Class: BigDecimal
| Relationships & Source Files | |
| Super Chains via Extension / Inclusion / Inheritance | |
| Class Chain: 
          self,
           ::Numeric | |
| Instance Chain: 
          self,
           ::Numeric | |
| Inherits: | Numeric 
 | 
| Defined in: | ext/bigdecimal/bigdecimal.c, ext/bigdecimal/bigdecimal.c, ext/bigdecimal/lib/bigdecimal/util.rb | 
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13  #=>   1265437718438866624512BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal("0")
10_000.times do
  sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1Similarly:
(BigDecimal("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true
(1.2 - 1.0) == 0.2 #=> falseSpecial features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal("1.0") / BigDecimal("0.0")  #=> Infinity
BigDecimal("-1.0") / BigDecimal("0.0")  #=> -InfinityYou can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal("0.0") / BigDecimal("0.0") #=> NaNYou can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal('NaN')
n == 0.0 #=> false
n == n #=> falsePositive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal("1.0") / BigDecimal("-Infinity") #=> -0.0If the value is positive, a value of positive zero is returned.
BigDecimal("1.0") / BigDecimal("Infinity") #=> 0.0(See .mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native ::Integer, ::Float, ::Rational, and ::String classes:
require 'bigdecimal/util'
42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0License
Copyright © 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <mrkn@mrkn.jp> and ruby-core members.
Documented by zzak <zachary@zacharyscott.net>, mathew <meta@pobox.com>, and many other contributors.
Constant Summary
- 
    BASE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3329Base value used in internal calculations. On a 32 bit system, BASEis 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)INT2FIX((SIGNED_VALUE)VpBaseVal()) 
- 
    EXCEPTION_ALL =
    # File 'ext/bigdecimal/bigdecimal.c', line 3337Determines whether overflow, underflow or zero divide result in an exception being thrown. See .mode. 0xff
- 
    EXCEPTION_INFINITY =
    # File 'ext/bigdecimal/bigdecimal.c', line 3349Determines what happens when the result of a computation is infinity. See .mode. 0x01
- 
    EXCEPTION_NaN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3343Determines what happens when the result of a computation is not a number (NaN). See .mode. 0x02
- 
    EXCEPTION_OVERFLOW =
    # File 'ext/bigdecimal/bigdecimal.c', line 3361Determines what happens when the result of a computation is an overflow (a result too large to be represented). See .mode. 0x01
- 
    EXCEPTION_UNDERFLOW =
    # File 'ext/bigdecimal/bigdecimal.c', line 3355Determines what happens when the result of a computation is an underflow (a result too small to be represented). See .mode. 0x04
- 
    EXCEPTION_ZERODIVIDE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3367Determines what happens when a division by zero is performed. See .mode. 0x10
- 
    INFINITY =
    # File 'ext/bigdecimal/bigdecimal.c', line 3426Positive infinity value. f_BigDecimal(1, &arg, rb_cBigDecimal) 
- 
    NAN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3429‘Not a Number’ value. f_BigDecimal(1, &arg, rb_cBigDecimal) 
- 
    ROUND_CEILING =
    # File 'ext/bigdecimal/bigdecimal.c', line 3395Round towards +Infinity. See .mode. 5
- 
    ROUND_DOWN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3384Indicates that values should be rounded towards zero. See .mode. 2
- 
    ROUND_FLOOR =
    # File 'ext/bigdecimal/bigdecimal.c', line 3398Round towards -Infinity. See .mode. 6
- 
    ROUND_HALF_DOWN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3393Indicates that digits >= 6 should be rounded up, others rounded down. See .mode. 4
- 
    ROUND_HALF_EVEN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3401Round towards the even neighbor. See .mode. 7
- 
    ROUND_HALF_UP =
    # File 'ext/bigdecimal/bigdecimal.c', line 3388Indicates that digits >= 5 should be rounded up, others rounded down. See .mode. 3
- 
    ROUND_MODE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3374Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See .mode. 0x100
- 
    ROUND_UP =
    # File 'ext/bigdecimal/bigdecimal.c', line 3379Indicates that values should be rounded away from zero. See .mode. 1
- 
    SIGN_NEGATIVE_FINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3416Indicates that a value is negative and finite. See #sign. -2 
- 
    SIGN_NEGATIVE_INFINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3422Indicates that a value is negative and infinite. See #sign. -3 
- 
    SIGN_NEGATIVE_ZERO =
    # File 'ext/bigdecimal/bigdecimal.c', line 3410Indicates that a value is -0. See #sign. -1 
- 
    SIGN_NaN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3404Indicates that a value is not a number. See #sign. 0
- 
    SIGN_POSITIVE_FINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3413Indicates that a value is positive and finite. See #sign. 2
- 
    SIGN_POSITIVE_INFINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3419Indicates that a value is positive and infinite. See #sign. 3
- 
    SIGN_POSITIVE_ZERO =
    # File 'ext/bigdecimal/bigdecimal.c', line 3407Indicates that a value is +0. See #sign. 1
- 
    VERSION =
    # File 'ext/bigdecimal/bigdecimal.c', line 3320The version of bigdecimal library rb_str_new2(RUBY_BIGDECIMAL_VERSION) 
Class Method Summary
- 
    
      ._load(str)  
    
    Internal method used to provide marshalling support. 
- 
    
      .double_fig  
    
    The double_figclass method returns the number of digits a::Floatnumber is allowed to have.
- 
    
      .limit(digits)  
    
    Limit the number of significant digits in newly created BigDecimalnumbers to the specified value.
- 
    
      .mode(mode, value)  
    
    Controls handling of arithmetic exceptions and rounding. 
- .new(*args, **kwargs) ⇒ root constructor
- 
    
      .save_exception_mode  
    
    Execute the provided block, but preserve the exception mode. 
- 
    
      .save_limit  
    
    Execute the provided block, but preserve the precision limit. 
- 
    
      .save_rounding_mode  
    
    Execute the provided block, but preserve the rounding mode. 
Instance Attribute Summary
- 
    
      #finite?  ⇒ Boolean 
    
    readonly
    Returns True if the value is finite (not NaN or infinite). 
- 
    
      #infinite?  ⇒ Boolean 
    
    readonly
    Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity. 
- 
    
      #nan?  ⇒ Boolean 
    
    readonly
    Returns True if the value is Not a Number. 
- 
    
      #nonzero?  ⇒ Boolean 
    
    readonly
    Returns self if the value is non-zero, nil otherwise. 
- 
    
      #zero?  ⇒ Boolean 
    
    readonly
    Returns True if the value is zero. 
Instance Method Summary
- #%
- 
    
      #mult(value, digits)  
    
    Multiply by the specified value. 
- 
    
      #**(n)  ⇒ BigDecimal 
    
    Returns the value raised to the power of n. 
- 
    
      #add(value, digits)  
    
    Add the specified value. 
- 
    
      #+  ⇒ big_decimal 
    
    Return self. 
- 
    
      #-(b)  ⇒ BigDecimal 
    
    Subtract the specified value. 
- 
    
      #-  ⇒ big_decimal 
    
    Return the negation of self. 
- #/
- 
    
      #<(b)  
    
    Returns true if a is less than b. 
- 
    
      #<=(b)  
    
    Returns true if a is less than or equal to b. 
- 
    
      #<=>(r)  
    
    The comparison operator. 
- 
    
      #==(r)  
      (also: #===, #eql?)
    
    Tests for value equality; returns true if the values are equal. 
- 
    
      #===(r)  
    
    Alias for #==. 
- 
    
      #>(b)  
    
    Returns true if a is greater than b. 
- 
    
      #>=(b)  
    
    Returns true if a is greater than or equal to b. 
- 
    
      #_dump  
    
    Method used to provide marshalling support. 
- 
    
      #abs  ⇒ big_decimal 
    
    Returns the absolute value, as a BigDecimal.
- 
    
      #add(value, digits)  
    
    Add the specified value. 
- 
    
      #ceil(n)  
    
    Return the smallest integer greater than or equal to the value, as a BigDecimal.
- 
    
      #clone  
    
    Alias for #dup. 
- 
    
      #coerce(other)  
    
    The coerce method provides support for Ruby type coercion. 
- 
    
      #div(value, digits)  ⇒ BigDecimal, Integer 
    
    Divide by the specified value. 
- 
    
      #divmod(value)  
    
    Divides by the specified value, and returns the quotient and modulus as BigDecimalnumbers.
- #dup (also: #clone)
- 
    
      #eql?(r)  
    
    Alias for #==. 
- 
    
      #exponent  
    
    Returns the exponent of the BigDecimalnumber, as an::Integer.
- 
    
      #fix  
    
    Return the integer part of the number, as a BigDecimal.
- 
    
      #floor(n)  
    
    Return the largest integer less than or equal to the value, as a BigDecimal.
- 
    
      #frac  
    
    Return the fractional part of the number, as a BigDecimal.
- 
    
      #hash  
    
    Creates a hash for this BigDecimal.
- 
    
      #inspect  
    
    Returns a string representation of self. 
- #modulo
- 
    
      #mult(value, digits)  
    
    Multiply by the specified value. 
- 
    
      #power(n)  
    
    Returns the value raised to the power of n. 
- 
    
      #precs  ⇒ Array 
    
    Returns an Array of two ::Integervalues.
- #quo
- #remainder
- 
    
      #round(n, mode)  
    
    Round to the nearest integer (by default), returning the result as a BigDecimal.
- 
    
      #sign  
    
    Returns the sign of the value. 
- 
    
      #split  
    
    Splits a BigDecimalnumber into four parts, returned as an array of values.
- 
    
      #sqrt(n)  
    
    Returns the square root of the value. 
- 
    
      #sub(value, digits)  ⇒ BigDecimal 
    
    Subtract the specified value. 
- 
    
      #to_d  ⇒ BigDecimal 
    
    Returns self. 
- 
    
      #to_digits  ⇒ String 
    
    Converts a BigDecimalto a::Stringof the form “nnnnnn.mmm”.
- 
    
      #to_f  
    
    Returns a new ::Floatobject having approximately the same value as theBigDecimalnumber.
- 
    
      #to_i  
      (also: #to_int)
    
    Returns the value as an ::Integer.
- 
    
      #to_int  
    
    Alias for #to_i. 
- 
    
      #to_r  
    
    Converts a BigDecimalto a::Rational.
- 
    
      #to_s(s)  ⇒ ? 
    
    Converts the value to a string. 
- 
    
      #truncate(n)  
    
    Truncate to the nearest integer (by default), returning the result as a BigDecimal.
- 
    
      #initialize_copy(other)  
    
    Internal use only
    private method for dup and clone the provided BigDecimalother
Constructor Details
.new(*args, **kwargs) ⇒ root
# File 'ext/bigdecimal/lib/bigdecimal.rb', line 3
def BigDecimal.new(*args, **kwargs) warn "BigDecimal.new is deprecated; use BigDecimal() method instead.", uplevel: 1 BigDecimal(*args, **kwargs) end
Class Method Details
._load(str)
Internal method used to provide marshalling support. See the Marshal module.
# File 'ext/bigdecimal/bigdecimal.c', line 411
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;
    pch = (unsigned char *)StringValueCStr(str);
    rb_check_safe_obj(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
	pv->MaxPrec = m+1;
    }
    return ToValue(pv);
}
  .double_fig
The double_fig class method returns the number of digits a ::Float number is allowed to have. The result depends upon the CPU and OS in use.
# File 'ext/bigdecimal/bigdecimal.c', line 321
static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}
  .limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by .mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
# File 'ext/bigdecimal/bigdecimal.c', line 2735
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = INT2NUM(VpGetPrecLimit());
    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
	int nf;
	if (NIL_P(nFig)) return nCur;
	nf = NUM2INT(nFig);
	if (nf < 0) {
	    rb_raise(rb_eArgError, "argument must be positive");
	}
	VpSetPrecLimit(nf);
    }
    return nCur;
}
  .mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
EXCEPTION_NaN EXCEPTION_INFINITY EXCEPTION_UNDERFLOW EXCEPTION_OVERFLOW EXCEPTION_ZERODIVIDE EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
- 
NaN 
- EXCEPTION_INFINITY
- 
+Infinity or -Infinity 
- EXCEPTION_UNDERFLOW
- 
0 
- EXCEPTION_OVERFLOW
- 
+Infinity or -Infinity 
- EXCEPTION_ZERODIVIDE
- 
+Infinity or -Infinity 
One value of the mode parameter controls the rounding of numeric values: ROUND_MODE. The values it can take are:
- ROUND_UP, :up
- 
round away from zero 
- ROUND_DOWN, :down, :truncate
- 
round towards zero (truncate) 
- ROUND_HALF_UP, :half_up, :default
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default) 
- ROUND_HALF_DOWN, :half_down
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero. 
- ROUND_HALF_EVEN, :half_even, :banker
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding) 
- ROUND_CEILING, :ceiling, :ceil
- 
round towards positive infinity (ceil) 
- ROUND_FLOOR, :floor
- 
round towards negative infinity (floor) 
# File 'ext/bigdecimal/bigdecimal.c', line 560
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;
    rb_scan_args(argc, argv, "11", &which, &val);
    f = (unsigned long)NUM2INT(which);
    if (f & VP_EXCEPTION_ALL) {
	/* Exception mode setting */
	fo = VpGetException();
	if (val == Qnil) return INT2FIX(fo);
	if (val != Qfalse && val!=Qtrue) {
	    rb_raise(rb_eArgError, "second argument must be true or false");
	    return Qnil; /* Not reached */
	}
	if (f & VP_EXCEPTION_INFINITY) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
			(fo & (~VP_EXCEPTION_INFINITY))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_NaN) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
			(fo & (~VP_EXCEPTION_NaN))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_UNDERFLOW) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
			(fo & (~VP_EXCEPTION_UNDERFLOW))));
	}
	fo = VpGetException();
	if(f & VP_EXCEPTION_ZERODIVIDE) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
			(fo & (~VP_EXCEPTION_ZERODIVIDE))));
	}
	fo = VpGetException();
	return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
    return Qnil;
}
  .save_exception_mode
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
  BigDecimal(BigDecimal('Infinity'))
  BigDecimal(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal('NaN'))
endFor use with the BigDecimal::EXCEPTION_*
See .mode
# File 'ext/bigdecimal/bigdecimal.c', line 2794
static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}
  .save_limit
# File 'ext/bigdecimal/bigdecimal.c', line 2844
static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}
  .save_rounding_mode
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
endFor use with the BigDecimal::ROUND_*
See .mode
# File 'ext/bigdecimal/bigdecimal.c', line 2819
static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}
  Instance Attribute Details
    #finite?  ⇒ Boolean  (readonly)
  
Returns True if the value is finite (not NaN or infinite).
# File 'ext/bigdecimal/bigdecimal.c', line 703
static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}
  
    #infinite?  ⇒ Boolean  (readonly)
  
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
# File 'ext/bigdecimal/bigdecimal.c', line 693
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}
  
    #nan?  ⇒ Boolean  (readonly)
  
Returns True if the value is Not a Number.
# File 'ext/bigdecimal/bigdecimal.c', line 682
static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}
  
    #nonzero?  ⇒ Boolean  (readonly)
  
Returns self if the value is non-zero, nil otherwise.
# File 'ext/bigdecimal/bigdecimal.c', line 1131
static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}
  
    #zero?  ⇒ Boolean  (readonly)
  
Returns True if the value is zero.
# File 'ext/bigdecimal/bigdecimal.c', line 1123
static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}
  Instance Method Details
#%
[ GitHub ]#mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
# File 'ext/bigdecimal/bigdecimal.c', line 1250
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }
    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);
    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}
  
    #**(n)  ⇒ BigDecimal   
Returns the value raised to the power of n.
See #power.
# File 'ext/bigdecimal/bigdecimal.c', line 2535
static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}
  #add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
# File 'ext/bigdecimal/bigdecimal.c', line 929
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r, 0);
    }
    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);
    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;
    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, 1);
    }
    else {
	GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
	if(!mx) {
	    VpSetInf(c, VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, 1);
	}
    }
    return ToValue(c);
}
  
    #+  ⇒ big_decimal   
Return self.
+BigDecimal('5')  #=> 0.5e1# File 'ext/bigdecimal/bigdecimal.c', line 906
static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}
  
    #-(b)  ⇒ BigDecimal   
Subtract the specified value.
e.g.
c = a - bThe precision of the result value depends on the type of b.
If b is a ::Float, the precision of the result is Float::DIG+1.
If b is a BigDecimal, the precision of the result is b‘s precision of internal representation from platform. So, it’s return value is platform dependent.
# File 'ext/bigdecimal/bigdecimal.c', line 987
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }
    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);
    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;
    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, -1);
    }
    else {
	GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
	if (!mx) {
	    VpSetInf(c,VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, -1);
	}
    }
    return ToValue(c);
}
  
    #-  ⇒ big_decimal   
Return the negation of self.
-BigDecimal('5')  #=> -0.5e1# File 'ext/bigdecimal/bigdecimal.c', line 1224
static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}
  #/
[ GitHub ]#<(b)
Returns true if a is less than b.
Values may be coerced to perform the comparison (see ==, #coerce).
# File 'ext/bigdecimal/bigdecimal.c', line 1170
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}
  #<=(b)
Returns true if a is less than or equal to b.
Values may be coerced to perform the comparison (see ==, #coerce).
# File 'ext/bigdecimal/bigdecimal.c', line 1183
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}
  #<=>(r)
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
# File 'ext/bigdecimal/bigdecimal.c', line 1141
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}
  #==(r) Also known as: #===, #eql?
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0  #=> true# File 'ext/bigdecimal/bigdecimal.c', line 1157
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}
  #===(r)
Alias for #==.
#>(b)
Returns true if a is greater than b.
Values may be coerced to perform the comparison (see ==, #coerce).
# File 'ext/bigdecimal/bigdecimal.c', line 1196
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}
  #>=(b)
Returns true if a is greater than or equal to b.
Values may be coerced to perform the comparison (see ==, #coerce)
# File 'ext/bigdecimal/bigdecimal.c', line 1209
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}
  #_dump
Method used to provide marshalling support.
inf = BigDecimal('Infinity')
  #=> Infinity
BigDecimal._load(inf._dump)
  #=> InfinitySee the Marshal module.
# File 'ext/bigdecimal/bigdecimal.c', line 389
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;
    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}
  
    #abs  ⇒ big_decimal   
Returns the absolute value, as a BigDecimal.
BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1# File 'ext/bigdecimal/bigdecimal.c', line 1700
static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}
  #add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
# File 'ext/bigdecimal/bigdecimal.c', line 1625
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_add(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}
  #ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').ceil #=> 4
BigDecimal('-9.1').ceil #=> -9If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').ceil(3) #=> 3.142
BigDecimal('13345.234').ceil(-2) #=> 13400.0# File 'ext/bigdecimal/bigdecimal.c', line 1952
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);
    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    } else {
	iLoc = NUM2INT(vLoc);
    }
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}
  #clone
Alias for #dup.
#coerce(other)
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5Note that coercing a ::String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
# File 'ext/bigdecimal/bigdecimal.c', line 872
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;
    if (RB_TYPE_P(other, T_FLOAT)) {
	GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
	obj = rb_assoc_new(ToValue(b), self);
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }
    return obj;
}
  
    #div(value, digits)  ⇒ BigDecimal, Integer   
Divide by the specified value.
- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. If digits is 0, the result is the same as for the / operator or #quo. If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod. 
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3)  # => 0.133e1
a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1
a.div(b)     # => 1# File 'ext/bigdecimal/bigdecimal.c', line 1615
static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;
    rb_scan_args(argc, argv, "11", &b, &n);
    return BigDecimal_div2(self, b, n);
}
  #divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal("42")
b = BigDecimal("9")
q, m = a.divmod(b)
c = q * b + m
a == c  #=> trueThe quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
# File 'ext/bigdecimal/bigdecimal.c', line 1529
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;
    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}
  #dup Also known as: #clone
[ GitHub ]# File 'ext/bigdecimal/bigdecimal.c', line 2557
static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}
  #eql?(r)
Alias for #==.
#exponent
Returns the exponent of the BigDecimal number, as an ::Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
# File 'ext/bigdecimal/bigdecimal.c', line 2144
static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return INT2NUM(e);
}
  #fix
Return the integer part of the number, as a BigDecimal.
# File 'ext/bigdecimal/bigdecimal.c', line 1741
static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return ToValue(c);
}
  #floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').floor #=> 3
BigDecimal('-9.1').floor #=> -10If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').floor(3) #=> 3.141
BigDecimal('13345.234').floor(-2) #=> 13300.0# File 'ext/bigdecimal/bigdecimal.c', line 1905
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);
    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}
  #frac
Return the fractional part of the number, as a BigDecimal.
# File 'ext/bigdecimal/bigdecimal.c', line 1874
static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}
  #hash
Creates a hash for this BigDecimal.
Two BigDecimals with equal sign, fractional part and exponent have the same hash.
# File 'ext/bigdecimal/bigdecimal.c', line 360
static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;
    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
	hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
	hash += p->exponent;
    }
    return ST2FIX(hash);
}
  #initialize_copy(other)
private method for dup and clone the provided BigDecimal other
# File 'ext/bigdecimal/bigdecimal.c', line 2545
static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = rb_check_typeddata(other, &BigDecimal_data_type);
    if (self != other) {
	DATA_PTR(self) = VpCopy(pv, x);
    }
    return self;
}
  #inspect
Returns a string representation of self.
BigDecimal("1234.5678").inspect
  #=> "0.12345678e4"# File 'ext/bigdecimal/bigdecimal.c', line 2156
static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE str;
    size_t nc;
    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");
    str = rb_str_new(0, nc);
    VpToString(vp, RSTRING_PTR(str), 0, 0);
    rb_str_resize(str, strlen(RSTRING_PTR(str)));
    return str;
}
  #modulo
[ GitHub ]#mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
# File 'ext/bigdecimal/bigdecimal.c', line 1673
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_mult(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}
  
    
      #power(n)  
      #power(n, prec)  
    
  
Returns the value raised to the power of n.
Note that n must be an ::Integer.
Also available as the operator **.
# File 'ext/bigdecimal/bigdecimal.c', line 2299
static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;
    rb_scan_args(argc, argv, "11", &vexp, &prec);
    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);
    if (VpIsNaN(x)) {
	y = VpCreateRbObject(n, "0");
	RB_GC_GUARD(y->obj);
	VpSetNaN(y);
	return ToValue(y);
    }
  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;
      case T_BIGNUM:
	break;
      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    if (FIXABLE(d)) {
		vexp = LONG2FIX((long)d);
	    }
	    else {
		vexp = rb_dbl2big(d);
	    }
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
	break;
      case T_RATIONAL:
	if (is_zero(rb_rational_num(vexp))) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(rb_rational_den(vexp))) {
	    vexp = rb_rational_num(vexp);
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
	break;
      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
		 RB_OBJ_CLASSNAME(vexp));
    }
    if (VpIsZero(x)) {
	if (is_negative(vexp)) {
	    y = VpCreateRbObject(n, "#0");
	    RB_GC_GUARD(y->obj);
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-0) ** (-even_integer)  -> Infinity */
			VpSetPosInf(y);
		    }
		    else {
			/* (-0) ** (-odd_integer)  -> -Infinity */
			VpSetNegInf(y);
		    }
		}
		else {
		    /* (-0) ** (-non_integer)  -> Infinity */
		    VpSetPosInf(y);
		}
	    }
	    else {
		/* (+0) ** (-num)  -> Infinity */
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
	else if (is_zero(vexp)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else {
	    return ToValue(VpCreateRbObject(n, "0"));
	}
    }
    if (is_zero(vexp)) {
	return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
	return self;
    }
    if (VpIsInf(x)) {
	if (is_negative(vexp)) {
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-Infinity) ** (-even_integer) -> +0 */
			return ToValue(VpCreateRbObject(n, "0"));
		    }
		    else {
			/* (-Infinity) ** (-odd_integer) -> -0 */
			return ToValue(VpCreateRbObject(n, "-0"));
		    }
		}
		else {
		    /* (-Infinity) ** (-non_integer) -> -0 */
		    return ToValue(VpCreateRbObject(n, "-0"));
		}
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    y = VpCreateRbObject(n, "0");
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			VpSetPosInf(y);
		    }
		    else {
			VpSetNegInf(y);
		    }
		}
		else {
		    /* TODO: support complex */
		    rb_raise(rb_eMathDomainError,
			     "a non-integral exponent for a negative base");
		}
	    }
	    else {
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
    }
    if (exp != NULL) {
	return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
	VALUE abs_value = BigDecimal_abs(self);
	if (is_one(abs_value)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
	    if (is_negative(vexp)) {
		y = VpCreateRbObject(n, "0");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    if (is_positive(vexp)) {
		y = VpCreateRbObject(n, "0");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
    }
    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;
    if (VpIsDef(x)) {
	mp = x->Prec * (VpBaseFig() + 1);
	GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
	GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
	VpMidRound(y, VpGetRoundMode(), n);
    }
    return ToValue(y);
}
  
    #precs  ⇒ Array   
Returns an Array of two ::Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
BigDecimal('5').precs #=> [9, 18]# File 'ext/bigdecimal/bigdecimal.c', line 339
static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;
    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
		       INT2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}
  #quo
[ GitHub ]#remainder
[ GitHub ]#round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').round #=> 3
BigDecimal('8.7').round #=> 9
BigDecimal('-9.9').round #=> -10If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').round(3) #=> 3.142
BigDecimal('13345.234').round(-2) #=> 13300.0The value of the optional mode argument can be used to determine how rounding is performed; see .mode.
# File 'ext/bigdecimal/bigdecimal.c', line 1777
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    size_t mx, pl;
    unsigned short sw = VpGetRoundMode();
    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
	iLoc = 0;
	break;
      case 1:
        if (RB_TYPE_P(vLoc, T_HASH)) {
	    sw = check_rounding_mode_option(vLoc);
	}
	else {
	    iLoc = NUM2INT(vLoc);
	}
	break;
      case 2:
	iLoc = NUM2INT(vLoc);
	if (RB_TYPE_P(vRound, T_HASH)) {
	    sw = check_rounding_mode_option(vRound);
	}
	else {
	    sw = check_rounding_mode(vRound);
	}
	break;
      default:
	break;
    }
    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}
  #sign
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
- 
value is Not a Number 
- BigDecimal::SIGN_POSITIVE_ZERO
- 
value is +0 
- BigDecimal::SIGN_NEGATIVE_ZERO
- 
value is -0 
- BigDecimal::SIGN_POSITIVE_INFINITE
- 
value is +Infinity 
- BigDecimal::SIGN_NEGATIVE_INFINITE
- 
value is -Infinity 
- BigDecimal::SIGN_POSITIVE_FINITE
- 
value is positive 
- BigDecimal::SIGN_NEGATIVE_FINITE
- 
value is negative 
# File 'ext/bigdecimal/bigdecimal.c', line 2769
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}
  #split
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an ::Integer.
The fourth value is an ::Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a ::Float.)
# File 'ext/bigdecimal/bigdecimal.c', line 2107
static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;
    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
	size_t len = strlen(psz1 + 1);
	memmove(psz1, psz1 + 1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, INT2NUM(e));
    return obj;
}
  #sqrt(n)
Returns the square root of the value.
Result has at least n significant digits.
# File 'ext/bigdecimal/bigdecimal.c', line 1722
static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}
  
    #sub(value, digits)  ⇒ BigDecimal   
Subtract the specified value.
e.g.
c = a.sub(b,n)- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
# File 'ext/bigdecimal/bigdecimal.c', line 1655
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_sub(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}
  
    #to_d  ⇒ BigDecimal   
Returns self.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_d                       # => 0.314e1# File 'ext/bigdecimal/lib/bigdecimal/util.rb', line 104
def to_d self end
#to_digits ⇒ String
#to_f
# File 'ext/bigdecimal/bigdecimal.c', line 779
static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;
    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;
    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);
overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(VpGetDoubleNegInf());
    else
	return rb_float_new(VpGetDoublePosInf());
underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(-0.0);
    else
	return rb_float_new(0.0);
}
  #to_i Also known as: #to_int
Returns the value as an ::Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
# File 'ext/bigdecimal/bigdecimal.c', line 732
static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);
    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
	if (BIGDECIMAL_NEGATIVE_P(p)) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}
  #to_int
Alias for #to_i.
#to_r
Converts a BigDecimal to a ::Rational.
# File 'ext/bigdecimal/bigdecimal.c', line 826
static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;
    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);
    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);
    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
	return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}
  #to_s(s) ⇒ ?
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'
BigDecimal('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'
BigDecimal('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'# File 'ext/bigdecimal/bigdecimal.c', line 2011
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0: E format, 1: F format */
    int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    SIGNED_VALUE m;
    VALUE  f;
    GUARD_OBJ(vp, GetVpValue(self, 1));
    if (rb_scan_args(argc, argv, "01", &f) == 1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    psz = StringValueCStr(f);
	    rb_check_safe_obj(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc*10 + ch - '0';
	    }
	}
	else {
	    m = NUM2INT(f);
	    if (m <= 0) {
		rb_raise(rb_eArgError, "argument must be positive");
	    }
	    mc = (size_t)m;
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }
    str = rb_str_new(0, nc);
    psz = RSTRING_PTR(str);
    if (fmt) {
	VpToFString(vp, psz, mc, fPlus);
    }
    else {
	VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}
  #truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').truncate #=> 3
BigDecimal('8.7').truncate #=> 8
BigDecimal('-9.9').truncate #=> -9If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').truncate(3) #=> 3.141
BigDecimal('13345.234').truncate(-2) #=> 13300.0# File 'ext/bigdecimal/bigdecimal.c', line 1845
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);
    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}