MSG_FIN)
-
MSG_FLUSH =
Start of a hold sequence. Dumps to so_temp
INTEGER2NUM(MSG_FLUSH)
-
MSG_HAVEMORE =
Data ready to be read
INTEGER2NUM(MSG_HAVEMORE)
-
MSG_HOLD =
Hold fragment in so_temp
INTEGER2NUM(MSG_HOLD)
-
MSG_MORE =
Sender will send more
INTEGER2NUM(MSG_MORE)
-
MSG_NOSIGNAL =
Do not generate SIGPIPE
INTEGER2NUM(MSG_NOSIGNAL)
-
MSG_OOB =
Process out-of-band data
INTEGER2NUM(MSG_OOB)
-
MSG_PEEK =
Peek at incoming message
INTEGER2NUM(MSG_PEEK)
-
MSG_PROXY =
Wait for full request
INTEGER2NUM(MSG_PROXY)
-
MSG_RCVMORE =
Data remains in the current packet
INTEGER2NUM(MSG_RCVMORE)
-
MSG_RST =
# File 'ext/socket/constdefs.c', line 3270INTEGER2NUM(MSG_RST)
-
MSG_SEND =
Send the packet in so_temp
INTEGER2NUM(MSG_SEND)
-
MSG_SYN =
# File 'ext/socket/constdefs.c', line 3258INTEGER2NUM(MSG_SYN)
-
MSG_TRUNC =
Data discarded before delivery
INTEGER2NUM(MSG_TRUNC)
-
MSG_WAITALL =
Wait for full request or error
INTEGER2NUM(MSG_WAITALL)
-
NI_DGRAM =
The service specified is a datagram service (looks up UDP ports)
INTEGER2NUM(NI_DGRAM)
-
NI_MAXHOST =
Maximum length of a hostname
INTEGER2NUM(NI_MAXHOST)
-
NI_MAXSERV =
Maximum length of a service name
INTEGER2NUM(NI_MAXSERV)
-
NI_NAMEREQD =
A name is required
INTEGER2NUM(NI_NAMEREQD)
-
NI_NOFQDN =
An FQDN is not required for local hosts, return only the local part
INTEGER2NUM(NI_NOFQDN)
-
NI_NUMERICHOST =
Return a numeric address
INTEGER2NUM(NI_NUMERICHOST)
-
NI_NUMERICSERV =
Return the service name as a digit string
INTEGER2NUM(NI_NUMERICSERV)
-
PF_ALG =
Interface to kernel crypto API
INTEGER2NUM(PF_ALG)
-
PF_APPLETALK =
AppleTalk protocol
INTEGER2NUM(PF_APPLETALK)
-
PF_ATM =
Asynchronous Transfer Mode
INTEGER2NUM(PF_ATM)
-
PF_AX25 =
AX.25
protocolINTEGER2NUM(PF_AX25)
-
PF_BLUETOOTH =
Bluetooth low-level socket protocol
INTEGER2NUM(PF_BLUETOOTH)
-
PF_CAN =
Controller Area Network automotive bus protocol
INTEGER2NUM(PF_CAN)
-
PF_CCITT =
CCITT (now ITU-T) protocols
INTEGER2NUM(PF_CCITT)
-
PF_CHAOS =
MIT CHAOS protocols
INTEGER2NUM(PF_CHAOS)
-
PF_CNT =
Computer Network Technology
INTEGER2NUM(PF_CNT)
-
PF_COIP =
Connection-oriented IP
INTEGER2NUM(PF_COIP)
-
PF_DATAKIT =
Datakit protocol
INTEGER2NUM(PF_DATAKIT)
-
PF_DEC =
DECnet protocol
INTEGER2NUM(PF_DEC)
-
PF_DECnet =
DECnet protocol
INTEGER2NUM(PF_DECnet)
-
PF_DLI =
DEC Direct Data Link Interface protocol
INTEGER2NUM(PF_DLI)
-
PF_ECMA =
European Computer Manufacturers protocols
INTEGER2NUM(PF_ECMA)
-
PF_HYLINK =
NSC Hyperchannel protocol
INTEGER2NUM(PF_HYLINK)
-
PF_IB =
InfiniBand native addressing
INTEGER2NUM(PF_IB)
-
PF_IMPLINK =
ARPANET IMP protocol
INTEGER2NUM(PF_IMPLINK)
-
PF_INET =
IPv4 protocol
INTEGER2NUM(PF_INET)
-
PF_INET6 =
IPv6 protocol
INTEGER2NUM(PF_INET6)
-
PF_IPX =
IPX protocol
INTEGER2NUM(PF_IPX)
-
PF_ISDN =
Integrated Services Digital Network
INTEGER2NUM(PF_ISDN)
-
PF_ISO =
ISO Open Systems Interconnection protocols
INTEGER2NUM(PF_ISO)
-
PF_KCM =
KCM (kernel connection multiplexor) interface
INTEGER2NUM(PF_KCM)
-
PF_KEY =
Key management protocol, originally developed for usage with IPsec
INTEGER2NUM(PF_KEY)
-
PF_LAT =
Local Area Transport protocol
INTEGER2NUM(PF_LAT)
-
PF_LINK =
Link layer interface
INTEGER2NUM(PF_LINK)
-
PF_LLC =
Logical link control (IEEE 802.2 LLC) protocol
INTEGER2NUM(PF_LLC)
-
PF_LOCAL =
Host-internal protocols
INTEGER2NUM(PF_LOCAL)
-
PF_MAX =
Maximum address family for this platform
INTEGER2NUM(PF_MAX)
-
PF_MPLS =
Multiprotocol Label Switching
INTEGER2NUM(PF_MPLS)
-
PF_NATM =
Native ATM access
INTEGER2NUM(PF_NATM)
-
PF_NDRV =
Network driver raw access
INTEGER2NUM(PF_NDRV)
-
PF_NETBIOS =
NetBIOS
INTEGER2NUM(PF_NETBIOS)
-
PF_NETGRAPH =
Netgraph sockets
INTEGER2NUM(PF_NETGRAPH)
-
PF_NETLINK =
Kernel user interface device
INTEGER2NUM(PF_NETLINK)
-
PF_NS =
XEROX NS protocols
INTEGER2NUM(PF_NS)
-
PF_OSI =
ISO Open Systems Interconnection protocols
INTEGER2NUM(PF_OSI)
-
PF_PACKET =
Direct link-layer access
INTEGER2NUM(PF_PACKET)
-
PF_PIP =
# File 'ext/socket/constdefs.c', line 2982INTEGER2NUM(PF_PIP)
-
PF_PPP =
Point-to-Point Protocol
INTEGER2NUM(PF_PPP)
-
PF_PPPOX =
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE)
INTEGER2NUM(PF_PPPOX)
-
PF_PUP =
PARC Universal Packet protocol
INTEGER2NUM(PF_PUP)
-
PF_RDS =
Reliable Datagram Sockets (RDS) protocol
INTEGER2NUM(PF_RDS)
-
PF_ROUTE =
Internal routing protocol
INTEGER2NUM(PF_ROUTE)
-
PF_RTIP =
# File 'ext/socket/constdefs.c', line 2976INTEGER2NUM(PF_RTIP)
-
PF_SIP =
Simple Internet Protocol
INTEGER2NUM(PF_SIP)
-
PF_SNA =
IBM SNA protocol
INTEGER2NUM(PF_SNA)
-
PF_SYSTEM =
# File 'ext/socket/constdefs.c', line 2886INTEGER2NUM(PF_SYSTEM)
-
PF_TIPC =
TIPC, “cluster domain sockets” protocol
INTEGER2NUM(PF_TIPC)
-
PF_UNIX =
UNIX sockets
INTEGER2NUM(PF_UNIX)
-
PF_UNSPEC =
Unspecified protocol, any supported address family
INTEGER2NUM(PF_UNSPEC)
-
PF_VSOCK =
VSOCK (originally “VMWare VSockets”) protocol for hypervisor-guest communication
INTEGER2NUM(PF_VSOCK)
-
PF_XDP =
XDP (express data path) interface
INTEGER2NUM(PF_XDP)
-
PF_XTP =
eXpress Transfer Protocol
INTEGER2NUM(PF_XTP)
-
SCM_BINTIME =
Timestamp (bintime)
INTEGER2NUM(SCM_BINTIME)
-
SCM_CREDENTIALS =
The sender’s credentials
INTEGER2NUM(SCM_CREDENTIALS)
-
SCM_CREDS =
Process credentials
INTEGER2NUM(SCM_CREDS)
-
SCM_RIGHTS =
Access rights
INTEGER2NUM(SCM_RIGHTS)
-
SCM_TIMESTAMP =
Timestamp (timeval)
INTEGER2NUM(SCM_TIMESTAMP)
-
SCM_TIMESTAMPING =
Timestamp (timespec list) (Linux 2.6.30)
INTEGER2NUM(SCM_TIMESTAMPING)
-
SCM_TIMESTAMPNS =
Timespec (timespec)
INTEGER2NUM(SCM_TIMESTAMPNS)
-
SCM_UCRED =
User credentials
INTEGER2NUM(SCM_UCRED)
-
SCM_WIFI_STATUS =
Wifi status (Linux 3.3)
INTEGER2NUM(SCM_WIFI_STATUS)
-
SHUT_RD =
Shut down the reading side of the socket
INTEGER2NUM(SHUT_RD)
-
SHUT_RDWR =
Shut down the both sides of the socket
INTEGER2NUM(SHUT_RDWR)
-
SHUT_WR =
Shut down the writing side of the socket
INTEGER2NUM(SHUT_WR)
-
SOCK_CLOEXEC =
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
INTEGER2NUM(SOCK_CLOEXEC)
-
SOCK_DGRAM =
A datagram socket provides connectionless, unreliable messaging
INTEGER2NUM(SOCK_DGRAM)
-
SOCK_NONBLOCK =
Set the O_NONBLOCK file status flag on the open file description (see open(2)) referred to by the new file descriptor.
INTEGER2NUM(SOCK_NONBLOCK)
-
SOCK_PACKET =
Device-level packet access
INTEGER2NUM(SOCK_PACKET)
-
SOCK_RAW =
A raw socket provides low-level access for direct access or implementing network protocols
INTEGER2NUM(SOCK_RAW)
-
SOCK_RDM =
A reliable datagram socket provides reliable delivery of messages
INTEGER2NUM(SOCK_RDM)
-
SOCK_SEQPACKET =
A sequential packet socket provides sequenced, reliable two-way connection for datagrams
INTEGER2NUM(SOCK_SEQPACKET)
-
SOCK_STREAM =
A stream socket provides a sequenced, reliable two-way connection for a byte stream
INTEGER2NUM(SOCK_STREAM)
-
SOL_ATALK =
AppleTalk socket options
INTEGER2NUM(SOL_ATALK)
-
SOL_AX25 =
AX.25
socket optionsINTEGER2NUM(SOL_AX25)
-
SOL_IP =
IP socket options
INTEGER2NUM(SOL_IP)
-
SOL_IPX =
IPX socket options
INTEGER2NUM(SOL_IPX)
-
SOL_SOCKET =
Socket-level options
INTEGER2NUM(SOL_SOCKET)
-
SOL_TCP =
TCP socket options
INTEGER2NUM(SOL_TCP)
-
SOL_UDP =
UDP socket options
INTEGER2NUM(SOL_UDP)
-
SOMAXCONN =
Maximum connection requests that may be queued for a socket
INTEGER2NUM(SOMAXCONN)
-
SOPRI_BACKGROUND =
Background socket priority
INTEGER2NUM(SOPRI_BACKGROUND)
-
SOPRI_INTERACTIVE =
Interactive socket priority
INTEGER2NUM(SOPRI_INTERACTIVE)
-
SOPRI_NORMAL =
Normal socket priority
INTEGER2NUM(SOPRI_NORMAL)
-
SO_ACCEPTCONN =
Socket
has had listen() called on itINTEGER2NUM(SO_ACCEPTCONN)
-
SO_ACCEPTFILTER =
There is an accept filter
INTEGER2NUM(SO_ACCEPTFILTER)
-
SO_ALLZONES =
Bypass zone boundaries
INTEGER2NUM(SO_ALLZONES)
-
SO_ATTACH_FILTER =
Attach an accept filter
INTEGER2NUM(SO_ATTACH_FILTER)
-
SO_BINDTODEVICE =
Only send packets from the given interface
INTEGER2NUM(SO_BINDTODEVICE)
-
SO_BINTIME =
Receive timestamp with datagrams (bintime)
INTEGER2NUM(SO_BINTIME)
-
SO_BPF_EXTENSIONS =
Query supported BPF extensions (Linux 3.14)
INTEGER2NUM(SO_BPF_EXTENSIONS)
-
SO_BROADCAST =
Permit sending of broadcast messages
INTEGER2NUM(SO_BROADCAST)
-
SO_BUSY_POLL =
Set the threshold in microseconds for low latency polling (Linux 3.11)
INTEGER2NUM(SO_BUSY_POLL)
-
SO_DEBUG =
Debug info recording
INTEGER2NUM(SO_DEBUG)
-
SO_DETACH_FILTER =
Detach an accept filter
INTEGER2NUM(SO_DETACH_FILTER)
-
SO_DOMAIN =
Domain given for socket() (Linux 2.6.32)
INTEGER2NUM(SO_DOMAIN)
-
SO_DONTROUTE =
Use interface addresses
INTEGER2NUM(SO_DONTROUTE)
-
SO_DONTTRUNC =
Retain unread data
INTEGER2NUM(SO_DONTTRUNC)
-
SO_ERROR =
Get and clear the error status
INTEGER2NUM(SO_ERROR)
-
SO_GET_FILTER =
Obtain filter set by SO_ATTACH_FILTER (Linux 3.8)
INTEGER2NUM(SO_GET_FILTER)
-
SO_KEEPALIVE =
Keep connections alive
INTEGER2NUM(SO_KEEPALIVE)
-
SO_LINGER =
Linger on close if data is present
INTEGER2NUM(SO_LINGER)
-
SO_LOCK_FILTER =
Lock the filter attached to a socket (Linux 3.9)
INTEGER2NUM(SO_LOCK_FILTER)
-
SO_MAC_EXEMPT =
Mandatory Access Control exemption for unlabeled peers
INTEGER2NUM(SO_MAC_EXEMPT)
-
SO_MARK =
Set the mark for mark-based routing (Linux 2.6.25)
INTEGER2NUM(SO_MARK)
-
SO_MAX_PACING_RATE =
Cap the rate computed by transport layer. [bytes per second] (Linux 3.13)
INTEGER2NUM(SO_MAX_PACING_RATE)
-
SO_NKE =
Install socket-level Network Kernel Extension
INTEGER2NUM(SO_NKE)
-
SO_NOFCS =
Set netns of a socket (Linux 3.4)
INTEGER2NUM(SO_NOFCS)
-
SO_NOSIGPIPE =
Don’t SIGPIPE on EPIPE
INTEGER2NUM(SO_NOSIGPIPE)
-
SO_NO_CHECK =
Disable checksums
INTEGER2NUM(SO_NO_CHECK)
-
SO_NREAD =
Get first packet byte count
INTEGER2NUM(SO_NREAD)
-
SO_OOBINLINE =
Leave received out-of-band data in-line
INTEGER2NUM(SO_OOBINLINE)
-
SO_PASSCRED =
Receive SCM_CREDENTIALS messages
INTEGER2NUM(SO_PASSCRED)
-
SO_PASSSEC =
Toggle security context passing (Linux 2.6.18)
INTEGER2NUM(SO_PASSSEC)
-
SO_PEEK_OFF =
Set the peek offset (Linux 3.4)
INTEGER2NUM(SO_PEEK_OFF)
-
SO_PEERCRED =
The credentials of the foreign process connected to this socket
INTEGER2NUM(SO_PEERCRED)
-
SO_PEERNAME =
Name of the connecting user
INTEGER2NUM(SO_PEERNAME)
-
SO_PEERSEC =
Obtain the security credentials (Linux 2.6.2)
INTEGER2NUM(SO_PEERSEC)
-
SO_PRIORITY =
The protocol-defined priority for all packets on this socket
INTEGER2NUM(SO_PRIORITY)
-
SO_PROTOCOL =
Protocol given for socket() (Linux 2.6.32)
INTEGER2NUM(SO_PROTOCOL)
-
SO_RCVBUF =
Receive buffer size
INTEGER2NUM(SO_RCVBUF)
-
SO_RCVBUFFORCE =
Receive buffer size without rmem_max limit (Linux 2.6.14)
INTEGER2NUM(SO_RCVBUFFORCE)
-
SO_RCVLOWAT =
Receive low-water mark
INTEGER2NUM(SO_RCVLOWAT)
-
SO_RCVTIMEO =
Receive timeout
INTEGER2NUM(SO_RCVTIMEO)
-
SO_RECVUCRED =
Receive user credentials with datagram
INTEGER2NUM(SO_RECVUCRED)
-
SO_REUSEADDR =
Allow local address reuse
INTEGER2NUM(SO_REUSEADDR)
-
SO_REUSEPORT =
Allow local address and port reuse
INTEGER2NUM(SO_REUSEPORT)
-
SO_RXQ_OVFL =
Toggle cmsg for number of packets dropped (Linux 2.6.33)
INTEGER2NUM(SO_RXQ_OVFL)
-
SO_SECURITY_AUTHENTICATION =
# File 'ext/socket/constdefs.c', line 4056INTEGER2NUM(SO_SECURITY_AUTHENTICATION)
-
SO_SECURITY_ENCRYPTION_NETWORK =
# File 'ext/socket/constdefs.c', line 4068INTEGER2NUM(SO_SECURITY_ENCRYPTION_NETWORK)
-
SO_SECURITY_ENCRYPTION_TRANSPORT =
# File 'ext/socket/constdefs.c', line 4062INTEGER2NUM(SO_SECURITY_ENCRYPTION_TRANSPORT)
-
SO_SELECT_ERR_QUEUE =
Make select() detect socket error queue with errorfds (Linux 3.10)
INTEGER2NUM(SO_SELECT_ERR_QUEUE)
-
SO_SNDBUF =
Send buffer size
INTEGER2NUM(SO_SNDBUF)
-
SO_SNDBUFFORCE =
Send buffer size without wmem_max limit (Linux 2.6.14)
INTEGER2NUM(SO_SNDBUFFORCE)
-
SO_SNDLOWAT =
Send low-water mark
INTEGER2NUM(SO_SNDLOWAT)
-
SO_SNDTIMEO =
Send timeout
INTEGER2NUM(SO_SNDTIMEO)
-
SO_TIMESTAMP =
Receive timestamp with datagrams (timeval)
INTEGER2NUM(SO_TIMESTAMP)
-
SO_TIMESTAMPING =
Time stamping of incoming and outgoing packets (Linux 2.6.30)
INTEGER2NUM(SO_TIMESTAMPING)
-
SO_TIMESTAMPNS =
Receive nanosecond timestamp with datagrams (timespec)
INTEGER2NUM(SO_TIMESTAMPNS)
-
SO_TYPE =
Get the socket type
INTEGER2NUM(SO_TYPE)
-
SO_USELOOPBACK =
Bypass hardware when possible
INTEGER2NUM(SO_USELOOPBACK)
-
SO_WANTMORE =
Give a hint when more data is ready
INTEGER2NUM(SO_WANTMORE)
-
SO_WANTOOBFLAG =
OOB data is wanted in MSG_FLAG on receive
INTEGER2NUM(SO_WANTOOBFLAG)
-
SO_WIFI_STATUS =
Toggle cmsg for wifi status (Linux 3.3)
INTEGER2NUM(SO_WIFI_STATUS)
-
TCP_CONGESTION =
TCP congestion control algorithm (Linux 2.6.13, glibc 2.6)
INTEGER2NUM(TCP_CONGESTION)
-
TCP_COOKIE_TRANSACTIONS =
TCP Cookie Transactions (Linux 2.6.33, glibc 2.18)
INTEGER2NUM(TCP_COOKIE_TRANSACTIONS)
-
TCP_CORK =
Don’t send partial frames (Linux 2.2, glibc 2.2)
INTEGER2NUM(TCP_CORK)
-
TCP_DEFER_ACCEPT =
Don’t notify a listening socket until data is ready (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_DEFER_ACCEPT)
-
TCP_FASTOPEN =
Reduce step of the handshake process (Linux 3.7, glibc 2.18)
INTEGER2NUM(TCP_FASTOPEN)
-
TCP_INFO =
Retrieve information about this socket (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_INFO)
-
TCP_KEEPCNT =
Maximum number of keepalive probes allowed before dropping a connection (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_KEEPCNT)
-
TCP_KEEPIDLE =
Idle time before keepalive probes are sent (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_KEEPIDLE)
-
TCP_KEEPINTVL =
Time between keepalive probes (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_KEEPINTVL)
-
TCP_LINGER2 =
Lifetime of orphaned FIN_WAIT2 sockets (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_LINGER2)
-
TCP_MAXSEG =
Set maximum segment size
INTEGER2NUM(TCP_MAXSEG)
-
TCP_MD5SIG =
Use MD5 digests (RFC2385, Linux 2.6.20, glibc 2.7)
INTEGER2NUM(TCP_MD5SIG)
-
TCP_NODELAY =
Don’t delay sending to coalesce packets
INTEGER2NUM(TCP_NODELAY)
-
TCP_NOOPT =
Don’t use TCP options
INTEGER2NUM(TCP_NOOPT)
-
TCP_NOPUSH =
Don’t push the last block of write
INTEGER2NUM(TCP_NOPUSH)
-
TCP_QUEUE_SEQ =
Sequence of a queue for repair mode (Linux 3.5, glibc 2.18)
INTEGER2NUM(TCP_QUEUE_SEQ)
-
TCP_QUICKACK =
Enable quickack mode (Linux 2.4.4, glibc 2.3)
INTEGER2NUM(TCP_QUICKACK)
-
TCP_REPAIR =
Repair mode (Linux 3.5, glibc 2.18)
INTEGER2NUM(TCP_REPAIR)
-
TCP_REPAIR_OPTIONS =
Options for repair mode (Linux 3.5, glibc 2.18)
INTEGER2NUM(TCP_REPAIR_OPTIONS)
-
TCP_REPAIR_QUEUE =
Queue for repair mode (Linux 3.5, glibc 2.18)
INTEGER2NUM(TCP_REPAIR_QUEUE)
-
TCP_SYNCNT =
Number of SYN retransmits before a connection is dropped (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_SYNCNT)
-
TCP_THIN_DUPACK =
Duplicated acknowledgments handling for thin-streams (Linux 2.6.34, glibc 2.18)
INTEGER2NUM(TCP_THIN_DUPACK)
-
TCP_THIN_LINEAR_TIMEOUTS =
Linear timeouts for thin-streams (Linux 2.6.34, glibc 2.18)
INTEGER2NUM(TCP_THIN_LINEAR_TIMEOUTS)
-
TCP_TIMESTAMP =
TCP timestamp (Linux 3.9, glibc 2.18)
INTEGER2NUM(TCP_TIMESTAMP)
-
TCP_USER_TIMEOUT =
Max timeout before a TCP connection is aborted (Linux 2.6.37, glibc 2.18)
INTEGER2NUM(TCP_USER_TIMEOUT)
-
TCP_WINDOW_CLAMP =
Clamp the size of the advertised window (Linux 2.4, glibc 2.2)
INTEGER2NUM(TCP_WINDOW_CLAMP)
-
UDP_CORK =
Don’t send partial frames (Linux 2.5.44, glibc 2.11)
INTEGER2NUM(UDP_CORK)
Class Attribute Summary
::BasicSocket
- Inherited
.do_not_reverse_lookup | Gets the global do_not_reverse_lookup flag. |
.do_not_reverse_lookup= | Sets the global do_not_reverse_lookup flag. |
Class Method Summary
-
.accept_loop(*sockets)
yield socket and client address for each a connection accepted via given sockets.
-
.getaddrinfo(nodename, servname[, family[, socktype[, protocol[, flags[, reverse_lookup]]]]]) ⇒ Array
Obtains address information for nodename:servname.
-
.gethostbyaddr(address_string [, address_family]) ⇒ hostent
Use Addrinfo#getnameinfo instead.
-
.gethostbyname(hostname) ⇒ Array, ...
Use Addrinfo.getaddrinfo instead.
-
.gethostname ⇒ hostname
Returns the hostname.
-
.getifaddrs ⇒ Array, ...
Returns an array of interface addresses.
-
.getnameinfo(sockaddr [, flags]) ⇒ Array, servicename
Obtains name information for sockaddr.
-
.getservbyname(service_name) ⇒ port_number
Obtains the port number for service_name.
-
.getservbyport(port [, protocol_name]) ⇒ service
Obtains the port number for port.
-
.ip_address_list ⇒ Array
Returns local IP addresses as an array.
-
.new(domain, socktype [, protocol]) ⇒ Socket
constructor
Creates a new socket object.
-
.pack_sockaddr_in(port, host) ⇒ sockaddr
Alias for .sockaddr_in.
-
.pack_sockaddr_un(path) ⇒ sockaddr
Alias for .sockaddr_un.
-
.pair(domain, type, protocol) ⇒ Socket
(also: .socketpair)
Creates a pair of sockets connected each other.
-
.sockaddr_in(port, host) ⇒ sockaddr
(also: .pack_sockaddr_in)
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
-
.sockaddr_un(path) ⇒ sockaddr
(also: .pack_sockaddr_un)
Packs path as an AF_UNIX sockaddr string.
-
.socketpair(domain, type, protocol) ⇒ Socket
Alias for .pair.
-
.tcp(host, port, local_host = nil, local_port = nil, [opts]) {|socket| ... }
creates a new socket object connected to host:port using TCP/IP.
-
.tcp_server_loop(host = nil, port, &b)
creates a TCP/IP server on port and calls the block for each connection accepted.
-
.tcp_server_sockets(host = nil, port)
creates TCP/IP server sockets for host and port.
-
.udp_server_loop(port) {|msg, msg_src| ... }
creates a UDP/IP server on port and calls the block for each message arrived.
-
.udp_server_loop_on(sockets) {|msg, msg_src| ... }
Run UDP/IP server loop on the given sockets.
-
.udp_server_recv(sockets) {|msg, msg_src| ... }
Receive UDP/IP packets from the given sockets.
-
.udp_server_sockets([host, ] port)
Creates UDP/IP sockets for a UDP server.
-
.unix(path)
creates a new socket connected to path using UNIX socket socket.
-
.unix_server_loop(path, &b)
creates a UNIX socket server on path.
-
.unix_server_socket(path)
creates a UNIX server socket on path.
-
.unpack_sockaddr_in(sockaddr) ⇒ Array, ip_address
Unpacks sockaddr into port and ip_address.
-
.unpack_sockaddr_un(sockaddr) ⇒ path
Unpacks sockaddr into path.
- .unix_socket_abstract_name?(path) ⇒ Boolean private
- .ip_sockets_port0(ai_list, reuseaddr) Internal use only
- .tcp_server_sockets_port0(host) Internal use only
::BasicSocket
- Inherited
.for_fd | Returns a socket object which contains the file descriptor, fd. |
Instance Attribute Summary
::BasicSocket
- Inherited
#do_not_reverse_lookup | Gets the do_not_reverse_lookup flag of basicsocket. |
#do_not_reverse_lookup= | Sets the do_not_reverse_lookup flag of basicsocket. |
Instance Method Summary
-
#accept ⇒ Socket, client_addrinfo
Accepts a next connection.
-
#accept_nonblock([options]) ⇒ Socket, client_addrinfo
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor.
-
#bind(local_sockaddr) ⇒ 0
Binds to the given local address.
-
#connect(remote_sockaddr) ⇒ 0
Requests a connection to be made on the given
remote_sockaddr
. -
#connect_nonblock(remote_sockaddr, [options]) ⇒ 0
Requests a connection to be made on the given
remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. -
#ipv6only!
enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.
-
#listen(int) ⇒ 0
Listens for connections, using the specified
int
as the backlog. -
#recvfrom(maxlen) ⇒ Array, sender_addrinfo
Receives up to maxlen bytes from
socket
. -
#recvfrom_nonblock(maxlen[, flags[, outbuf[, opts]]]) ⇒ Array, sender_addrinfo
Receives up to maxlen bytes from
socket
using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. -
#sysaccept ⇒ Socket, client_addrinfo
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an
::Addrinfo
, client_addrinfo. - #__accept_nonblock(ex) private Internal use only
- #__connect_nonblock(addr, ex) private Internal use only
- #__recvfrom_nonblock(len, flg, str, ex) private Internal use only
::BasicSocket
- Inherited
#close_read | Disallows further read using shutdown system call. |
#close_write | Disallows further write using shutdown system call. |
#connect_address | Returns an address of the socket suitable for connect in the local machine. |
#getpeereid | Returns the user and group on the peer of the UNIX socket. |
#getpeername | Returns the remote address of the socket as a sockaddr string. |
#getsockname | Returns the local address of the socket as a sockaddr string. |
#getsockopt | Gets a socket option. |
#local_address | Returns an |
#recv | Receives a message. |
#recv_nonblock | Receives up to maxlen bytes from |
#recvmsg | recvmsg receives a message using recvmsg(2) system call in blocking manner. |
#recvmsg_nonblock | recvmsg receives a message using recvmsg(2) system call in non-blocking manner. |
#remote_address | Returns an |
#send | send mesg via basicsocket. |
#sendmsg | sendmsg sends a message using sendmsg(2) system call in blocking manner. |
#sendmsg_nonblock | sendmsg_nonblock sends a message using sendmsg(2) system call in non-blocking manner. |
#setsockopt | Sets a socket option. |
#shutdown | Calls shutdown(2) system call. |
#__recvmsg, #__recvmsg_nonblock, #__sendmsg, #__sendmsg_nonblock, #read_nonblock, #write_nonblock, #__read_nonblock, #__recv_nonblock, #__write_nonblock |
Constructor Details
.new(domain, socktype [, protocol]) ⇒ Socket
Creates a new socket object.
domain should be a communications domain such as: :INET
, :INET6
, :UNIX
, etc.
socktype should be a socket type such as: :STREAM
, :DGRAM
, :RAW
, etc.
protocol is optional and should be a protocol defined in the domain. If protocol is not given, 0 is used internally.
Socket.new(:INET, :STREAM) # TCP socket
Socket.new(:INET, :DGRAM) # UDP socket
Socket.new(:UNIX, :STREAM) # UNIX stream socket
Socket.new(:UNIX, :DGRAM) # UNIX datagram socket
# File 'ext/socket/socket.c', line 132
static VALUE sock_initialize(int argc, VALUE *argv, VALUE sock) { VALUE domain, type, protocol; int fd; int d, t; rb_scan_args(argc, argv, "21", &domain, &type, &protocol); if (NIL_P(protocol)) protocol = INT2FIX(0); setup_domain_and_type(domain, &d, type, &t); fd = rsock_socket(d, t, NUM2INT(protocol)); if (fd < 0) rb_sys_fail("socket(2)"); return rsock_init_sock(sock, fd); }
Class Method Details
.accept_loop(*sockets)
yield socket and client address for each a connection accepted via given sockets.
The arguments are a list of sockets. The individual argument should be a socket or an array of sockets.
This method yields the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
# File 'ext/socket/lib/socket.rb', line 800
def self.accept_loop(*sockets) # :yield: socket, client_addrinfo sockets.flatten!(1) if sockets.empty? raise ArgumentError, "no sockets" end loop { readable, _, _ = IO.select(sockets) readable.each {|r| sock, addr = r.accept_nonblock(exception: false) next if sock == :wait_readable yield sock, addr } } end
.getaddrinfo(nodename, servname[, family[, socktype[, protocol[, flags[, reverse_lookup]]]]]) ⇒ Array
Obtains address information for nodename:servname.
Note that Addrinfo.getaddrinfo provides the same functionality in an object oriented style.
family should be an address family such as: :INET
, :INET6
, etc.
socktype should be a socket type such as: :STREAM
, :DGRAM
, :RAW
, etc.
protocol should be a protocol defined in the family, and defaults to 0 for the family.
flags should be bitwise OR of Socket::AI_* constants.
Socket.getaddrinfo("www.ruby-lang.org", "http", nil, :STREAM)
#=> [["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68", 2, 1, 6]] # PF_INET/SOCK_STREAM/IPPROTO_TCP
Socket.getaddrinfo("localhost", nil)
#=> [["AF_INET", 0, "localhost", "127.0.0.1", 2, 1, 6], # PF_INET/SOCK_STREAM/IPPROTO_TCP
# ["AF_INET", 0, "localhost", "127.0.0.1", 2, 2, 17], # PF_INET/SOCK_DGRAM/IPPROTO_UDP
# ["AF_INET", 0, "localhost", "127.0.0.1", 2, 3, 0]] # PF_INET/SOCK_RAW/IPPROTO_IP
reverse_lookup directs the form of the third element, and has to be one of below. If reverse_lookup is omitted, the default value is nil
.
true, :hostname: hostname is obtained from numeric address using reverse lookup, which may take a time.
false, :numeric: hostname is the same as numeric address.
nil: obey to the current do_not_reverse_lookup flag.
If Addrinfo object is preferred, use Addrinfo.getaddrinfo.
# File 'ext/socket/socket.c', line 1156
static VALUE sock_s_getaddrinfo(int argc, VALUE *argv, VALUE _) { VALUE host, port, family, socktype, protocol, flags, ret, revlookup; struct addrinfo hints; struct rb_addrinfo *res; int norevlookup; rb_scan_args(argc, argv, "25", &host, &port, &family, &socktype, &protocol, &flags, &revlookup); MEMZERO(&hints, struct addrinfo, 1); hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family); if (!NIL_P(socktype)) { hints.ai_socktype = rsock_socktype_arg(socktype); } if (!NIL_P(protocol)) { hints.ai_protocol = NUM2INT(protocol); } if (!NIL_P(flags)) { hints.ai_flags = NUM2INT(flags); } if (NIL_P(revlookup) || !rsock_revlookup_flag(revlookup, &norevlookup)) { norevlookup = rsock_do_not_reverse_lookup; } res = rsock_getaddrinfo(host, port, &hints, 0); ret = make_addrinfo(res, norevlookup); rb_freeaddrinfo(res); return ret; }
.gethostbyaddr(address_string [, address_family]) ⇒ hostent
Use Addrinfo#getnameinfo instead. This method is deprecated for the following reasons:
-
Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
-
gethostbyaddr() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
-
This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for address.
p Socket.gethostbyaddr([221,186,184,68].pack("CCCC"))
#=> ["carbon.ruby-lang.org", [], 2, "\xDD\xBA\xB8D"]
p Socket.gethostbyaddr([127,0,0,1].pack("CCCC"))
["localhost", [], 2, "\x7F\x00\x00\x01"]
p Socket.gethostbyaddr(([0]*15+[1]).pack("C"*16))
#=> ["localhost", ["ip6-localhost", "ip6-loopback"], 10,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"]
# File 'ext/socket/socket.c', line 993
static VALUE sock_s_gethostbyaddr(int argc, VALUE *argv, VALUE _) { VALUE addr, family; struct hostent *h; char **pch; VALUE ary, names; int t = AF_INET; rb_warn("Socket.gethostbyaddr is deprecated; use Addrinfo#getnameinfo instead."); rb_scan_args(argc, argv, "11", &addr, &family); StringValue(addr); if (!NIL_P(family)) { t = rsock_family_arg(family); } #ifdef AF_INET6 else if (RSTRING_LEN(addr) == 16) { t = AF_INET6; } #endif h = gethostbyaddr(RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), t); if (h == NULL) { #ifdef HAVE_HSTRERROR extern int h_errno; rb_raise(rb_eSocket, "%s", (char*)hstrerror(h_errno)); #else rb_raise(rb_eSocket, "host not found"); #endif } ary = rb_ary_new(); rb_ary_push(ary, rb_str_new2(h->h_name)); names = rb_ary_new(); rb_ary_push(ary, names); if (h->h_aliases != NULL) { for (pch = h->h_aliases; *pch; pch++) { rb_ary_push(names, rb_str_new2(*pch)); } } rb_ary_push(ary, INT2NUM(h->h_addrtype)); #ifdef h_addr for (pch = h->h_addr_list; *pch; pch++) { rb_ary_push(ary, rb_str_new(*pch, h->h_length)); } #else rb_ary_push(ary, rb_str_new(h->h_addr, h->h_length)); #endif return ary; }
.gethostbyname(hostname) ⇒ Array
, ...
Use Addrinfo.getaddrinfo instead. This method is deprecated for the following reasons:
-
The 3rd element of the result is the address family of the first address. The address families of the rest of the addresses are not returned.
-
Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
-
gethostbyname() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
-
This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for hostname.
p Socket.gethostbyname("hal") #=> ["localhost", ["hal"], 2, "\x7F\x00\x00\x01"]
# File 'ext/socket/socket.c', line 959
static VALUE sock_s_gethostbyname(VALUE obj, VALUE host) { rb_warn("Socket.gethostbyname is deprecated; use Addrinfo.getaddrinfo instead."); struct rb_addrinfo *res = rsock_addrinfo(host, Qnil, AF_UNSPEC, SOCK_STREAM, AI_CANONNAME); return rsock_make_hostent(host, res, sock_sockaddr); }
.gethostname ⇒ hostname
Returns the hostname.
p Socket.gethostname #=> "hal"
Note that it is not guaranteed to be able to convert to IP address using gethostbyname, getaddrinfo, etc. If you need local IP address, use .ip_address_list.
# File 'ext/socket/socket.c', line 842
static VALUE sock_gethostname(VALUE obj) { #if defined(NI_MAXHOST) # define RUBY_MAX_HOST_NAME_LEN NI_MAXHOST #elif defined(HOST_NAME_MAX) # define RUBY_MAX_HOST_NAME_LEN HOST_NAME_MAX #else # define RUBY_MAX_HOST_NAME_LEN 1024 #endif long len = RUBY_MAX_HOST_NAME_LEN; VALUE name; name = rb_str_new(0, len); while (gethostname(RSTRING_PTR(name), len) < 0) { int e = errno; switch (e) { case ENAMETOOLONG: #ifdef __linux__ case EINVAL: /* glibc before version 2.1 uses EINVAL instead of ENAMETOOLONG */ #endif break; default: rb_syserr_fail(e, "gethostname(3)"); } rb_str_modify_expand(name, len); len += len; } rb_str_resize(name, strlen(RSTRING_PTR(name))); return name; }
.getifaddrs ⇒ Array
, ...
Returns an array of interface addresses. An element of the array is an instance of ::Socket::Ifaddr
.
This method can be used to find multicast-enabled interfaces:
pp Socket.getifaddrs.reject {|ifaddr|
!ifaddr.addr.ip? || (ifaddr.flags & Socket::IFF_MULTICAST == 0)
}.map {|ifaddr| [ifaddr.name, ifaddr.ifindex, ifaddr.addr] }
#=> [["eth0", 2, #<Addrinfo: 221.186.184.67>],
# ["eth0", 2, #<Addrinfo: fe80::216:3eff:fe95:88bb%eth0>]]
Example result on GNU/Linux:
pp Socket.getifaddrs
#=> [#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 PACKET[protocol=0 lo hatype=772 HOST hwaddr=00:00:00:00:00:00]>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=00:16:3e:95:88:bb] broadcast=PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=ff:ff:ff:ff:ff:ff]>,
# #<Socket::Ifaddr sit0 NOARP PACKET[protocol=0 sit0 hatype=776 HOST hwaddr=00:00:00:00]>,
# #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 127.0.0.1 netmask=255.0.0.0>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 221.186.184.67 netmask=255.255.255.240 broadcast=221.186.184.79>,
# #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 fe80::216:3eff:fe95:88bb%eth0 netmask=ffff:ffff:ffff:ffff::>]
Example result on FreeBSD:
pp Socket.getifaddrs
#=> [#<Socket::Ifaddr usbus0 UP,0x10000 LINK[usbus0]>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 LINK[re0 3a:d0:40:9a:fe:e8]>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 10.250.10.18 netmask=255.255.255.? (7 bytes for 16 bytes sockaddr_in) broadcast=10.250.10.255>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 fe80:2::38d0:40ff:fe9a:fee8 netmask=ffff:ffff:ffff:ffff::>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 2001:2e8:408:10::12 netmask=UNSPEC>,
# #<Socket::Ifaddr plip0 POINTOPOINT,MULTICAST,0x800 LINK[plip0]>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST LINK[lo0]>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST fe80:4::1 netmask=ffff:ffff:ffff:ffff::>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST 127.0.0.1 netmask=255.?.?.? (5 bytes for 16 bytes sockaddr_in)>]
# File 'ext/socket/ifaddr.c', line 444
static VALUE socket_s_getifaddrs(VALUE self) { return rsock_getifaddrs(); }
.getnameinfo(sockaddr [, flags]) ⇒ Array
, servicename
Obtains name information for sockaddr.
sockaddr should be one of follows.
-
packed sockaddr string such as .sockaddr_in(80, “127.0.0.1”)
-
3-elements array such as [“AF_INET”, 80, “127.0.0.1”]
-
4-elements array such as [“AF_INET”, 80, ignored, “127.0.0.1”]
flags should be bitwise OR of Socket::NI_* constants.
Note: The last form is compatible with IPSocket#addr and IPSocket#peeraddr.
Socket.getnameinfo(Socket.sockaddr_in(80, "127.0.0.1")) #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "127.0.0.1"]) #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "localhost", "127.0.0.1"]) #=> ["localhost", "www"]
If Addrinfo object is preferred, use Addrinfo#getnameinfo.
# File 'ext/socket/socket.c', line 1211
static VALUE sock_s_getnameinfo(int argc, VALUE *argv, VALUE _) { VALUE sa, af = Qnil, host = Qnil, port = Qnil, flags, tmp; char hbuf[1024], pbuf[1024]; int fl; struct rb_addrinfo *res = NULL; struct addrinfo hints, *r; int error, saved_errno; union_sockaddr ss; struct sockaddr *sap; socklen_t salen; sa = flags = Qnil; rb_scan_args(argc, argv, "11", &sa, &flags); fl = 0; if (!NIL_P(flags)) { fl = NUM2INT(flags); } tmp = rb_check_sockaddr_string_type(sa); if (!NIL_P(tmp)) { sa = tmp; if (sizeof(ss) < (size_t)RSTRING_LEN(sa)) { rb_raise(rb_eTypeError, "sockaddr length too big"); } memcpy(&ss, RSTRING_PTR(sa), RSTRING_LEN(sa)); if (!VALIDATE_SOCKLEN(&ss.addr, RSTRING_LEN(sa))) { rb_raise(rb_eTypeError, "sockaddr size differs - should not happen"); } sap = &ss.addr; salen = RSTRING_SOCKLEN(sa); goto call_nameinfo; } tmp = rb_check_array_type(sa); if (!NIL_P(tmp)) { sa = tmp; MEMZERO(&hints, struct addrinfo, 1); if (RARRAY_LEN(sa) == 3) { af = RARRAY_AREF(sa, 0); port = RARRAY_AREF(sa, 1); host = RARRAY_AREF(sa, 2); } else if (RARRAY_LEN(sa) >= 4) { af = RARRAY_AREF(sa, 0); port = RARRAY_AREF(sa, 1); host = RARRAY_AREF(sa, 3); if (NIL_P(host)) { host = RARRAY_AREF(sa, 2); } else { /* * 4th element holds numeric form, don't resolve. * see rsock_ipaddr(). */ #ifdef AI_NUMERICHOST /* AIX 4.3.3 doesn't have AI_NUMERICHOST. */ hints.ai_flags |= AI_NUMERICHOST; #endif } } else { rb_raise(rb_eArgError, "array size should be 3 or 4, %ld given", RARRAY_LEN(sa)); } hints.ai_socktype = (fl & NI_DGRAM) ? SOCK_DGRAM : SOCK_STREAM; /* af */ hints.ai_family = NIL_P(af) ? PF_UNSPEC : rsock_family_arg(af); res = rsock_getaddrinfo(host, port, &hints, 0); sap = res->ai->ai_addr; salen = res->ai->ai_addrlen; } else { rb_raise(rb_eTypeError, "expecting String or Array"); } call_nameinfo: error = rb_getnameinfo(sap, salen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), fl); if (error) goto error_exit_name; if (res) { for (r = res->ai->ai_next; r; r = r->ai_next) { char hbuf2[1024], pbuf2[1024]; sap = r->ai_addr; salen = r->ai_addrlen; error = rb_getnameinfo(sap, salen, hbuf2, sizeof(hbuf2), pbuf2, sizeof(pbuf2), fl); if (error) goto error_exit_name; if (strcmp(hbuf, hbuf2) != 0|| strcmp(pbuf, pbuf2) != 0) { rb_freeaddrinfo(res); rb_raise(rb_eSocket, "sockaddr resolved to multiple nodename"); } } rb_freeaddrinfo(res); } return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf)); error_exit_name: saved_errno = errno; if (res) rb_freeaddrinfo(res); errno = saved_errno; rsock_raise_socket_error("getnameinfo", error); UNREACHABLE_RETURN(Qnil); }
.getservbyname(service_name) ⇒ port_number
.getservbyname(service_name, protocol_name) ⇒ port_number
port_number
.getservbyname(service_name, protocol_name) ⇒ port_number
Obtains the port number for service_name.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyname("smtp") #=> 25
Socket.getservbyname("shell") #=> 514
Socket.getservbyname("syslog", "udp") #=> 514
# File 'ext/socket/socket.c', line 1057
static VALUE sock_s_getservbyname(int argc, VALUE *argv, VALUE _) { VALUE service, proto; struct servent *sp; long port; const char *servicename, *protoname = "tcp"; rb_scan_args(argc, argv, "11", &service, &proto); StringValue(service); if (!NIL_P(proto)) StringValue(proto); servicename = StringValueCStr(service); if (!NIL_P(proto)) protoname = StringValueCStr(proto); sp = getservbyname(servicename, protoname); if (sp) { port = ntohs(sp->s_port); } else { char *end; port = STRTOUL(servicename, &end, 0); if (*end != '\0') { rb_raise(rb_eSocket, "no such service %s/%s", servicename, protoname); } } return INT2FIX(port); }
.getservbyport(port [, protocol_name]) ⇒ service
Obtains the port number for port.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyport(80) #=> "www"
Socket.getservbyport(514, "tcp") #=> "shell"
Socket.getservbyport(514, "udp") #=> "syslog"
# File 'ext/socket/socket.c', line 1098
static VALUE sock_s_getservbyport(int argc, VALUE *argv, VALUE _) { VALUE port, proto; struct servent *sp; long portnum; const char *protoname = "tcp"; rb_scan_args(argc, argv, "11", &port, &proto); portnum = NUM2LONG(port); if (portnum != (uint16_t)portnum) { const char *s = portnum > 0 ? "big" : "small"; rb_raise(rb_eRangeError, "integer %ld too %s to convert into `int16_t'", portnum, s); } if (!NIL_P(proto)) protoname = StringValueCStr(proto); sp = getservbyport((int)htons((uint16_t)portnum), protoname); if (!sp) { rb_raise(rb_eSocket, "no such service for port %d/%s", (int)portnum, protoname); } return rb_str_new2(sp->s_name); }
.ip_address_list ⇒ Array
Returns local IP addresses as an array.
The array contains ::Addrinfo
objects.
pp Socket.ip_address_list
#=> [#<Addrinfo: 127.0.0.1>,
#<Addrinfo: 192.168.0.128>,
#<Addrinfo: ::1>,
#...]
# File 'ext/socket/socket.c', line 1548
static VALUE socket_s_ip_address_list(VALUE self) { #if defined(HAVE_GETIFADDRS) struct ifaddrs *ifp = NULL; struct ifaddrs *p; int ret; VALUE list; ret = getifaddrs(&ifp); if (ret == -1) { rb_sys_fail("getifaddrs"); } list = rb_ary_new(); for (p = ifp; p; p = p->ifa_next) { if (p->ifa_addr != NULL && IS_IP_FAMILY(p->ifa_addr->sa_family)) { struct sockaddr *addr = p->ifa_addr; #if defined(AF_INET6) && defined(__sun) /* * OpenIndiana SunOS 5.11 getifaddrs() returns IPv6 link local * address with sin6_scope_id == 0. * So fill it from the interface name (ifa_name). */ struct sockaddr_in6 addr6; if (addr->sa_family == AF_INET6) { socklen_t len = (socklen_t)sizeof(struct sockaddr_in6); memcpy(&addr6, addr, len); addr = (struct sockaddr *)&addr6; if (IN6_IS_ADDR_LINKLOCAL(&addr6.sin6_addr) && addr6.sin6_scope_id == 0) { unsigned int ifindex = if_nametoindex(p->ifa_name); if (ifindex != 0) { addr6.sin6_scope_id = ifindex; } } } #endif rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr))); } } freeifaddrs(ifp); return list; #elif defined(SIOCGLIFCONF) && defined(SIOCGLIFNUM) && !defined(__hpux) /* Solaris if_tcp(7P) */ /* HP-UX has SIOCGLIFCONF too. But it uses different struct */ int fd = -1; int ret; struct lifnum ln; struct lifconf lc; const char *reason = NULL; int save_errno; int i; VALUE list = Qnil; lc.lifc_buf = NULL; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd == -1) rb_sys_fail("socket(2)"); memset(&ln, 0, sizeof(ln)); ln.lifn_family = AF_UNSPEC; ret = ioctl(fd, SIOCGLIFNUM, &ln); if (ret == -1) { reason = "SIOCGLIFNUM"; goto finish; } memset(&lc, 0, sizeof(lc)); lc.lifc_family = AF_UNSPEC; lc.lifc_flags = 0; lc.lifc_len = sizeof(struct lifreq) * ln.lifn_count; lc.lifc_req = xmalloc(lc.lifc_len); ret = ioctl(fd, SIOCGLIFCONF, &lc); if (ret == -1) { reason = "SIOCGLIFCONF"; goto finish; } list = rb_ary_new(); for (i = 0; i < ln.lifn_count; i++) { struct lifreq *req = &lc.lifc_req[i]; if (IS_IP_FAMILY(req->lifr_addr.ss_family)) { if (req->lifr_addr.ss_family == AF_INET6 && IN6_IS_ADDR_LINKLOCAL(&((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_addr) && ((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id == 0) { struct lifreq req2; memcpy(req2.lifr_name, req->lifr_name, LIFNAMSIZ); ret = ioctl(fd, SIOCGLIFINDEX, &req2); if (ret == -1) { reason = "SIOCGLIFINDEX"; goto finish; } ((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id = req2.lifr_index; } rb_ary_push(list, sockaddr_obj((struct sockaddr *)&req->lifr_addr, req->lifr_addrlen)); } } finish: save_errno = errno; if (lc.lifc_buf != NULL) xfree(lc.lifc_req); if (fd != -1) close(fd); errno = save_errno; if (reason) rb_syserr_fail(save_errno, reason); return list; #elif defined(SIOCGIFCONF) int fd = -1; int ret; #define EXTRA_SPACE ((int)(sizeof(struct ifconf) + sizeof(union_sockaddr))) char initbuf[4096+EXTRA_SPACE]; char *buf = initbuf; int bufsize; struct ifconf conf; struct ifreq *req; VALUE list = Qnil; const char *reason = NULL; int save_errno; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd == -1) rb_sys_fail("socket(2)"); bufsize = sizeof(initbuf); buf = initbuf; retry: conf.ifc_len = bufsize; conf.ifc_req = (struct ifreq *)buf; /* fprintf(stderr, "bufsize: %d\n", bufsize); */ ret = ioctl(fd, SIOCGIFCONF, &conf); if (ret == -1) { reason = "SIOCGIFCONF"; goto finish; } /* fprintf(stderr, "conf.ifc_len: %d\n", conf.ifc_len); */ if (bufsize - EXTRA_SPACE < conf.ifc_len) { if (bufsize < conf.ifc_len) { /* NetBSD returns required size for all interfaces. */ bufsize = conf.ifc_len + EXTRA_SPACE; } else { bufsize = bufsize << 1; } if (buf == initbuf) buf = NULL; buf = xrealloc(buf, bufsize); goto retry; } close(fd); fd = -1; list = rb_ary_new(); req = conf.ifc_req; while ((char*)req < (char*)conf.ifc_req + conf.ifc_len) { struct sockaddr *addr = &req->ifr_addr; if (IS_IP_FAMILY(addr->sa_family)) { rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr))); } #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN # ifndef _SIZEOF_ADDR_IFREQ # define _SIZEOF_ADDR_IFREQ(r) \ (sizeof(struct ifreq) + \ (sizeof(struct sockaddr) < (r).ifr_addr.sa_len ? \ (r).ifr_addr.sa_len - sizeof(struct sockaddr) : \ 0)) # endif req = (struct ifreq *)((char*)req + _SIZEOF_ADDR_IFREQ(*req)); #else req = (struct ifreq *)((char*)req + sizeof(struct ifreq)); #endif } finish: save_errno = errno; if (buf != initbuf) xfree(buf); if (fd != -1) close(fd); errno = save_errno; if (reason) rb_syserr_fail(save_errno, reason); return list; #undef EXTRA_SPACE #elif defined(_WIN32) typedef struct ip_adapter_unicast_address_st { unsigned LONG_LONG dummy0; struct ip_adapter_unicast_address_st *Next; struct { struct sockaddr *lpSockaddr; int iSockaddrLength; } Address; int dummy1; int dummy2; int dummy3; long dummy4; long dummy5; long dummy6; } ip_adapter_unicast_address_t; typedef struct ip_adapter_anycast_address_st { unsigned LONG_LONG dummy0; struct ip_adapter_anycast_address_st *Next; struct { struct sockaddr *lpSockaddr; int iSockaddrLength; } Address; } ip_adapter_anycast_address_t; typedef struct ip_adapter_addresses_st { unsigned LONG_LONG dummy0; struct ip_adapter_addresses_st *Next; void *dummy1; ip_adapter_unicast_address_t *FirstUnicastAddress; ip_adapter_anycast_address_t *FirstAnycastAddress; void *dummy2; void *dummy3; void *dummy4; void *dummy5; void *dummy6; BYTE dummy7[8]; DWORD dummy8; DWORD dummy9; DWORD dummy10; DWORD IfType; int OperStatus; DWORD dummy12; DWORD dummy13[16]; void *dummy14; } ip_adapter_addresses_t; typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG, ULONG, PVOID, ip_adapter_addresses_t *, PULONG); HMODULE h; GetAdaptersAddresses_t pGetAdaptersAddresses; ULONG len; DWORD ret; ip_adapter_addresses_t *adapters; VALUE list; h = LoadLibrary("iphlpapi.dll"); if (!h) rb_notimplement(); pGetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress(h, "GetAdaptersAddresses"); if (!pGetAdaptersAddresses) { FreeLibrary(h); rb_notimplement(); } ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, NULL, &len); if (ret != ERROR_SUCCESS && ret != ERROR_BUFFER_OVERFLOW) { errno = rb_w32_map_errno(ret); FreeLibrary(h); rb_sys_fail("GetAdaptersAddresses"); } adapters = (ip_adapter_addresses_t *)ALLOCA_N(BYTE, len); ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, adapters, &len); if (ret != ERROR_SUCCESS) { errno = rb_w32_map_errno(ret); FreeLibrary(h); rb_sys_fail("GetAdaptersAddresses"); } list = rb_ary_new(); for (; adapters; adapters = adapters->Next) { ip_adapter_unicast_address_t *uni; ip_adapter_anycast_address_t *any; if (adapters->OperStatus != 1) /* 1 means IfOperStatusUp */ continue; for (uni = adapters->FirstUnicastAddress; uni; uni = uni->Next) { #ifndef INET6 if (uni->Address.lpSockaddr->sa_family == AF_INET) #else if (IS_IP_FAMILY(uni->Address.lpSockaddr->sa_family)) #endif rb_ary_push(list, sockaddr_obj(uni->Address.lpSockaddr, uni->Address.iSockaddrLength)); } for (any = adapters->FirstAnycastAddress; any; any = any->Next) { #ifndef INET6 if (any->Address.lpSockaddr->sa_family == AF_INET) #else if (IS_IP_FAMILY(any->Address.lpSockaddr->sa_family)) #endif rb_ary_push(list, sockaddr_obj(any->Address.lpSockaddr, any->Address.iSockaddrLength)); } } FreeLibrary(h); return list; #endif }
.ip_sockets_port0(ai_list, reuseaddr)
# File 'ext/socket/lib/socket.rb', line 669
def self.ip_sockets_port0(ai_list, reuseaddr) sockets = [] begin sockets.clear port = nil ai_list.each {|ai| begin s = Socket.new(ai.pfamily, ai.socktype, ai.protocol) rescue SystemCallError next end sockets << s s.ipv6only! if ai.ipv6? if reuseaddr s.setsockopt(:SOCKET, :REUSEADDR, 1) end unless port s.bind(ai) port = s.local_address.ip_port else s.bind(ai.family_addrinfo(ai.ip_address, port)) end } rescue Errno::EADDRINUSE sockets.each(&:close) retry rescue Exception sockets.each(&:close) raise end sockets end
.sockaddr_in(port, host) ⇒ sockaddr
.pack_sockaddr_in(port, host) ⇒ sockaddr
sockaddr
.pack_sockaddr_in(port, host) ⇒ sockaddr
Alias for .sockaddr_in.
.sockaddr_un(path) ⇒ sockaddr
.pack_sockaddr_un(path) ⇒ sockaddr
sockaddr
.pack_sockaddr_un(path) ⇒ sockaddr
Alias for .sockaddr_un.
.pair(domain, type, protocol) ⇒ Socket
.socketpair(domain, type, protocol) ⇒ Socket
Also known as: .socketpair
Socket
.socketpair(domain, type, protocol) ⇒ Socket
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET
, :INET6
, :UNIX
, etc.
socktype should be a socket type such as: :STREAM
, :DGRAM
, :RAW
, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0)
s1.send "a", 0
s1.send "b", 0
s1.close
p s2.recv(10) #=> "ab"
p s2.recv(10) #=> ""
p s2.recv(10) #=> ""
s1, s2 = Socket.pair(:UNIX, :DGRAM, 0)
s1.send "a", 0
s1.send "b", 0
p s2.recv(10) #=> "a"
p s2.recv(10) #=> "b"
# File 'ext/socket/socket.c', line 243
VALUE rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass) { VALUE domain, type, protocol; int d, t, p, sp[2]; int ret; VALUE s1, s2, r; rb_scan_args(argc, argv, "21", &domain, &type, &protocol); if (NIL_P(protocol)) protocol = INT2FIX(0); setup_domain_and_type(domain, &d, type, &t); p = NUM2INT(protocol); ret = rsock_socketpair(d, t, p, sp); if (ret < 0) { rb_sys_fail("socketpair(2)"); } s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]); s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]); r = rb_assoc_new(s1, s2); if (rb_block_given_p()) { return rb_ensure(pair_yield, r, io_close, s1); } return r; }
.sockaddr_in(port, host) ⇒ sockaddr
.pack_sockaddr_in(port, host) ⇒ sockaddr
Also known as: .pack_sockaddr_in
sockaddr
.pack_sockaddr_in(port, host) ⇒ sockaddr
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
Socket.sockaddr_in(80, "127.0.0.1")
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
Socket.sockaddr_in(80, "::1")
#=> "\n\x00\x00P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00"
# File 'ext/socket/socket.c', line 1331
static VALUE sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host) { struct rb_addrinfo *res = rsock_addrinfo(host, port, AF_UNSPEC, 0, 0); VALUE addr = rb_str_new((char*)res->ai->ai_addr, res->ai->ai_addrlen); rb_freeaddrinfo(res); return addr; }
.sockaddr_un(path) ⇒ sockaddr
.pack_sockaddr_un(path) ⇒ sockaddr
Also known as: .pack_sockaddr_un
sockaddr
.pack_sockaddr_un(path) ⇒ sockaddr
Packs path as an AF_UNIX sockaddr string.
Socket.sockaddr_un("/tmp/sock") #=> "\x01\x00/tmp/sock\x00\x00..."
# File 'ext/socket/socket.c', line 1394
static VALUE sock_s_pack_sockaddr_un(VALUE self, VALUE path) { struct sockaddr_un sockaddr; VALUE addr; StringValue(path); INIT_SOCKADDR_UN(&sockaddr, sizeof(struct sockaddr_un)); if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) { rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)", (size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path)); } memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path)); addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path)); return addr; }
.pair(domain, type, protocol) ⇒ Socket
.socketpair(domain, type, protocol) ⇒ Socket
Socket
.socketpair(domain, type, protocol) ⇒ Socket
Alias for .pair.
.tcp(host, port, local_host = nil, local_port = nil, [opts]) {|socket| ... }
.tcp(host, port, local_host = nil, local_port = nil, [opts])
creates a new socket object connected to host:port using TCP/IP.
If local_host:local_port is given, the socket is bound to it.
The optional last argument opts is options represented by a hash. opts may have following options:
- :connect_timeout
-
specify the timeout in seconds.
- :resolv_timeout
-
specify the name resolution timeout in seconds.
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
Socket.tcp("www.ruby-lang.org", 80) {|sock|
sock.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
sock.close_write
puts sock.read
}
# File 'ext/socket/lib/socket.rb', line 623
def self.tcp(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil) # :yield: socket last_error = nil ret = nil local_addr_list = nil if local_host != nil || local_port != nil local_addr_list = Addrinfo.getaddrinfo(local_host, local_port, nil, :STREAM, nil) end Addrinfo.foreach(host, port, nil, :STREAM, timeout: resolv_timeout) {|ai| if local_addr_list local_addr = local_addr_list.find {|local_ai| local_ai.afamily == ai.afamily } next unless local_addr else local_addr = nil end begin sock = local_addr ? ai.connect_from(local_addr, timeout: connect_timeout) : ai.connect(timeout: connect_timeout) rescue SystemCallError last_error = $! next end ret = sock break } unless ret if last_error raise last_error else raise SocketError, "no appropriate local address" end end if block_given? begin yield ret ensure ret.close end else ret end end
.tcp_server_loop(host = nil, port, &b)
creates a TCP/IP server on port and calls the block for each connection accepted. The block is called with a socket and a client_address as an ::Addrinfo
object.
If host is specified, it is used with port to determine the server addresses.
The socket is not closed when the block returns. So application should close it explicitly.
This method calls the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Note that Addrinfo.getaddrinfo is used to determine the server socket addresses. When Addrinfo.getaddrinfo returns two or more addresses, IPv4 and IPv6 address for example, all of them are used. tcp_server_loop
succeeds if one socket can be used at least.
# Sequential echo server.
# It services only one client at a time.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
# Threaded echo server
# It services multiple clients at a time.
# Note that it may accept connections too much.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
Thread.new {
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
}
# File 'ext/socket/lib/socket.rb', line 856
def self.tcp_server_loop(host=nil, port, &b) # :yield: socket, client_addrinfo tcp_server_sockets(host, port) {|sockets| accept_loop(sockets, &b) } end
.tcp_server_sockets(host = nil, port)
creates TCP/IP server sockets for host and port. host is optional.
If no block given, it returns an array of listening sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The socket is closed when this method returns.
If port is 0, actual port number is chosen dynamically. However all sockets in the result has same port number.
# tcp_server_sockets returns two sockets.
sockets = Socket.tcp_server_sockets(1296)
p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]
# The sockets contains IPv6 and IPv4 sockets.
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:1296 TCP>
# #<Addrinfo: 0.0.0.0:1296 TCP>
# IPv6 and IPv4 socket has same port number, 53114, even if it is chosen dynamically.
sockets = Socket.tcp_server_sockets(0)
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:53114 TCP>
# #<Addrinfo: 0.0.0.0:53114 TCP>
# The block is called with the sockets.
Socket.tcp_server_sockets(0) {|sockets|
p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]
}
# File 'ext/socket/lib/socket.rb', line 756
def self.tcp_server_sockets(host=nil, port) if port == 0 sockets = tcp_server_sockets_port0(host) else last_error = nil sockets = [] begin Addrinfo.foreach(host, port, nil, :STREAM, nil, Socket::AI_PASSIVE) {|ai| begin s = ai.listen rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end rescue Exception sockets.each(&:close) raise end end if block_given? begin yield sockets ensure sockets.each(&:close) end else sockets end end
.tcp_server_sockets_port0(host)
# File 'ext/socket/lib/socket.rb', line 705
def self.tcp_server_sockets_port0(host) ai_list = Addrinfo.getaddrinfo(host, 0, nil, :STREAM, nil, Socket::AI_PASSIVE) sockets = ip_sockets_port0(ai_list, true) begin sockets.each {|s| s.listen(Socket::SOMAXCONN) } rescue Exception sockets.each(&:close) raise end sockets end
.udp_server_loop(port) {|msg, msg_src| ... }
.udp_server_loop(host, port) {|msg, msg_src| ... }
creates a UDP/IP server on port and calls the block for each message arrived. The block is called with the message and its source information.
This method allocates sockets internally using port. If host is specified, it is used conjunction with port to determine the server addresses.
The msg is a string.
The msg_src is a ::Socket::UDPSource
object. It is used for reply.
# UDP/IP echo server.
Socket.udp_server_loop(9261) {|msg, msg_src|
msg_src.reply msg
}
# File 'ext/socket/lib/socket.rb', line 1026
def self.udp_server_loop(host=nil, port, &b) # :yield: message, message_source udp_server_sockets(host, port) {|sockets| udp_server_loop_on(sockets, &b) } end
.udp_server_loop_on(sockets) {|msg, msg_src| ... }
Run UDP/IP server loop on the given sockets.
The return value of .udp_server_sockets is appropriate for the argument.
It calls the block for each message received.
# File 'ext/socket/lib/socket.rb', line 999
def self.udp_server_loop_on(sockets, &b) # :yield: msg, msg_src loop { readable, _, _ = IO.select(sockets) udp_server_recv(readable, &b) } end
.udp_server_recv(sockets) {|msg, msg_src| ... }
Receive UDP/IP packets from the given sockets. For each packet received, the block is called.
The block receives msg and msg_src. msg is a string which is the payload of the received packet. msg_src is a ::Socket::UDPSource
object which is used for reply.
.udp_server_loop can be implemented using this method as follows.
udp_server_sockets(host, port) {|sockets|
loop {
readable, _, _ = IO.select(sockets)
udp_server_recv(readable) {|msg, msg_src| ... }
}
}
# File 'ext/socket/lib/socket.rb', line 972
def self.udp_server_recv(sockets) sockets.each {|r| msg, sender_addrinfo, _, *controls = r.recvmsg_nonblock(exception: false) next if msg == :wait_readable ai = r.local_address if ai.ipv6? and pktinfo = controls.find {|c| c.cmsg_is?(:IPV6, :PKTINFO) } ai = Addrinfo.udp(pktinfo.ipv6_pktinfo_addr.ip_address, ai.ip_port) yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.sendmsg reply_msg, 0, sender_addrinfo, pktinfo } else yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.send reply_msg, 0, sender_addrinfo } end } end
.udp_server_sockets([host, ] port)
Creates UDP/IP sockets for a UDP server.
If no block given, it returns an array of sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The sockets are closed when this method returns.
If port is zero, some port is chosen. But the chosen port is used for the all sockets.
# UDP/IP echo server
Socket.udp_server_sockets(0) {|sockets|
p sockets.first.local_address.ip_port #=> 32963
Socket.udp_server_loop_on(sockets) {|msg, msg_src|
msg_src.reply msg
}
}
# File 'ext/socket/lib/socket.rb', line 884
def self.udp_server_sockets(host=nil, port) last_error = nil sockets = [] ipv6_recvpktinfo = nil if defined? Socket::AncillaryData if defined? Socket::IPV6_RECVPKTINFO # RFC 3542 ipv6_recvpktinfo = Socket::IPV6_RECVPKTINFO elsif defined? Socket::IPV6_PKTINFO # RFC 2292 ipv6_recvpktinfo = Socket::IPV6_PKTINFO end end local_addrs = Socket.ip_address_list ip_list = [] Addrinfo.foreach(host, port, nil, :DGRAM, nil, Socket::AI_PASSIVE) {|ai| if ai.ipv4? && ai.ip_address == "0.0.0.0" local_addrs.each {|a| next unless a.ipv4? ip_list << Addrinfo.new(a.to_sockaddr, :INET, :DGRAM, 0); } elsif ai.ipv6? && ai.ip_address == "::" && !ipv6_recvpktinfo local_addrs.each {|a| next unless a.ipv6? ip_list << Addrinfo.new(a.to_sockaddr, :INET6, :DGRAM, 0); } else ip_list << ai end } ip_list.uniq!(&:to_sockaddr) if port == 0 sockets = ip_sockets_port0(ip_list, false) else ip_list.each {|ip| ai = Addrinfo.udp(ip.ip_address, port) begin s = ai.bind rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end end sockets.each {|s| ai = s.local_address if ipv6_recvpktinfo && ai.ipv6? && ai.ip_address == "::" s.setsockopt(:IPV6, ipv6_recvpktinfo, 1) end } if block_given? begin yield sockets ensure sockets.each(&:close) if sockets end else sockets end end
.unix(path)
creates a new socket connected to path using UNIX socket socket.
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
# talk to /tmp/sock socket.
Socket.unix("/tmp/sock") {|sock|
t = Thread.new { IO.copy_stream(sock, STDOUT) }
IO.copy_stream(STDIN, sock)
t.join
}
.unix_server_loop(path, &b)
creates a UNIX socket server on path. It calls the block for each socket accepted.
If host is specified, it is used with port to determine the server ports.
The socket is not closed when the block returns. So application should close it.
This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.
# Sequential echo server.
# It services only one client at a time.
Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo|
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
# File 'ext/socket/lib/socket.rb', line 1163
def self.unix_server_loop(path, &b) # :yield: socket, client_addrinfo unix_server_socket(path) {|serv| accept_loop(serv, &b) } end
.unix_server_socket(path)
creates a UNIX server socket on path
If no block given, it returns a listening socket.
If a block is given, it is called with the socket and the block value is returned. When the block exits, the socket is closed and the socket file is removed.
socket = Socket.unix_server_socket("/tmp/s")
p socket #=> #<Socket:fd 3>
p socket.local_address #=> #<Addrinfo: /tmp/s SOCK_STREAM>
Socket.unix_server_socket("/tmp/sock") {|s|
p s #=> #<Socket:fd 3>
p s.local_address #=> # #<Addrinfo: /tmp/sock SOCK_STREAM>
}
# File 'ext/socket/lib/socket.rb', line 1106
def self.unix_server_socket(path) unless unix_socket_abstract_name?(path) begin st = File.lstat(path) rescue Errno::ENOENT end if st&.socket? && st.owned? File.unlink path end end s = Addrinfo.unix(path).listen if block_given? begin yield s ensure s.close unless unix_socket_abstract_name?(path) File.unlink path end end else s end end
.unix_socket_abstract_name?(path) ⇒ Boolean
(private)
# File 'ext/socket/lib/socket.rb', line 1134
def unix_socket_abstract_name?(path) /linux/ =~ RUBY_PLATFORM && /\A(\0|\z)/ =~ path end
.unpack_sockaddr_in(sockaddr) ⇒ Array
, ip_address
Unpacks sockaddr into port and ip_address.
sockaddr should be a string or an addrinfo for AF_INET/AF_INET6.
sockaddr = Socket.sockaddr_in(80, "127.0.0.1")
p sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
p Socket.unpack_sockaddr_in(sockaddr) #=> [80, "127.0.0.1"]
# File 'ext/socket/socket.c', line 1355
static VALUE sock_s_unpack_sockaddr_in(VALUE self, VALUE addr) { struct sockaddr_in * sockaddr; VALUE host; sockaddr = (struct sockaddr_in*)SockAddrStringValuePtr(addr); if (RSTRING_LEN(addr) < (char*)&((struct sockaddr *)sockaddr)->sa_family + sizeof(((struct sockaddr *)sockaddr)->sa_family) - (char*)sockaddr) rb_raise(rb_eArgError, "too short sockaddr"); if (((struct sockaddr *)sockaddr)->sa_family != AF_INET #ifdef INET6 && ((struct sockaddr *)sockaddr)->sa_family != AF_INET6 #endif ) { #ifdef INET6 rb_raise(rb_eArgError, "not an AF_INET/AF_INET6 sockaddr"); #else rb_raise(rb_eArgError, "not an AF_INET sockaddr"); #endif } host = rsock_make_ipaddr((struct sockaddr*)sockaddr, RSTRING_SOCKLEN(addr)); return rb_assoc_new(INT2NUM(ntohs(sockaddr->sin_port)), host); }
.unpack_sockaddr_un(sockaddr) ⇒ path
Unpacks sockaddr into path.
sockaddr should be a string or an addrinfo for AF_UNIX.
sockaddr = Socket.sockaddr_un("/tmp/sock")
p Socket.unpack_sockaddr_un(sockaddr) #=> "/tmp/sock"
# File 'ext/socket/socket.c', line 1424
static VALUE sock_s_unpack_sockaddr_un(VALUE self, VALUE addr) { struct sockaddr_un * sockaddr; VALUE path; sockaddr = (struct sockaddr_un*)SockAddrStringValuePtr(addr); if (RSTRING_LEN(addr) < (char*)&((struct sockaddr *)sockaddr)->sa_family + sizeof(((struct sockaddr *)sockaddr)->sa_family) - (char*)sockaddr) rb_raise(rb_eArgError, "too short sockaddr"); if (((struct sockaddr *)sockaddr)->sa_family != AF_UNIX) { rb_raise(rb_eArgError, "not an AF_UNIX sockaddr"); } if (sizeof(struct sockaddr_un) < (size_t)RSTRING_LEN(addr)) { rb_raise(rb_eTypeError, "too long sockaddr_un - %ld longer than %d", RSTRING_LEN(addr), (int)sizeof(struct sockaddr_un)); } path = rsock_unixpath_str(sockaddr, RSTRING_SOCKLEN(addr)); return path; }
Instance Method Details
#__accept_nonblock(ex) (private)
# File 'ext/socket/socket.c', line 764
static VALUE sock_accept_nonblock(VALUE sock, VALUE ex) { rb_io_t *fptr; VALUE sock2; union_sockaddr buf; struct sockaddr *addr = &buf.addr; socklen_t len = (socklen_t)sizeof buf; GetOpenFile(sock, fptr); sock2 = rsock_s_accept_nonblock(rb_cSocket, ex, fptr, addr, &len); if (SYMBOL_P(sock2)) /* :wait_readable */ return sock2; return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, &buf.addr, len)); }
#__connect_nonblock(addr, ex) (private)
# File 'ext/socket/socket.c', line 405
static VALUE sock_connect_nonblock(VALUE sock, VALUE addr, VALUE ex) { VALUE rai; rb_io_t *fptr; int n; SockAddrStringValueWithAddrinfo(addr, rai); addr = rb_str_new4(addr); GetOpenFile(sock, fptr); rb_io_set_nonblock(fptr); n = connect(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr)); if (n < 0) { int e = errno; if (e == EINPROGRESS) { if (ex == Qfalse) { return sym_wait_writable; } rb_readwrite_syserr_fail(RB_IO_WAIT_WRITABLE, e, "connect(2) would block"); } if (e == EISCONN) { if (ex == Qfalse) { return INT2FIX(0); } } rsock_syserr_fail_raddrinfo_or_sockaddr(e, "connect(2)", addr, rai); } return INT2FIX(n); }
#__recvfrom_nonblock(len, flg, str, ex) (private)
# File 'ext/socket/socket.c', line 732
static VALUE sock_recvfrom_nonblock(VALUE sock, VALUE len, VALUE flg, VALUE str, VALUE ex) { return rsock_s_recvfrom_nonblock(sock, len, flg, str, ex, RECV_SOCKET); }
#accept ⇒ Socket
, client_addrinfo
Accepts a next connection. Returns a new Socket
object and ::Addrinfo
object.
serv = Socket.new(:INET, :STREAM, 0)
serv.listen(5)
c = Socket.new(:INET, :STREAM, 0)
c.connect(serv.connect_address)
p serv.accept #=> [#<Socket:fd 6>, #<Addrinfo: 127.0.0.1:48555 TCP>]
# File 'ext/socket/socket.c', line 752
static VALUE sock_accept(VALUE server) { union_sockaddr buffer; socklen_t length = (socklen_t)sizeof(buffer); VALUE peer = rsock_s_accept(rb_cSocket, server, &buffer.addr, &length); return rb_assoc_new(peer, rsock_io_socket_addrinfo(peer, &buffer.addr, length)); }
#accept_nonblock([options]) ⇒ Socket
, client_addrinfo
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an ::Addrinfo
, client_addrinfo.
Example
# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
begin # emulate blocking accept
client_socket, client_addrinfo = socket.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
IO.select([socket])
retry
end
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close
# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close
Refer to #accept for the exceptions that may be thrown if the call to accept_nonblock fails.
accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK
.
If the exception is Errno::EWOULDBLOCK
, Errno::EAGAIN
, Errno::ECONNABORTED
or Errno::EPROTO
, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
See
# File 'ext/socket/lib/socket.rb', line 592
def accept_nonblock(exception: true) __accept_nonblock(exception) end
#bind(local_sockaddr) ⇒ 0
Binds to the given local address.
Parameter
-
local_sockaddr
- thestruct
sockaddr contained in a string or an::Addrinfo
object
Example
require 'socket'
# use Addrinfo
socket = Socket.new(:INET, :STREAM, 0)
socket.bind(Addrinfo.tcp("127.0.0.1", 2222))
p socket.local_address #=> #<Addrinfo: 127.0.0.1:2222 TCP>
# use struct sockaddr
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
Unix-based Exceptions
On unix-based based systems the following system exceptions may be raised if the call to bind fails:
-
Errno::EACCES
- the specified sockaddr is protected and the current user does not have permission to bind to it -
Errno::EADDRINUSE
- the specified sockaddr is already in use -
Errno::EADDRNOTAVAIL
- the specified sockaddr is not available from the local machine -
Errno::EAFNOSUPPORT
- the specified sockaddr is not a valid address for the family of the callingsocket
-
Errno::EBADF
- the sockaddr specified is not a valid file descriptor -
Errno::EFAULT
- the sockaddr argument cannot be accessed -
Errno::EINVAL
- thesocket
is already bound to an address, and the protocol does not support binding to the new sockaddr or thesocket
has been shut down. -
Errno::EINVAL
- the address length is not a valid length for the address family -
Errno::ENAMETOOLONG
- the pathname resolved had a length which exceeded PATH_MAX -
Errno::ENOBUFS
- no buffer space is available -
Errno::ENOSR
- there were insufficient STREAMS resources available to complete the operation -
Errno::ENOTSOCK
- thesocket
does not refer to a socket -
Errno::EOPNOTSUPP
- the socket type of thesocket
does not support binding to an address
On unix-based based systems if the address family of the calling socket
is AF_UNIX the follow exceptions may be raised if the call to bind fails:
-
Errno::EACCES
- search permission is denied for a component of the prefix path or write access to thesocket
is denied -
Errno::EDESTADDRREQ
- the sockaddr argument is a null pointer -
Errno::EISDIR
- same asErrno::EDESTADDRREQ
-
Errno::EIO
- an i/o error occurred -
Errno::ELOOP
- too many symbolic links were encountered in translating the pathname in sockaddr -
Errno::ENAMETOOLLONG
- a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters -
Errno::ENOENT
- a component of the pathname does not name an existing file or the pathname is an empty string -
Errno::ENOTDIR
- a component of the path prefix of the pathname in sockaddr is not a directory -
Errno::EROFS
- the name would reside on a read only filesystem
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to bind fails:
-
Errno::ENETDOWN– the network is down
-
Errno::EACCES
- the attempt to connect the datagram socket to the broadcast address failed -
Errno::EADDRINUSE
- the socket’s local address is already in use -
Errno::EADDRNOTAVAIL
- the specified address is not a valid address for this computer -
Errno::EFAULT
- the socket’s internal address or address length parameter is too small or is not a valid part of the user space addressed -
Errno::EINVAL
- thesocket
is already bound to an address -
Errno::ENOBUFS
- no buffer space is available -
Errno::ENOTSOCK
- thesocket
argument does not refer to a socket
See
-
bind manual pages on unix-based systems
-
bind function in Microsoft’s Winsock functions reference
# File 'ext/socket/socket.c', line 522
static VALUE sock_bind(VALUE sock, VALUE addr) { VALUE rai; rb_io_t *fptr; SockAddrStringValueWithAddrinfo(addr, rai); GetOpenFile(sock, fptr); if (bind(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr)) < 0) rsock_sys_fail_raddrinfo_or_sockaddr("bind(2)", addr, rai); return INT2FIX(0); }
#connect(remote_sockaddr) ⇒ 0
Requests a connection to be made on the given remote_sockaddr
. Returns 0 if successful, otherwise an exception is raised.
Parameter
-
remote_sockaddr
- thestruct
sockaddr contained in a string or::Addrinfo
object
Example:
# Pull down Google's web page
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 80, 'www.google.com' )
socket.connect( sockaddr )
socket.write( "GET / HTTP/1.0\r\n\r\n" )
results = socket.read
Unix-based Exceptions
On unix-based systems the following system exceptions may be raised if the call to connect fails:
-
Errno::EACCES
- search permission is denied for a component of the prefix path or write access to thesocket
is denied -
Errno::EADDRINUSE
- the sockaddr is already in use -
Errno::EADDRNOTAVAIL
- the specified sockaddr is not available from the local machine -
Errno::EAFNOSUPPORT
- the specified sockaddr is not a valid address for the address family of the specifiedsocket
-
Errno::EALREADY
- a connection is already in progress for the specified socket -
Errno::EBADF
- thesocket
is not a valid file descriptor -
Errno::ECONNREFUSED
- the target sockaddr was not listening for connections refused the connection request -
Errno::ECONNRESET
- the remote host reset the connection request -
Errno::EFAULT
- the sockaddr cannot be accessed -
Errno::EHOSTUNREACH
- the destination host cannot be reached (probably because the host is down or a remote router cannot reach it) -
Errno::EINPROGRESS
- the O_NONBLOCK is set for thesocket
and the connection cannot be immediately established; the connection will be established asynchronously -
Errno::EINTR
- the attempt to establish the connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously -
Errno::EISCONN
- the specifiedsocket
is already connected -
Errno::EINVAL
- the address length used for the sockaddr is not a valid length for the address family or there is an invalid family in sockaddr -
Errno::ENAMETOOLONG
- the pathname resolved had a length which exceeded PATH_MAX -
Errno::ENETDOWN
- the local interface used to reach the destination is down -
Errno::ENETUNREACH
- no route to the network is present -
Errno::ENOBUFS
- no buffer space is available -
Errno::ENOSR
- there were insufficient STREAMS resources available to complete the operation -
Errno::ENOTSOCK
- thesocket
argument does not refer to a socket -
Errno::EOPNOTSUPP
- the callingsocket
is listening and cannot be connected -
Errno::EPROTOTYPE
- the sockaddr has a different type than the socket bound to the specified peer address -
Errno::ETIMEDOUT
- the attempt to connect timed out before a connection was made.
On unix-based systems if the address family of the calling socket
is AF_UNIX the follow exceptions may be raised if the call to connect fails:
-
Errno::EIO
- an i/o error occurred while reading from or writing to the file system -
Errno::ELOOP
- too many symbolic links were encountered in translating the pathname in sockaddr -
Errno::ENAMETOOLLONG
- a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters -
Errno::ENOENT
- a component of the pathname does not name an existing file or the pathname is an empty string -
Errno::ENOTDIR
- a component of the path prefix of the pathname in sockaddr is not a directory
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to connect fails:
-
Errno::ENETDOWN
- the network is down -
Errno::EADDRINUSE
- the socket’s local address is already in use -
Errno::EINTR
- the socket was cancelled -
Errno::EINPROGRESS
- a blocking socket is in progress or the service provider is still processing a callback function. Or a nonblocking connect call is in progress on thesocket
. -
Errno::EALREADY
- seeErrno::EINVAL
-
Errno::EADDRNOTAVAIL
- the remote address is not a valid address, such as ADDR_ANY TODO check ADDRANY TO INADDR_ANY -
Errno::EAFNOSUPPORT
- addresses in the specified family cannot be used with with thissocket
-
Errno::ECONNREFUSED
- the target sockaddr was not listening for connections refused the connection request -
Errno::EFAULT
- the socket’s internal address or address length parameter is too small or is not a valid part of the user space address -
Errno::EINVAL
- thesocket
is a listening socket -
Errno::EISCONN
- thesocket
is already connected -
Errno::ENETUNREACH
- the network cannot be reached from this host at this time -
Errno::EHOSTUNREACH
- no route to the network is present -
Errno::ENOBUFS
- no buffer space is available -
Errno::ENOTSOCK
- thesocket
argument does not refer to a socket -
Errno::ETIMEDOUT
- the attempt to connect timed out before a connection was made. -
Errno::EWOULDBLOCK
- the socket is marked as nonblocking and the connection cannot be completed immediately -
Errno::EACCES
- the attempt to connect the datagram socket to the broadcast address failed
See
-
connect manual pages on unix-based systems
-
connect function in Microsoft’s Winsock functions reference
# File 'ext/socket/socket.c', line 385
static VALUE sock_connect(VALUE sock, VALUE addr) { VALUE rai; rb_io_t *fptr; int fd, n; SockAddrStringValueWithAddrinfo(addr, rai); addr = rb_str_new4(addr); GetOpenFile(sock, fptr); fd = fptr->fd; n = rsock_connect(fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), 0, NULL); if (n < 0) { rsock_sys_fail_raddrinfo_or_sockaddr("connect(2)", addr, rai); } return INT2FIX(n); }
#connect_nonblock(remote_sockaddr, [options]) ⇒ 0
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
Parameter
# remote_sockaddr - the struct sockaddr contained in a string or Addrinfo object
Example:
# Pull down Google's web page
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(80, 'www.google.com')
begin # emulate blocking connect
socket.connect_nonblock(sockaddr)
rescue IO::WaitWritable
IO.select(nil, [socket]) # wait 3-way handshake completion
begin
socket.connect_nonblock(sockaddr) # check connection failure
rescue Errno::EISCONN
end
end
socket.write("GET / HTTP/1.0\r\n\r\n")
results = socket.read
Refer to #connect for the exceptions that may be thrown if the call to connect_nonblock fails.
connect_nonblock
may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS
.
If the exception is Errno::EINPROGRESS
, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
See
# Socket#connect
# File 'ext/socket/lib/socket.rb', line 1213
def connect_nonblock(addr, exception: true) __connect_nonblock(addr, exception) end
#ipv6only!
enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.
# File 'ext/socket/lib/socket.rb', line 463
def ipv6only! if defined? Socket::IPV6_V6ONLY self.setsockopt(:IPV6, :V6ONLY, 1) end end
#listen(int) ⇒ 0
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
Parameter
-
backlog
- the maximum length of the queue for pending connections.
Example 1
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
Example 2 (listening on an arbitrary port, unix-based systems only):
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
socket.listen( 1 )
Unix-based Exceptions
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
-
Errno::EBADF
- the socket argument is not a valid file descriptor -
Errno::EDESTADDRREQ
- the socket is not bound to a local address, and the protocol does not support listening on an unbound socket -
Errno::EINVAL
- the socket is already connected -
Errno::ENOTSOCK
- the socket argument does not refer to a socket -
Errno::EOPNOTSUPP
- the socket protocol does not support listen -
Errno::EACCES
- the calling process does not have appropriate privileges -
Errno::EINVAL
- the socket has been shut down -
Errno::ENOBUFS
- insufficient resources are available in the system to complete the call
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to listen fails:
-
Errno::ENETDOWN
- the network is down -
Errno::EADDRINUSE
- the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen -
Errno::EINPROGRESS
- a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function -
Errno::EINVAL
- thesocket
has not been bound with a call to bind. -
Errno::EISCONN
- thesocket
is already connected -
Errno::EMFILE
- no more socket descriptors are available -
Errno::ENOBUFS
- no buffer space is available -
Errno::ENOTSOC
-socket
is not a socket -
Errno::EOPNOTSUPP
- the referencedsocket
is not a type that supports the listen method
See
-
listen manual pages on unix-based systems
-
listen function in Microsoft’s Winsock functions reference
# File 'ext/socket/socket.c', line 606
VALUE rsock_sock_listen(VALUE sock, VALUE log) { rb_io_t *fptr; int backlog; backlog = NUM2INT(log); GetOpenFile(sock, fptr); if (listen(fptr->fd, backlog) < 0) rb_sys_fail("listen(2)"); return INT2FIX(0); }
#recvfrom(maxlen) ⇒ Array
, sender_addrinfo
#recvfrom(maxlen, flags) ⇒ Array
, sender_addrinfo
Array
, sender_addrinfo
#recvfrom(maxlen, flags) ⇒ Array
, sender_addrinfo
Receives up to maxlen bytes from socket
. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
Parameters
-
maxlen
- the maximum number of bytes to receive from the socket -
flags
- zero or more of theMSG_
options
Example
# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
client, client_addrinfo = socket.accept
data = client.recvfrom( 20 )[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close
# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.connect( sockaddr )
socket.puts "Watch this get cut short!"
socket.close
Unix-based Exceptions
On unix-based based systems the following system exceptions may be raised if the call to recvfrom fails:
-
Errno::EAGAIN
- thesocket
file descriptor is marked as O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either thesocket
file descriptor is marked as O_NONBLOCK or thesocket
does not support blocking to wait for out-of-band-data -
Errno::EWOULDBLOCK
- seeErrno::EAGAIN
-
Errno::EBADF
- thesocket
is not a valid file descriptor -
Errno::ECONNRESET
- a connection was forcibly closed by a peer -
Errno::EFAULT
- the socket’s internal buffer, address or address length cannot be accessed or written -
Errno::EINTR
- a signal interrupted recvfrom before any data was available -
Errno::EINVAL
- the MSG_OOB flag is set and no out-of-band data is available -
Errno::EIO
- an i/o error occurred while reading from or writing to the filesystem -
Errno::ENOBUFS
- insufficient resources were available in the system to perform the operation -
Errno::ENOMEM
- insufficient memory was available to fulfill the request -
Errno::ENOSR
- there were insufficient STREAMS resources available to complete the operation -
Errno::ENOTCONN
- a receive is attempted on a connection-mode socket that is not connected -
Errno::ENOTSOCK
- thesocket
does not refer to a socket -
Errno::EOPNOTSUPP
- the specified flags are not supported for this socket type -
Errno::ETIMEDOUT
- the connection timed out during connection establishment or due to a transmission timeout on an active connection
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to recvfrom fails:
-
Errno::ENETDOWN
- the network is down -
Errno::EFAULT
- the internal buffer and from parameters onsocket
are not part of the user address space, or the internal fromlen parameter is too small to accommodate the peer address -
Errno::EINTR
- the (blocking) call was cancelled by an internal call to the WinSock function WSACancelBlockingCall -
Errno::EINPROGRESS
- a blocking Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function -
Errno::EINVAL
-socket
has not been bound with a call to bind, or an unknown flag was specified, or MSG_OOB was specified for a socket with SO_OOBINLINE enabled, or (for byte stream-style sockets only) the internal len parameter onsocket
was zero or negative -
Errno::EISCONN
-socket
is already connected. The call to recvfrom is not permitted with a connected socket on a socket that is connection oriented or connectionless. -
Errno::ENETRESET
- the connection has been broken due to the keep-alive activity detecting a failure while the operation was in progress. -
Errno::EOPNOTSUPP
- MSG_OOB was specified, butsocket
is not stream-style such as type SOCK_STREAM. OOB data is not supported in the communication domain associated withsocket
, orsocket
is unidirectional and supports only send operations -
Errno::ESHUTDOWN
-socket
has been shutdown. It is not possible to call recvfrom on a socket after shutdown has been invoked. -
Errno::EWOULDBLOCK
-socket
is marked as nonblocking and a call to recvfrom would block. -
Errno::EMSGSIZE
- the message was too large to fit into the specified buffer and was truncated. -
Errno::ETIMEDOUT
- the connection has been dropped, because of a network failure or because the system on the other end went down without notice -
Errno::ECONNRESET
- the virtual circuit was reset by the remote side executing a hard or abortive close. The application should close the socket; it is no longer usable. On a UDP-datagram socket this error indicates a previous send operation resulted in an ICMP Port Unreachable message.
# File 'ext/socket/socket.c', line 725
static VALUE sock_recvfrom(int argc, VALUE *argv, VALUE sock) { return rsock_s_recvfrom(sock, argc, argv, RECV_SOCKET); }
#recvfrom_nonblock(maxlen[, flags[, outbuf[, opts]]]) ⇒ Array
, sender_addrinfo
Receives up to maxlen bytes from socket
using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
When recvfrom(2) returns 0, recvfrom_nonblock
returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.
Parameters
-
maxlen
- the maximum number of bytes to receive from the socket -
flags
- zero or more of theMSG_
options -
outbuf
- destination String buffer -
opts
- keyword hash, supportingexception: false
Example
# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
client, client_addrinfo = socket.accept
begin # emulate blocking recvfrom
pair = client.recvfrom_nonblock(20)
rescue IO::WaitReadable
IO.select([client])
retry
end
data = pair[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close
# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Watch this get cut short!"
socket.close
Refer to #recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.
recvfrom_nonblock
may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK
.
If the exception is Errno::EWOULDBLOCK
or Errno::EAGAIN
, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying recvfrom_nonblock.
By specifying a keyword argument exception to false
, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
See
# File 'ext/socket/lib/socket.rb', line 535
def recvfrom_nonblock(len, flag = 0, str = nil, exception: true) __recvfrom_nonblock(len, flag, str, exception) end
#sysaccept ⇒ Socket
, client_addrinfo
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an ::Addrinfo
, client_addrinfo.
Example
# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
client_fd, client_addrinfo = socket.sysaccept
client_socket = Socket.for_fd( client_fd )
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close
# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.connect( sockaddr )
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close
Refer to #accept for the exceptions that may be thrown if the call to sysaccept fails.
See
# File 'ext/socket/socket.c', line 819
static VALUE sock_sysaccept(VALUE server) { union_sockaddr buffer; socklen_t length = (socklen_t)sizeof(buffer); VALUE peer = rsock_s_accept(0, server, &buffer.addr, &length); return rb_assoc_new(peer, rsock_io_socket_addrinfo(peer, &buffer.addr, length)); }