Class: Matrix
Relationships & Source Files | |
Namespace Children | |
Modules:
| |
Classes:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
ConversionHelper
|
|
Instance Chain:
self,
CoercionHelper ,
::ExceptionForMatrix ,
Enumerable
|
|
Inherits: | Object |
Defined in: | lib/matrix.rb, lib/matrix/eigenvalue_decomposition.rb, lib/matrix/lup_decomposition.rb, lib/matrix/version.rb |
Overview
The Matrix
class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties such as trace, rank, inverse, determinant, or eigensystem.
Constant Summary
-
SELECTORS =
# File 'lib/matrix.rb', line 654{all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
-
VERSION =
# File 'lib/matrix/version.rb', line 4"0.2.0"
Class Method Summary
-
.[](*rows)
Creates a matrix where each argument is a row.
-
.build(row_count, column_count = row_count)
Creates a matrix of size #row_count x #column_count.
-
.column_vector(column)
Creates a single-column matrix where the values of that column are as given in #column.
-
.columns(columns)
Creates a matrix using
columns
as an array of column vectors. -
.combine(*matrices)
Create a matrix by combining matrices entrywise, using the given block.
-
.diagonal(*values)
Creates a matrix where the diagonal elements are composed of
values
. -
.empty(row_count = 0, column_count = 0)
Creates a empty matrix of #row_count x #column_count.
-
.hstack(x, *matrices)
Create a matrix by stacking matrices horizontally.
-
I(n)
Alias for .identity.
-
.identity(n)
(also: .unit, .I)
Creates an
n
byn
identity matrix. -
.new(rows, column_count = rows[0].size) ⇒ Matrix
constructor
new
is private; use .rows, columns, [], etc… -
.row_vector(row)
Creates a single-row matrix where the values of that row are as given in #row.
-
.rows(rows, copy = true)
Creates a matrix where
rows
is an array of arrays, each of which is a row of the matrix. -
.scalar(n, value)
Creates an
n
byn
diagonal matrix where each diagonal element isvalue
. -
.unit(n)
Alias for .identity.
-
.vstack(x, *matrices)
Create a matrix by stacking matrices vertically.
-
.zero(row_count, column_count = row_count)
Creates a zero matrix.
ConversionHelper
- Extended
convert_to_array | Converts the obj to an Array. |
Instance Attribute Summary
-
#antisymmetric? ⇒ Boolean
(also: #skew_symmetric?)
readonly
Returns
true
if this is an antisymmetric matrix. -
#column_count
(also: #column_size)
readonly
Returns the number of columns.
-
#column_size
readonly
Alias for #column_count.
-
#diagonal? ⇒ Boolean
readonly
Returns
true
if this is a diagonal matrix. -
#empty? ⇒ Boolean
readonly
Returns
true
if this is an empty matrix, i.e. -
#hermitian? ⇒ Boolean
readonly
Returns
true
if this is an hermitian matrix. -
#lower_triangular? ⇒ Boolean
readonly
Returns
true
if this is a lower triangular matrix. -
#normal? ⇒ Boolean
readonly
Returns
true
if this is a normal matrix. -
#orthogonal? ⇒ Boolean
readonly
Returns
true
if this is an orthogonal matrix Raises an error if matrix is not square. -
#permutation? ⇒ Boolean
readonly
Returns
true
if this is a permutation matrix Raises an error if matrix is not square. -
#real? ⇒ Boolean
readonly
Returns
true
if all entries of the matrix are real. -
#regular? ⇒ Boolean
readonly
Returns
true
if this is a regular (i.e. -
#singular? ⇒ Boolean
readonly
Returns
true
if this is a singular matrix. -
#skew_symmetric?
readonly
Alias for #antisymmetric?.
-
#square? ⇒ Boolean
readonly
Returns
true
if this is a square matrix. -
#symmetric? ⇒ Boolean
readonly
Returns
true
if this is a symmetric matrix. -
#unitary? ⇒ Boolean
readonly
Returns
true
if this is a unitary matrix Raises an error if matrix is not square. -
#upper_triangular? ⇒ Boolean
readonly
Returns
true
if this is an upper triangular matrix. -
#zero? ⇒ Boolean
readonly
Returns
true
if this is a matrix with only zero elements. - #rows readonly protected
Instance Method Summary
-
#*(m)
Matrix
multiplication. -
#**(other)
Matrix
exponentiation. -
#+(m)
Matrix
addition. - #+@
-
#-(m)
Matrix
subtraction. - #-@
-
#/(other)
Matrix
division (multiplication by the inverse). -
#==(other)
Returns
true
if and only if the two matrices contain equal elements. -
#[](i, j)
(also: #element, #component)
Returns element (
i
,j
) of the matrix. -
#[]=(integer, integer, element)
(also: #set_element, #set_component)
Set element or elements of matrix.
-
#abs
Returns the absolute value elementwise.
-
#adjugate
Returns the adjugate of the matrix.
-
#coerce(other)
The coerce method provides support for Ruby type coercion.
-
#cofactor(row, column)
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
-
#cofactor_expansion(row: nil, column: nil)
Alias for #laplace_expansion.
-
#collect(which = :all, &block)
(also: #map)
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
-
#collect!(which = :all)
(also: #map!)
Invokes the given block for each element of matrix, replacing the element with the value returned by the block.
-
#column(j)
Returns column vector number
j
of the matrix as a::Vector
(starting at 0 like an array). -
#column_vectors
Returns an array of the column vectors of the matrix.
- #combine(*matrices, &block)
-
#component(i, j)
Alias for #[].
-
#conj
Alias for #conjugate.
-
#conjugate
(also: #conj)
Returns the conjugate of the matrix.
-
#det
Alias for #determinant.
-
#det_e
Alias for #determinant_e.
-
#determinant
(also: #det)
Returns the determinant of the matrix.
-
#determinant_e
(also: #det_e)
deprecated; use #determinant
-
#each(which = :all, &block)
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given.
-
#each_with_index(which = :all)
Same as #each, but the row index and column index in addition to the element.
-
#eigen
Alias for #eigensystem.
-
#eigensystem
(also: #eigen)
Returns the Eigensystem of the matrix; see
EigenvalueDecomposition
. -
#element(i, j)
Alias for #[].
-
#elements_to_f
Deprecated.
-
#elements_to_i
Deprecated.
-
#elements_to_r
Deprecated.
-
#entrywise_product(m)
Alias for #hadamard_product.
- #eql?(other) ⇒ Boolean
-
#find_index(*args)
Alias for #index.
-
#first_minor(row, column)
Returns the submatrix obtained by deleting the specified row and column.
- #freeze
-
#hadamard_product(m)
(also: #entrywise_product)
Hadamard product.
-
#hash
Returns a hash-code for the matrix.
-
#hstack(*matrices)
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices.
-
#imag
Alias for #imaginary.
-
#imaginary
(also: #imag)
Returns the imaginary part of the matrix.
-
#index(value, selector = :all) ⇒ Array, column
(also: #find_index)
The index method is specialized to return the index as [row, column] It also accepts an optional
selector
argument, see #each for details. -
#inspect
Overrides
Object#inspect
-
#inv
Alias for #inverse.
-
#inverse
(also: #inv)
Returns the inverse of the matrix.
-
#laplace_expansion(row: nil, column: nil)
(also: #cofactor_expansion)
Returns the Laplace expansion along given row or column.
-
#lup
(also: #lup_decomposition)
Returns the LUP decomposition of the matrix; see
LUPDecomposition
. -
#lup_decomposition
Alias for #lup.
-
#map(which = :all, &block)
Alias for #collect.
-
#map!(which = :all)
Alias for #collect!.
-
#minor(*param)
Returns a section of the matrix.
-
#rank
Returns the rank of the matrix.
-
#rank_e
deprecated; use #rank
-
#real
readonly
Returns the real part of the matrix.
-
#rect
(also: #rectangular)
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix.
-
#rectangular
Alias for #rect.
-
#round(ndigits = 0)
Returns a matrix with entries rounded to the given precision (see
Float#round
). -
#row(i, &block)
Returns row vector number
i
of the matrix as a::Vector
(starting at 0 like an array). -
#row_count
(also: #row_size)
Returns the number of rows.
-
#row_size
Alias for #row_count.
-
#row_vectors
Returns an array of the row vectors of the matrix.
-
#t
Alias for #transpose.
-
#to_a
Returns an array of arrays that describe the rows of the matrix.
-
#to_matrix
Explicit conversion to a
Matrix
. -
#to_s
Overrides
Object#to_s
-
#tr
Alias for #trace.
-
#trace
(also: #tr)
Returns the trace (sum of diagonal elements) of the matrix.
-
#transpose
(also: #t)
Returns the transpose of the matrix.
-
#vstack(*matrices)
Returns a new matrix resulting by stacking vertically the receiver with the given matrices.
- #check_int(val, direction) private
-
#check_range(val, direction)
private
Returns range or nil.
-
#determinant_bareiss
private
Private.
-
#initialize_copy(m)
private
Called for dup & clone.
- #set_col_range(row, col_range, value) private
- #set_column_vector(row_range, col, value) private
-
#set_component(i, j, v)
private
Alias for #[]=.
-
#set_element(i, j, v)
private
Alias for #[]=.
- #set_row_and_col_range(row_range, col_range, value) private
- #set_row_range(row_range, col, value) private
- #set_value(row, col, value) private
- #inverse_from(src) private Internal use only
- #new_matrix(rows, column_count = rows[0].size) private Internal use only
CoercionHelper
- Included
#apply_through_coercion | Applies the operator |
Constructor Details
.new(rows, column_count = rows[0].size) ⇒ Matrix
new
is private; use .rows, columns, [], etc… to create.
# File 'lib/matrix.rb', line 311
def initialize(rows, column_count = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_count must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @rows = rows @column_count = column_count end
Class Method Details
.[](*rows)
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ]
#=> 25 93
-1 66
.build(row_count, column_count = row_count)
Creates a matrix of size #row_count x #column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row }
#=> Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
#=> a 3x3 matrix with random elements
# File 'lib/matrix.rb', line 123
def Matrix.build(row_count, column_count = row_count) row_count = CoercionHelper.coerce_to_int(row_count) column_count = CoercionHelper.coerce_to_int(column_count) raise ArgumentError if row_count < 0 || column_count < 0 return to_enum :build, row_count, column_count unless block_given? rows = Array.new(row_count) do |i| Array.new(column_count) do |j| yield i, j end end new rows, column_count end
.column_vector(column)
Creates a single-column matrix where the values of that column are as given in #column.
Matrix.column_vector([4,5,6])
#=> 4
5
6
.columns(columns)
Creates a matrix using columns
as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]])
#=> 25 -1
93 66
.combine(*matrices)
Create a matrix by combining matrices entrywise, using the given block
x = Matrix[[6, 6], [4, 4]]
y = Matrix[[1, 2], [3, 4]]
Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
# File 'lib/matrix.rb', line 286
def Matrix.combine(*matrices) return to_enum(__method__, *matrices) unless block_given? return Matrix.empty if matrices.empty? matrices.map!(&CoercionHelper.method(:coerce_to_matrix)) x = matrices.first matrices.each do |m| raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count end rows = Array.new(x.row_count) do |i| Array.new(x.column_count) do |j| yield matrices.map{|m| m[i,j]} end end new rows, x.column_count end
.diagonal(*values)
Creates a matrix where the diagonal elements are composed of values
.
Matrix.diagonal(9, 5, -3)
#=> 9 0 0
0 5 0
0 0 -3
.empty(row_count = 0, column_count = 0)
Creates a empty matrix of #row_count x #column_count. At least one of #row_count or #column_count must be 0.
m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
#=> true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
#=> true
m * n
#=> Matrix[[0, 0, 0], [0, 0, 0]]
# File 'lib/matrix.rb', line 227
def Matrix.empty(row_count = 0, column_count = 0) raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0 raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0 new([[]]*row_count, column_count) end
.hstack(x, *matrices)
Create a matrix by stacking matrices horizontally
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File 'lib/matrix.rb', line 262
def Matrix.hstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) total_column_count = x.column_count matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.row_count != x.row_count raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}" end result.each_with_index do |row, i| row.concat m.send(:rows)[i] end total_column_count += m.column_count end new result, total_column_count end
I(n)
Alias for .identity.
# File 'lib/matrix.rb', line 176
alias_method :I, :identity
.identity(n) Also known as: .unit, .I
Creates an n
by n
identity matrix.
Matrix.identity(2)
#=> 1 0
0 1
# File 'lib/matrix.rb', line 171
def Matrix.identity(n) scalar(n, 1) end
.row_vector(row)
Creates a single-row matrix where the values of that row are as given in #row.
Matrix.row_vector([4,5,6])
#=> 4 5 6
.rows(rows, copy = true)
Creates a matrix where rows
is an array of arrays, each of which is a row of the matrix. If the optional argument copy
is false, use the given arrays as the internal structure of the matrix without copying.
Matrix.rows([[25, 93], [-1, 66]])
#=> 25 93
-1 66
# File 'lib/matrix.rb', line 90
def Matrix.rows(rows, copy = true) rows = convert_to_array(rows, copy) rows.map! do |row| convert_to_array(row, copy) end size = (rows[0] || []).size rows.each do |row| raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size end new rows, size end
.scalar(n, value)
Creates an n
by n
diagonal matrix where each diagonal element is value
.
Matrix.scalar(2, 5)
#=> 5 0
0 5
.unit(n)
Alias for .identity.
# File 'lib/matrix.rb', line 175
alias_method :unit, :identity
.vstack(x, *matrices)
Create a matrix by stacking matrices vertically
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File 'lib/matrix.rb', line 241
def Matrix.vstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.column_count != x.column_count raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}" end result.concat(m.send(:rows)) end new result, x.column_count end
.zero(row_count, column_count = row_count)
Creates a zero matrix.
Matrix.zero(2)
#=> 0 0
0 0
# File 'lib/matrix.rb', line 185
def Matrix.zero(row_count, column_count = row_count) rows = Array.new(row_count){Array.new(column_count, 0)} new rows, column_count end
Instance Attribute Details
#antisymmetric? ⇒ Boolean
(readonly)
Also known as: #skew_symmetric?
Returns true
if this is an antisymmetric matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 960
def antisymmetric? raise ErrDimensionMismatch unless square? each_with_index(:upper) do |e, row, col| return false unless e == -rows[col][row] end true end
#column_count (readonly) Also known as: #column_size
Returns the number of columns.
# File 'lib/matrix.rb', line 445
attr_reader :column_count
#column_size (readonly)
Alias for #column_count.
# File 'lib/matrix.rb', line 446
alias_method :column_size, :column_count
#diagonal? ⇒ Boolean
(readonly)
Returns true
if this is a diagonal matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 827
def diagonal? raise ErrDimensionMismatch unless square? each(:off_diagonal).all?(&:zero?) end
#empty? ⇒ Boolean
(readonly)
Returns true
if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
# File 'lib/matrix.rb', line 836
def empty? column_count == 0 || row_count == 0 end
#hermitian? ⇒ Boolean
(readonly)
Returns true
if this is an hermitian matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 844
def hermitian? raise ErrDimensionMismatch unless square? each_with_index(:upper).all? do |e, row, col| e == rows[col][row].conj end end
#lower_triangular? ⇒ Boolean
(readonly)
Returns true
if this is a lower triangular matrix.
#normal? ⇒ Boolean
(readonly)
Returns true
if this is a normal matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 862
def normal? raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] end return false unless s == 0 end end true end
#orthogonal? ⇒ Boolean
(readonly)
Returns true
if this is an orthogonal matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 880
def orthogonal? raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k] * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end
#permutation? ⇒ Boolean
(readonly)
Returns true
if this is a permutation matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 898
def permutation? raise ErrDimensionMismatch unless square? cols = Array.new(column_count) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 return false if found || cols[j] found = cols[j] = true elsif e != 0 return false end end return false unless found end true end
#real? ⇒ Boolean
(readonly)
Returns true
if all entries of the matrix are real.
# File 'lib/matrix.rb', line 919
def real? all?(&:real?) end
#regular? ⇒ Boolean
(readonly)
Returns true
if this is a regular (i.e. non-singular) matrix.
# File 'lib/matrix.rb', line 926
def regular? not singular? end
#rows (readonly, protected)
[ GitHub ]# File 'lib/matrix.rb', line 69
attr_reader :rows
#singular? ⇒ Boolean
(readonly)
Returns true
if this is a singular matrix.
# File 'lib/matrix.rb', line 933
def singular? determinant == 0 end
#skew_symmetric? (readonly)
Alias for #antisymmetric?.
# File 'lib/matrix.rb', line 967
alias_method :skew_symmetric?, :antisymmetric?
#square? ⇒ Boolean
(readonly)
Returns true
if this is a square matrix.
# File 'lib/matrix.rb', line 940
def square? column_count == row_count end
#symmetric? ⇒ Boolean
(readonly)
Returns true
if this is a symmetric matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 948
def symmetric? raise ErrDimensionMismatch unless square? each_with_index(:strict_upper) do |e, row, col| return false if e != rows[col][row] end true end
#unitary? ⇒ Boolean
(readonly)
Returns true
if this is a unitary matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 973
def unitary? raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k].conj * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end
#upper_triangular? ⇒ Boolean
(readonly)
Returns true
if this is an upper triangular matrix.
#zero? ⇒ Boolean
(readonly)
Returns true
if this is a matrix with only zero elements
# File 'lib/matrix.rb', line 997
def zero? all?(&:zero?) end
Instance Method Details
#*(m)
Matrix
multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2)
#=> 2 4
6 8
# File 'lib/matrix.rb', line 1045
def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect {|row| row.collect {|e| e * m } } return new_matrix rows, column_count when Vector m = self.class.column_vector(m) r = self * m return r.column(0) when Matrix raise ErrDimensionMismatch if column_count != m.row_count rows = Array.new(row_count) {|i| Array.new(m.column_count) {|j| (0 ... column_count).inject(0) do |vij, k| vij + self[i, k] * m[k, j] end } } return new_matrix rows, m.column_count else return apply_through_coercion(m, __method__) end end
#**(other)
Matrix
exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2
#=> 67 96
48 99
# File 'lib/matrix.rb', line 1222
def **(other) case other when Integer x = self if other <= 0 x = self.inverse return self.class.identity(self.column_count) if other == 0 other = -other end z = nil loop do z = z ? z * x : x if other[0] == 1 return z if (other >>= 1).zero? x *= x end when Numeric v, d, v_inv = eigensystem v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else raise ErrOperationNotDefined, ["**", self.class, other.class] end end
#+(m)
Matrix
addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
#=> 6 0
-4 12
# File 'lib/matrix.rb', line 1078
def +(m) case m when Numeric raise ErrOperationNotDefined, ["+", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] + m[i, j] } } new_matrix rows, column_count end
#+@
[ GitHub ]# File 'lib/matrix.rb', line 1245
def +@ self end
#-(m)
Matrix
subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
#=> -8 2
8 1
# File 'lib/matrix.rb', line 1105
def -(m) case m when Numeric raise ErrOperationNotDefined, ["-", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] - m[i, j] } } new_matrix rows, column_count end
#-@
[ GitHub ]# File 'lib/matrix.rb', line 1249
def -@ collect {|e| -e } end
#/(other)
Matrix
division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
#=> -7 1
-3 -6
# File 'lib/matrix.rb', line 1132
def /(other) case other when Numeric rows = @rows.collect {|row| row.collect {|e| e / other } } return new_matrix rows, column_count when Matrix return self * other.inverse else return apply_through_coercion(other, __method__) end end
#==(other)
Returns true
if and only if the two matrices contain equal elements.
# File 'lib/matrix.rb', line 1008
def ==(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows == other.rows end
#[](i, j) Also known as: #element, #component
Returns element (i
,j
) of the matrix. That is: row i
, column j
.
# File 'lib/matrix.rb', line 326
def [](i, j) @rows.fetch(i){return nil}[j] end
#[]=(integer, integer, element) Also known as: #set_element, #set_component
Set element or elements of matrix.
# File 'lib/matrix.rb', line 340
def []=(i, j, v) raise FrozenError, "can't modify frozen Matrix" if frozen? rows = check_range(i, :row) or row = check_int(i, :row) columns = check_range(j, :column) or column = check_int(j, :column) if rows && columns set_row_and_col_range(rows, columns, v) elsif rows set_row_range(rows, column, v) elsif columns set_col_range(row, columns, v) else set_value(row, column, v) end end
#abs
Returns the absolute value elementwise
# File 'lib/matrix.rb', line 1256
def abs collect(&:abs) end
#adjugate
Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate
#=> 9 -6
-3 7
# File 'lib/matrix.rb', line 781
def adjugate raise ErrDimensionMismatch unless square? Matrix.build(row_count, column_count) do |row, column| cofactor(column, row) end end
#check_int(val, direction) (private)
[ GitHub ]# File 'lib/matrix.rb', line 365
private def check_int(val, direction) count = direction == :row ? row_count : column_count CoercionHelper.check_int(val, count, direction) end
#check_range(val, direction) (private)
Returns range or nil
# File 'lib/matrix.rb', line 359
private def check_range(val, direction) return unless val.is_a?(Range) count = direction == :row ? row_count : column_count CoercionHelper.check_range(val, count, direction) end
#coerce(other)
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce
.
#cofactor(row, column)
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
#=> -108
# File 'lib/matrix.rb', line 766
def cofactor(row, column) raise RuntimeError, "cofactor of empty matrix is not defined" if empty? raise ErrDimensionMismatch unless square? det_of_minor = first_minor(row, column).determinant det_of_minor * (-1) ** (row + column) end
#cofactor_expansion(row: nil, column: nil)
Alias for #laplace_expansion.
# File 'lib/matrix.rb', line 816
alias_method :cofactor_expansion, :laplace_expansion
#collect(which = :all, &block) Also known as: #map
Returns a matrix that is the result of iteration of the given block over all elements of the matrix. Elements can be restricted by passing an argument:
-
:all
(default): yields all elements -
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
#=> 1 4 9 16
# File 'lib/matrix.rb', line 497
def collect(which = :all, &block) # :yield: e return to_enum(:collect, which) unless block_given? dup.collect!(which, &block) end
#collect!(which = :all) Also known as: #map!
Invokes the given block for each element of matrix, replacing the element with the value returned by the block. Elements can be restricted by passing an argument:
-
:all
(default): yields all elements -
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal
# File 'lib/matrix.rb', line 515
def collect!(which = :all) return to_enum(:collect!, which) unless block_given? raise FrozenError, "can't modify frozen Matrix" if frozen? each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e } end
#column(j)
Returns column vector number j
of the matrix as a ::Vector
(starting at 0 like an array). When a block is given, the elements of that vector are iterated.
# File 'lib/matrix.rb', line 466
def column(j) # :yield: e if block_given? return self if j >= column_count || j < -column_count row_count.times do |i| yield @rows[i][j] end self else return nil if j >= column_count || j < -column_count col = Array.new(row_count) {|i| @rows[i][j] } Vector.elements(col, false) end end
#column_vectors
Returns an array of the column vectors of the matrix. See Vector.
# File 'lib/matrix.rb', line 1586
def column_vectors Array.new(column_count) {|i| column(i) } end
#combine(*matrices, &block)
[ GitHub ]# File 'lib/matrix.rb', line 304
def combine(*matrices, &block) Matrix.combine(self, *matrices, &block) end
#component(i, j)
Alias for #[].
# File 'lib/matrix.rb', line 330
alias component []
#conj
Alias for #conjugate.
# File 'lib/matrix.rb', line 1514
alias_method :conj, :conjugate
#conjugate Also known as: #conj
Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
#=> 1-2i -i 0
1 2 3
# File 'lib/matrix.rb', line 1511
def conjugate collect(&:conjugate) end
#det
Alias for #determinant.
# File 'lib/matrix.rb', line 1312
alias_method :det, :determinant
#det_e
Alias for #determinant_e.
# File 'lib/matrix.rb', line 1359
alias_method :det_e, :determinant_e
#determinant Also known as: #det
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant
#=> 45
# File 'lib/matrix.rb', line 1274
def determinant raise ErrDimensionMismatch unless square? m = @rows case row_count # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats when 0 +1 when 1 + m[0][0] when 2 + m[0][0] * m[1][1] - m[0][1] * m[1][0] when 3 m0, m1, m2 = m + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \ - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \ + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0] when 4 m0, m1, m2, m3 = m + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \ - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \ + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \ - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \ + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \ - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \ + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \ - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \ + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \ - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \ + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \ - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0] else # For bigger matrices, use an efficient and general algorithm. # Currently, we use the Gauss-Bareiss algorithm end end
#determinant_bareiss (private)
Private. Use #determinant
Returns the determinant of the matrix, using Bareiss’ multistep integer-preserving gaussian elimination. It has the same computational cost order O(n^3) as standard Gaussian elimination. Intermediate results are fraction free and of lower complexity. A matrix of Integers will have thus intermediate results that are also Integers, with smaller bignums (if any), while a matrix of Float will usually have intermediate results with better precision.
# File 'lib/matrix.rb', line 1325
private def size = row_count last = size - 1 a = to_a no_pivot = Proc.new{ return 0 } sign = +1 pivot = 1 size.times do |k| previous_pivot = pivot if (pivot = a[k][k]) == 0 switch = (k+1 ... size).find(no_pivot) {|row| a[row][k] != 0 } a[switch], a[k] = a[k], a[switch] pivot = a[k][k] sign = -sign end (k+1).upto(last) do |i| ai = a[i] (k+1).upto(last) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot end end end sign * pivot end
#determinant_e Also known as: #det_e
deprecated; use #determinant
# File 'lib/matrix.rb', line 1355
def determinant_e warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1 determinant end
#each(which = :all, &block)
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
-
:all
(default): yields all elements -
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
# File 'lib/matrix.rb', line 544
def each(which = :all, &block) # :yield: e return to_enum :each, which unless block_given? last = column_count - 1 case which when :all @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self} end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index] unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index] end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index] end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index] end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index] end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end
#each_with_index(which = :all)
# File 'lib/matrix.rb', line 604
def each_with_index(which = :all) # :yield: e, row, column return to_enum :each_with_index, which unless block_given? last = column_count - 1 case which when :all @rows.each_with_index do |row, row_index| row.each_with_index do |e, col_index| yield e, row_index, col_index end end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self}, row_index, row_index end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index], row_index, col_index unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index], row_index, col_index end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index], row_index, col_index end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index], row_index, col_index end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index], row_index, col_index end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end
#eigen
Alias for #eigensystem.
# File 'lib/matrix.rb', line 1481
alias_method :eigen, :eigensystem
#eigensystem Also known as: #eigen
Returns the Eigensystem of the matrix; see ::Matrix::EigenvalueDecomposition
.
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
# File 'lib/matrix.rb', line 1478
def eigensystem EigenvalueDecomposition.new(self) end
#element(i, j)
Alias for #[].
# File 'lib/matrix.rb', line 329
alias element []
#elements_to_f
Deprecated.
Use map(&:to_f)
# File 'lib/matrix.rb', line 1609
def elements_to_f warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1 map(&:to_f) end
#elements_to_i
Deprecated.
Use map(&:to_i)
# File 'lib/matrix.rb', line 1617
def elements_to_i warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1 map(&:to_i) end
#elements_to_r
Deprecated.
Use map(&:to_r)
# File 'lib/matrix.rb', line 1625
def elements_to_r warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1 map(&:to_r) end
#entrywise_product(m)
Alias for #hadamard_product.
# File 'lib/matrix.rb', line 1155
alias_method :entrywise_product, :hadamard_product
#eql?(other) ⇒ Boolean
# File 'lib/matrix.rb', line 1014
def eql?(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows.eql? other.rows end
#find_index(*args)
Alias for #index.
# File 'lib/matrix.rb', line 683
alias_method :find_index, :index
#first_minor(row, column)
Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
#=> 9 0 0
0 0 0
0 0 4
# File 'lib/matrix.rb', line 739
def first_minor(row, column) raise RuntimeError, "first_minor of empty matrix is not defined" if empty? unless 0 <= row && row < row_count raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})" end unless 0 <= column && column < column_count raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})" end arrays = to_a arrays.delete_at(row) arrays.each do |array| array.delete_at(column) end new_matrix arrays, column_count - 1 end
#freeze
[ GitHub ]# File 'lib/matrix.rb', line 523
def freeze @rows.freeze super end
#hadamard_product(m) Also known as: #entrywise_product
Hadamard product
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
#=> 1 4
9 8
# File 'lib/matrix.rb', line 1152
def hadamard_product(m) combine(m){|a, b| a * b} end
#hash
Returns a hash-code for the matrix.
# File 'lib/matrix.rb', line 1031
def hash @rows.hash end
#hstack(*matrices)
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File 'lib/matrix.rb', line 1369
def hstack(*matrices) self.class.hstack(self, *matrices) end
#imag
Alias for #imaginary.
# File 'lib/matrix.rb', line 1528
alias_method :imag, :imaginary
#imaginary Also known as: #imag
Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
#=> 2i i 0
0 0 0
# File 'lib/matrix.rb', line 1525
def imaginary collect(&:imaginary) end
#index(value, selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Enumerator
Also known as: #find_index
Array
, column
#index(selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Enumerator
The index method is specialized to return the index as [row, column] It also accepts an optional selector
argument, see #each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
# File 'lib/matrix.rb', line 667
def index(*args) raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2 which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all return to_enum :find_index, which, *args unless block_given? || args.size == 1 if args.size == 1 value = args.first each_with_index(which) do |e, row_index, col_index| return row_index, col_index if e == value end else each_with_index(which) do |e, row_index, col_index| return row_index, col_index if yield e end end nil end
#initialize_copy(m) (private)
Called for dup & clone.
# File 'lib/matrix.rb', line 1023
private def initialize_copy(m) super @rows = @rows.map(&:dup) unless frozen? end
#inspect
Overrides Object#inspect
# File 'lib/matrix.rb', line 1650
def inspect if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}#{@rows.inspect}" end end
#inv
Alias for #inverse.
# File 'lib/matrix.rb', line 1167
alias_method :inv, :inverse
#inverse Also known as: #inv
Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse
#=> -1 1
0 -1
# File 'lib/matrix.rb', line 1163
def inverse raise ErrDimensionMismatch unless square? self.class.I(row_count).send(:inverse_from, self) end
#inverse_from(src) (private)
# File 'lib/matrix.rb', line 1169
private def inverse_from(src) # :nodoc: last = row_count - 1 a = src.to_a 0.upto(last) do |k| i = k akk = a[k][k].abs (k+1).upto(last) do |j| v = a[j][k].abs if v > akk i = j akk = v end end raise ErrNotRegular if akk == 0 if i != k a[i], a[k] = a[k], a[i] @rows[i], @rows[k] = @rows[k], @rows[i] end akk = a[k][k] 0.upto(last) do |ii| next if ii == k q = a[ii][k].quo(akk) a[ii][k] = 0 (k + 1).upto(last) do |j| a[ii][j] -= a[k][j] * q end 0.upto(last) do |j| @rows[ii][j] -= @rows[k][j] * q end end (k+1).upto(last) do |j| a[k][j] = a[k][j].quo(akk) end 0.upto(last) do |j| @rows[k][j] = @rows[k][j].quo(akk) end end self end
#laplace_expansion(row: nil, column: nil) Also known as: #cofactor_expansion
# File 'lib/matrix.rb', line 798
def laplace_expansion(row: nil, column: nil) num = row || column if !num || (row && column) raise ArgumentError, "exactly one the row or column arguments must be specified" end raise ErrDimensionMismatch unless square? raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty? unless 0 <= num && num < row_count raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})" end send(row ? :row : :column, num).map.with_index { |e, k| e * cofactor(*(row ? [num, k] : [k,num])) }.inject(:+) end
#lup Also known as: #lup_decomposition
Returns the LUP decomposition of the matrix; see ::Matrix::LUPDecomposition
.
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
# File 'lib/matrix.rb', line 1493
def lup LUPDecomposition.new(self) end
#lup_decomposition
Alias for #lup.
# File 'lib/matrix.rb', line 1496
alias_method :lup_decomposition, :lup
#map(which = :all, &block)
Alias for #collect.
# File 'lib/matrix.rb', line 501
alias_method :map, :collect
#map!(which = :all)
Alias for #collect!.
# File 'lib/matrix.rb', line 521
alias map! collect!
#minor(*param)
Returns a section of the matrix. The parameters are either:
-
start_row, nrows, start_col, ncols; OR
-
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
#=> 9 0 0
0 5 0
Like Array#[]
, negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
# File 'lib/matrix.rb', line 698
def minor(*param) case param.size when 2 row_range, col_range = param from_row = row_range.first from_row += row_count if from_row < 0 to_row = row_range.end to_row += row_count if to_row < 0 to_row += 1 unless row_range.exclude_end? size_row = to_row - from_row from_col = col_range.first from_col += column_count if from_col < 0 to_col = col_range.end to_col += column_count if to_col < 0 to_col += 1 unless col_range.exclude_end? size_col = to_col - from_col when 4 from_row, size_row, from_col, size_col = param return nil if size_row < 0 || size_col < 0 from_row += row_count if from_row < 0 from_col += column_count if from_col < 0 else raise ArgumentError, param.inspect end return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0 rows = @rows[from_row, size_row].collect{|row| row[from_col, size_col] } new_matrix rows, [column_count - from_col, size_col].min end
#new_matrix(rows, column_count = rows[0].size) (private)
# File 'lib/matrix.rb', line 319
private def new_matrix(rows, column_count = rows[0].size) # :nodoc: self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new end
#rank
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank
#=> 2
# File 'lib/matrix.rb', line 1382
def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a last_column = column_count - 1 last_row = row_count - 1 pivot_row = 0 previous_pivot = 1 0.upto(last_column) do |k| switch_row = (pivot_row .. last_row).find {|row| a[row][k] != 0 } if switch_row a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row pivot = a[pivot_row][k] (pivot_row+1).upto(last_row) do |i| ai = a[i] (k+1).upto(last_column) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot end end pivot_row += 1 previous_pivot = pivot end end pivot_row end
#rank_e
deprecated; use #rank
# File 'lib/matrix.rb', line 1413
def rank_e warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1 rank end
#real (readonly)
Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
#=> 1 0 0
1 2 3
# File 'lib/matrix.rb', line 1539
def real collect(&:real) end
#rect Also known as: #rectangular
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
#rectangular
Alias for #rect.
# File 'lib/matrix.rb', line 1552
alias_method :rectangular, :rect
#round(ndigits = 0)
Returns a matrix with entries rounded to the given precision (see Float#round
)
# File 'lib/matrix.rb', line 1421
def round(ndigits=0) map{|e| e.round(ndigits)} end
#row(i, &block)
Returns row vector number i
of the matrix as a ::Vector
(starting at 0 like an array). When a block is given, the elements of that vector are iterated.
#row_count Also known as: #row_size
Returns the number of rows.
# File 'lib/matrix.rb', line 437
def row_count @rows.size end
#row_size
Alias for #row_count.
# File 'lib/matrix.rb', line 441
alias_method :row_size, :row_count
#row_vectors
Returns an array of the row vectors of the matrix. See Vector.
#set_col_range(row, col_range, value) (private)
# File 'lib/matrix.rb', line 421
private def set_col_range(row, col_range, value) value = if value.is_a?(Vector) value.to_a elsif value.is_a?(Matrix) raise ErrDimensionMismatch unless value.row_count == 1 value.row(0).to_a else Array.new(col_range.size, value) end raise ErrDimensionMismatch unless col_range.size == value.size @rows[row][col_range] = value end
#set_column_vector(row_range, col, value) (private)
[ GitHub ]# File 'lib/matrix.rb', line 414
private def set_column_vector(row_range, col, value) value.each_with_index do |e, index| r = row_range.begin + index @rows[r][col] = e end end
#set_component(i, j, v) (private)
Alias for #[]=.
# File 'lib/matrix.rb', line 355
alias set_component []=
#set_element(i, j, v) (private)
Alias for #[]=.
# File 'lib/matrix.rb', line 354
alias set_element []=
#set_row_and_col_range(row_range, col_range, value) (private)
[ GitHub ]# File 'lib/matrix.rb', line 376
private def set_row_and_col_range(row_range, col_range, value) if value.is_a?(Matrix) if row_range.size != value.row_count || col_range.size != value.column_count raise ErrDimensionMismatch, [ 'Expected a Matrix of dimensions', "#{row_range.size}x#{col_range.size}", 'got', "#{value.row_count}x#{value.column_count}", ].join(' ') end source = value.instance_variable_get :@rows row_range.each_with_index do |row, i| @rows[row][col_range] = source[i] end elsif value.is_a?(Vector) raise ErrDimensionMismatch, 'Expected a Matrix or a value, got a Vector' else value_to_set = Array.new(col_range.size, value) row_range.each do |i| @rows[i][col_range] = value_to_set end end end
#set_row_range(row_range, col, value) (private)
[ GitHub ]# File 'lib/matrix.rb', line 400
private def set_row_range(row_range, col, value) if value.is_a?(Vector) raise ErrDimensionMismatch unless row_range.size == value.size set_column_vector(row_range, col, value) elsif value.is_a?(Matrix) raise ErrDimensionMismatch unless value.column_count == 1 value = value.column(0) raise ErrDimensionMismatch unless row_range.size == value.size set_column_vector(row_range, col, value) else @rows[row_range].each{|e| e[col] = value } end end
#set_value(row, col, value) (private)
# File 'lib/matrix.rb', line 370
private def set_value(row, col, value) raise ErrDimensionMismatch, "Expected a a value, got a #{value.class}" if value.respond_to?(:to_matrix) @rows[row][col] = value end
#t
Alias for #transpose.
# File 'lib/matrix.rb', line 1452
alias_method :t, :transpose
#to_a
Returns an array of arrays that describe the rows of the matrix.
# File 'lib/matrix.rb', line 1602
def to_a @rows.collect(&:dup) end
#to_matrix
Explicit conversion to a Matrix
. Returns self
# File 'lib/matrix.rb', line 1595
def to_matrix self end
#to_s
Overrides Object#to_s
#tr
Alias for #trace.
# File 'lib/matrix.rb', line 1436
alias_method :tr, :trace
#trace Also known as: #tr
Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace
#=> 16
# File 'lib/matrix.rb', line 1430
def trace raise ErrDimensionMismatch unless square? (0...column_count).inject(0) do |tr, i| tr + @rows[i][i] end end
#transpose Also known as: #t
Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]]
#=> 1 2
3 4
5 6
Matrix[[1,2], [3,4], [5,6]].transpose
#=> 1 3 5
2 4 6
# File 'lib/matrix.rb', line 1448
def transpose return self.class.empty(column_count, 0) if row_count.zero? new_matrix @rows.transpose, row_count end
#vstack(*matrices)
Returns a new matrix resulting by stacking vertically the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File 'lib/matrix.rb', line 1462
def vstack(*matrices) self.class.vstack(self, *matrices) end