123456789_123456789_123456789_123456789_123456789_

Class: Float

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Class Chain:
self, ::Numeric
Instance Chain:
Inherits: Numeric
Defined in: numeric.c,
complex.c,
rational.c

Overview

Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

Constant Summary

  • DIG =

    The minimum number of significant decimal digits in a double-precision floating point.

    Usually defaults to 15.

    # File 'numeric.c', line 5501
    INT2FIX(DBL_DIG)
  • EPSILON =

    The difference between 1 and the smallest double-precision floating point number greater than 1.

    Usually defaults to 2.2204460492503131e-16.

    # File 'numeric.c', line 5553
    DBL2NUM(DBL_EPSILON)
  • INFINITY =

    An expression representing positive infinity.

    # File 'numeric.c', line 5557
    DBL2NUM(INFINITY)
  • MANT_DIG =

    The number of base digits for the double data type.

    Usually defaults to 53.

    # File 'numeric.c', line 5494
    INT2FIX(DBL_MANT_DIG)
  • MAX =

    The largest possible integer in a double-precision floating point number.

    Usually defaults to 1.7976931348623157e+308.

    # File 'numeric.c', line 5546
    DBL2NUM(DBL_MAX)
  • MAX_10_EXP =

    The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to 308.

    # File 'numeric.c', line 5529
    INT2FIX(DBL_MAX_10_EXP)
  • MAX_EXP =

    The largest possible exponent value in a double-precision floating point.

    Usually defaults to 1024.

    # File 'numeric.c', line 5515
    INT2FIX(DBL_MAX_EXP)
  • MIN =

    :MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

    # File 'numeric.c', line 5540
    The smallest positive normalized number in a double-precision floating point.
    
    Usually defaults to 2.2250738585072014e-308.
    
    If the platform supports denormalized numbers,
    there are numbers between zero and Float
  • MIN_10_EXP =

    The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to -307.

    # File 'numeric.c', line 5522
    INT2FIX(DBL_MIN_10_EXP)
  • MIN_EXP =

    The smallest possible exponent value in a double-precision floating point.

    Usually defaults to -1021.

    # File 'numeric.c', line 5508
    INT2FIX(DBL_MIN_EXP)
  • NAN =

    An expression representing a value which is “not a number”.

    # File 'numeric.c', line 5561
    DBL2NUM(NAN)
  • RADIX =

    The base of the floating point, or number of unique digits used to represent the number.

    Usually defaults to 2 on most systems, which would represent a base-10 decimal.

    # File 'numeric.c', line 5488
    INT2FIX(FLT_RADIX)
  • ROUNDS =

    Represents the rounding mode for floating point addition.

    Usually defaults to 1, rounding to the nearest number.

    Other modes include:

    -1

    Indeterminable

    0

    Rounding towards zero

    1

    Rounding to the nearest number

    2

    Rounding towards positive infinity

    3

    Rounding towards negative infinity

    # File 'numeric.c', line 5481
    INT2FIX(FLT_ROUNDS)

Instance Attribute Summary

::Numeric - Inherited

#finite?

Returns true if num is a finite number, otherwise returns false.

#infinite?

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

#integer?

Returns true if num is an ::Integer.

#negative?

Returns true if num is less than 0.

#nonzero?

Returns self if num is not zero, nil otherwise.

#positive?

Returns true if num is greater than 0.

#real

Returns self.

#real?

Returns true if num is a real number (i.e.

#zero?

Returns true if num has a zero value.

Instance Method Summary

::Numeric - Inherited

#%

x.modulo(y) means x-y*(x/y).floor.

#+@

Unary Plus—Returns the receiver.

#-@

Unary Minus—Returns the receiver, negated.

#<=>

Returns zero if number equals other, otherwise returns nil.

#abs

Returns the absolute value of num.

#abs2

Returns square of self.

#angle

Alias for Numeric#arg.

#arg

Returns 0 if the value is positive, pi otherwise.

#ceil

Returns the smallest number greater than or equal to num with a precision of ndigits decimal digits (default: 0).

#clone

Returns the receiver.

#coerce,
#conj

Returns self.

#conjugate

Alias for Numeric#conj.

#denominator

Returns the denominator (always positive).

#div

Uses #/ to perform division, then converts the result to an integer.

#divmod

Returns an array containing the quotient and modulus obtained by dividing num by numeric.

#dup

Returns the receiver.

#eql?

Returns true if num and numeric are the same type and have equal values.

#fdiv

Returns float division.

#floor

Returns the largest number less than or equal to num with a precision of ndigits decimal digits (default: 0).

#i

Returns the corresponding imaginary number.

#imag

Returns zero.

#imaginary

Alias for Numeric#imag.

#magnitude

Alias for Numeric#abs.

#modulo

Alias for Numeric#%.

#numerator

Returns the numerator.

#phase

Alias for Numeric#arg.

#polar

Returns an array; [num.abs, num.arg].

#quo

Returns the most exact division (rational for integers, float for floats).

#rect

Returns an array; [num, 0].

#rectangular

Alias for Numeric#rect.

#remainder

x.remainder(y) means x-y*(x/y).truncate.

#round

Returns num rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

#step

Invokes the given block with the sequence of numbers starting at num, incremented by step (defaulted to 1) on each call.

#to_c

Returns the value as a complex.

#to_int

Invokes the child class's #to_i method to convert num to an integer.

#truncate

Returns num truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

#singleton_method_added

Trap attempts to add methods to ::Numeric objects.

::Comparable - Included

#<

Compares two objects based on the receiver's #<=> method, returning true if it returns -1.

#<=

Compares two objects based on the receiver's #<=> method, returning true if it returns -1 or 0.

#==

Compares two objects based on the receiver's #<=> method, returning true if it returns 0.

#>

Compares two objects based on the receiver's #<=> method, returning true if it returns 1.

#>=

Compares two objects based on the receiver's #<=> method, returning true if it returns 0 or 1.

#between?

Returns false if obj #<=> min is less than zero or if anObject #<=> max is greater than zero, true otherwise.

#clamp

Returns min if obj #<=> min is less than zero, max if obj #<=> max is greater than zero and obj otherwise.

Instance Attribute Details

#finite?Boolean (readonly)

Returns true if float is a valid IEEE floating point number, i.e. it is not infinite and #nan? is false.

[ GitHub ]

  
# File 'numeric.c', line 1722

VALUE
rb_flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

#ifdef HAVE_ISFINITE
    if (!isfinite(value))
	return Qfalse;
#else
    if (isinf(value) || isnan(value))
	return Qfalse;
#endif

    return Qtrue;
}

#infinite?Boolean (readonly)

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

(0.0).infinite?        #=> nil
(-1.0/0.0).infinite?   #=> -1
(+1.0/0.0).infinite?   #=> 1
[ GitHub ]

  
# File 'numeric.c', line 1702

VALUE
rb_flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
	return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}

#nan?Boolean (readonly)

Returns true if float is an invalid IEEE floating point number.

a = -1.0      #=> -1.0
a.nan?        #=> false
a = 0.0/0.0   #=> NaN
a.nan?        #=> true
[ GitHub ]

  
# File 'numeric.c', line 1682

static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return isnan(value) ? Qtrue : Qfalse;
}

#negative?Boolean (readonly)

Returns true if float is less than 0.

[ GitHub ]

  
# File 'numeric.c', line 2365

static VALUE
flo_negative_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f < 0.0 ? Qtrue : Qfalse;
}

#positive?Boolean (readonly)

Returns true if float is greater than 0.

[ GitHub ]

  
# File 'numeric.c', line 2351

static VALUE
flo_positive_p(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    return f > 0.0 ? Qtrue : Qfalse;
}

#zero?Boolean (readonly)

Returns true if float is 0.0.

[ GitHub ]

  
# File 'numeric.c', line 1661

static VALUE
flo_zero_p(VALUE num)
{
    if (RFLOAT_VALUE(num) == 0.0) {
	return Qtrue;
    }
    return Qfalse;
}

Instance Method Details

#%(other) ⇒ Float #modulo(other) ⇒ Float
Also known as: #modulo

Returns the modulo after division of float by other.

6543.21.modulo(137)      #=> 104.21000000000004
6543.21.modulo(137.24)   #=> 92.92999999999961
[ GitHub ]

  
# File 'numeric.c', line 1176

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#*(other) ⇒ Float

Returns a new Float which is the product of float and other.

[ GitHub ]

  
# File 'numeric.c', line 1054

static VALUE
flo_mul(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }
}

#**(other) ⇒ Float

Raises float to the power of other.

2.0**3   #=> 8.0
[ GitHub ]

  
# File 'numeric.c', line 1248

VALUE
rb_float_pow(VALUE x, VALUE y)
{
    double dx, dy;
    if (RB_TYPE_P(y, T_FIXNUM)) {
	dx = RFLOAT_VALUE(x);
	dy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	dx = RFLOAT_VALUE(x);
	dy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	dx = RFLOAT_VALUE(x);
	dy = RFLOAT_VALUE(y);
	if (dx < 0 && dy != round(dy))
	    return num_funcall1(rb_complex_raw1(x), idPow, y);
    }
    else {
	return rb_num_coerce_bin(x, y, idPow);
    }
    return DBL2NUM(pow(dx, dy));
}

#+(other) ⇒ Float

Returns a new Float which is the sum of float and other.

[ GitHub ]

  
# File 'numeric.c', line 1006

static VALUE
flo_plus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Float

Returns a new Float which is the difference of float and other.

[ GitHub ]

  
# File 'numeric.c', line 1030

static VALUE
flo_minus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Float

Returns float, negated.

[ GitHub ]

  
# File 'numeric.c', line 993

VALUE
rb_float_uminus(VALUE flt)
{
    return DBL2NUM(-RFLOAT_VALUE(flt));
}

#/(other) ⇒ Float

Returns a new Float which is the result of dividing float by other.

[ GitHub ]

  
# File 'numeric.c', line 1078

static VALUE
flo_div(VALUE x, VALUE y)
{
    long f_y;
    double d;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	f_y = FIX2LONG(y);
	return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	d = rb_big2dbl(y);
	return DBL2NUM(RFLOAT_VALUE(x) / d);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '/');
    }
}

#<(real) ⇒ Boolean

Returns true if float is less than real.

The result of NaN < NaN is undefined, so an implementation-dependent value is returned.

[ GitHub ]

  
# File 'numeric.c', line 1526

static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '<');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a < b)?Qtrue:Qfalse;
}

#<=(real) ⇒ Boolean

Returns true if float is less than or equal to real.

The result of NaN <= NaN is undefined, so an implementation-dependent value is returned.

[ GitHub ]

  
# File 'numeric.c', line 1563

static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, idLE);
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a <= b)?Qtrue:Qfalse;
}

#<=>(real) ⇒ 1, ...

Returns -1, 0, or +1 depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in the ::Comparable module.

The result of NaN <=> NaN is undefined, so an implementation-dependent value is returned.

nil is returned if the two values are incomparable.

[ GitHub ]

  
# File 'numeric.c', line 1404

static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return INT2FIX(-FIX2INT(rel));
        return rel;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
    }
    else {
	if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
	    if (RTEST(i)) {
		int j = rb_cmpint(i, x, y);
		j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
		return INT2FIX(j);
	    }
	    if (a > 0.0) return INT2FIX(1);
	    return INT2FIX(-1);
	}
	return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}

#==

[ GitHub ]

#===

[ GitHub ]

#>(real) ⇒ Boolean

Returns true if float is greater than real.

The result of NaN > NaN is undefined, so an implementation-dependent value is returned.

[ GitHub ]

  
# File 'numeric.c', line 1452

VALUE
rb_float_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '>');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a > b)?Qtrue:Qfalse;
}

#>=(real) ⇒ Boolean

Returns true if float is greater than or equal to real.

The result of NaN >= NaN is undefined, so an implementation-dependent value is returned.

[ GitHub ]

  
# File 'numeric.c', line 1489

static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, idGE);
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a >= b)?Qtrue:Qfalse;
}

#absFloat #magnitudeFloat
Also known as: #magnitude

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
34.56.abs      #=> 34.56

#magnitude is an alias for abs.

[ GitHub ]

  
# File 'numeric.c', line 1647

VALUE
rb_float_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#arg0, Float #angle0, Float #phase0, Float
Also known as: #angle, #phase

Returns 0 if the value is positive, pi otherwise.

[ GitHub ]

  
# File 'complex.c', line 2145

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#ceil([ndigits]) ⇒ Integer, Float

Returns the smallest number greater than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.ceil      #=> 2
2.0.ceil      #=> 2
(-1.2).ceil   #=> -1
(-2.0).ceil   #=> -2

1.234567.ceil(2)   #=> 1.24
1.234567.ceil(3)   #=> 1.235
1.234567.ceil(4)   #=> 1.2346
1.234567.ceil(5)   #=> 1.23457

34567.89.ceil(-5)  #=> 100000
34567.89.ceil(-4)  #=> 40000
34567.89.ceil(-3)  #=> 35000
34567.89.ceil(-2)  #=> 34600
34567.89.ceil(-1)  #=> 34570
34567.89.ceil(0)   #=> 34568
34567.89.ceil(1)   #=> 34567.9
34567.89.ceil(2)   #=> 34567.89
34567.89.ceil(3)   #=> 34567.89

Note that the limited precision of floating point arithmetic might lead to surprising results:

(2.1 / 0.7).ceil  #=> 4 (!)
[ GitHub ]

  
# File 'numeric.c', line 1958

static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
    double number, f;
    int ndigits = 0;

    if (rb_check_arity(argc, 0, 1)) {
	ndigits = NUM2INT(argv[0]);
    }
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits > 0) {
	int binexp;
	frexp(number, &binexp);
	if (float_round_overflow(ndigits, binexp)) return num;
	if (number < 0.0 && float_round_underflow(ndigits, binexp))
	    return DBL2NUM(0.0);
	f = pow(10, ndigits);
	f = ceil(number * f) / f;
	return DBL2NUM(f);
    }
    else {
	num = dbl2ival(ceil(number));
	if (ndigits < 0) num = rb_int_ceil(num, ndigits);
	return num;
    }
}

#coerce(numeric) ⇒ Array

Returns an array with both numeric and float represented as Float objects.

This is achieved by converting numeric to a Float.

1.2.coerce(3)       #=> [3.0, 1.2]
2.5.coerce(1.1)     #=> [1.1, 2.5]
[ GitHub ]

  
# File 'numeric.c', line 980

static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}

#denominatorInteger

Returns the denominator (always positive). The result is machine dependent.

See also #numerator.

[ GitHub ]

  
# File 'rational.c', line 2118

static VALUE
float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (isinf(d) || isnan(d))
	return INT2FIX(1);
    r = float_to_r(self);
    if (canonicalization && k_integer_p(r)) {
	return ONE;
    }
    return nurat_denominator(r);
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

42.0.divmod(6)   #=> [7, 0.0]
42.0.divmod(5)   #=> [8, 2.0]
[ GitHub ]

  
# File 'numeric.c', line 1215

static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, id_divmod);
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}

#eql?Boolean

[ GitHub ]

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float

Alias for #quo.

#floor([ndigits]) ⇒ Integer, Float

Returns the largest number less than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.floor      #=> 1
2.0.floor      #=> 2
(-1.2).floor   #=> -2
(-2.0).floor   #=> -2

1.234567.floor(2)   #=> 1.23
1.234567.floor(3)   #=> 1.234
1.234567.floor(4)   #=> 1.2345
1.234567.floor(5)   #=> 1.23456

34567.89.floor(-5)  #=> 0
34567.89.floor(-4)  #=> 30000
34567.89.floor(-3)  #=> 34000
34567.89.floor(-2)  #=> 34500
34567.89.floor(-1)  #=> 34560
34567.89.floor(0)   #=> 34567
34567.89.floor(1)   #=> 34567.8
34567.89.floor(2)   #=> 34567.89
34567.89.floor(3)   #=> 34567.89

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).floor  #=> 2 (!)
[ GitHub ]

  
# File 'numeric.c', line 1889

static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
    double number, f;
    int ndigits = 0;

    if (rb_check_arity(argc, 0, 1)) {
	ndigits = NUM2INT(argv[0]);
    }
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits > 0) {
	int binexp;
	frexp(number, &binexp);
	if (float_round_overflow(ndigits, binexp)) return num;
	if (number > 0.0 && float_round_underflow(ndigits, binexp))
	    return DBL2NUM(0.0);
	f = pow(10, ndigits);
	f = floor(number * f) / f;
	return DBL2NUM(f);
    }
    else {
	num = dbl2ival(floor(number));
	if (ndigits < 0) num = rb_int_floor(num, ndigits);
	return num;
    }
}

#hashInteger

Returns a hash code for this float.

See also Object#hash.

[ GitHub ]

  
# File 'numeric.c', line 1368

static VALUE
flo_hash(VALUE num)
{
    return rb_dbl_hash(RFLOAT_VALUE(num));
}

#to_sString #inspectString

Alias for #to_s.

#absFloat #magnitudeFloat

Alias for #abs.

#%(other) ⇒ Float #modulo(other) ⇒ Float

Alias for #%.

#next_floatFloat

Returns the next representable floating point number.

Float::MAX.next_float and Float::INFINITY.next_float is INFINITY.

Float::NAN.next_float is NAN.

For example:

0.01.next_float    #=> 0.010000000000000002
1.0.next_float     #=> 1.0000000000000002
100.0.next_float   #=> 100.00000000000001

0.01.next_float - 0.01     #=> 1.734723475976807e-18
1.0.next_float - 1.0       #=> 2.220446049250313e-16
100.0.next_float - 100.0   #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147cp-7 0.010000000000000002
#   0x1.47ae147ae147dp-7 0.010000000000000004
#   0x1.47ae147ae147ep-7 0.010000000000000005
#   0x1.47ae147ae147fp-7 0.010000000000000007
#   0x1.47ae147ae148p-7  0.010000000000000009
#   0x1.47ae147ae1481p-7 0.01000000000000001
#   0x1.47ae147ae1482p-7 0.010000000000000012
#   0x1.47ae147ae1483p-7 0.010000000000000014
#   0x1.47ae147ae1484p-7 0.010000000000000016
#   0x1.47ae147ae1485p-7 0.010000000000000018
#   0x1.47ae147ae1486p-7 0.01000000000000002
#   0x1.47ae147ae1487p-7 0.010000000000000021
#   0x1.47ae147ae1488p-7 0.010000000000000023
#   0x1.47ae147ae1489p-7 0.010000000000000024
#   0x1.47ae147ae148ap-7 0.010000000000000026
#   0x1.47ae147ae148bp-7 0.010000000000000028
#   0x1.47ae147ae148cp-7 0.01000000000000003
#   0x1.47ae147ae148dp-7 0.010000000000000031
#   0x1.47ae147ae148ep-7 0.010000000000000033

f = 0.0
100.times { f += 0.1 }
f                           #=> 9.99999999999998       # should be 10.0 in the ideal world.
10-f                        #=> 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10          #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) #=> 11.0                   # the error is 11 ulp.
(10-f)/(10*Float::EPSILON)  #=> 8.8                    # approximation of the above.
"%a" % 10                   #=> "0x1.4p+3"
"%a" % f                    #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.
[ GitHub ]

  
# File 'numeric.c', line 1790

static VALUE
flo_next_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, INFINITY);
    return DBL2NUM(y);
}

#numeratorInteger

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

See also #denominator.

[ GitHub ]

  
# File 'rational.c', line 2095

static VALUE
float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (isinf(d) || isnan(d))
	return self;
    r = float_to_r(self);
    if (canonicalization && k_integer_p(r)) {
	return r;
    }
    return nurat_numerator(r);
}

#arg0, Float #angle0, Float #phase0, Float

Alias for #arg.

#prev_floatFloat

Returns the previous representable floating point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is NAN.

For example:

0.01.prev_float    #=> 0.009999999999999998
1.0.prev_float     #=> 0.9999999999999999
100.0.prev_float   #=> 99.99999999999999

0.01 - 0.01.prev_float     #=> 1.734723475976807e-18
1.0 - 1.0.prev_float       #=> 1.1102230246251565e-16
100.0 - 100.0.prev_float   #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147ap-7 0.009999999999999998
#   0x1.47ae147ae1479p-7 0.009999999999999997
#   0x1.47ae147ae1478p-7 0.009999999999999995
#   0x1.47ae147ae1477p-7 0.009999999999999993
#   0x1.47ae147ae1476p-7 0.009999999999999992
#   0x1.47ae147ae1475p-7 0.00999999999999999
#   0x1.47ae147ae1474p-7 0.009999999999999988
#   0x1.47ae147ae1473p-7 0.009999999999999986
#   0x1.47ae147ae1472p-7 0.009999999999999985
#   0x1.47ae147ae1471p-7 0.009999999999999983
#   0x1.47ae147ae147p-7  0.009999999999999981
#   0x1.47ae147ae146fp-7 0.00999999999999998
#   0x1.47ae147ae146ep-7 0.009999999999999978
#   0x1.47ae147ae146dp-7 0.009999999999999976
#   0x1.47ae147ae146cp-7 0.009999999999999974
#   0x1.47ae147ae146bp-7 0.009999999999999972
#   0x1.47ae147ae146ap-7 0.00999999999999997
#   0x1.47ae147ae1469p-7 0.009999999999999969
#   0x1.47ae147ae1468p-7 0.009999999999999967
[ GitHub ]

  
# File 'numeric.c', line 1841

static VALUE
flo_prev_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, -INFINITY);
    return DBL2NUM(y);
}

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Also known as: #fdiv

Returns float / numeric, same as #/.

[ GitHub ]

  
# File 'numeric.c', line 1108

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return num_funcall1(x, '/', y);
}

#rationalize([eps]) ⇒ Rational

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See also #to_r.

[ GitHub ]

  
# File 'rational.c', line 2324

static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e;
    double d = RFLOAT_VALUE(self);

    if (d < 0.0)
        return rb_rational_uminus(float_rationalize(argc, argv, DBL2NUM(-d)));

    rb_scan_args(argc, argv, "01", &e);

    if (argc != 0) {
        return rb_flt_rationalize_with_prec(self, e);
    }
    else {
        return rb_flt_rationalize(self);
    }
}

#round([ndigits] [, half: mode]) ⇒ Integer, Float

Returns float rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.4.round      #=> 1
1.5.round      #=> 2
1.6.round      #=> 2
(-1.5).round   #=> -2

1.234567.round(2)   #=> 1.23
1.234567.round(3)   #=> 1.235
1.234567.round(4)   #=> 1.2346
1.234567.round(5)   #=> 1.23457

34567.89.round(-5)  #=> 0
34567.89.round(-4)  #=> 30000
34567.89.round(-3)  #=> 35000
34567.89.round(-2)  #=> 34600
34567.89.round(-1)  #=> 34570
34567.89.round(0)   #=> 34568
34567.89.round(1)   #=> 34567.9
34567.89.round(2)   #=> 34567.89
34567.89.round(3)   #=> 34567.89

If the optional half keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode:

  • :up or nil: round half away from zero (default)

  • :down: round half toward zero

  • :even: round half toward the nearest even number

    2.5.round(half: :up)      #=> 3
    2.5.round(half: :down)    #=> 2
    2.5.round(half: :even)    #=> 2
    3.5.round(half: :up)      #=> 4
    3.5.round(half: :down)    #=> 3
    3.5.round(half: :even)    #=> 4
    (-2.5).round(half: :up)   #=> -3
    (-2.5).round(half: :down) #=> -2
    (-2.5).round(half: :even) #=> -2
[ GitHub ]

  
# File 'numeric.c', line 2211

static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    double number, f, x;
    VALUE nd, opt;
    int ndigits = 0;
    enum ruby_num_rounding_mode mode;

    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
	ndigits = NUM2INT(nd);
    }
    mode = rb_num_get_rounding_option(opt);
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits < 0) {
	return rb_int_round(flo_to_i(num), ndigits, mode);
    }
    if (ndigits == 0) {
	x = ROUND_CALL(mode, round, (number, 1.0));
	return dbl2ival(x);
    }
    if (isfinite(number)) {
	int binexp;
	frexp(number, &binexp);
	if (float_round_overflow(ndigits, binexp)) return num;
	if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
	f = pow(10, ndigits);
	x = ROUND_CALL(mode, round, (number, f));
	return DBL2NUM(x / f);
    }
    return num;
}

#to_fself

Since float is already a Float, returns self.

[ GitHub ]

  
# File 'numeric.c', line 1627

static VALUE
flo_to_f(VALUE num)
{
    return num;
}

#to_iInteger #to_intInteger
Also known as: #to_int

Returns the float truncated to an ::Integer.

1.2.to_i      #=> 1
(-1.2).to_i   #=> -1

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).to_i  #=> 2 (!)

#to_int is an alias for #to_i.

[ GitHub ]

  
# File 'numeric.c', line 2301

static VALUE
flo_to_i(VALUE num)
{
    double f = RFLOAT_VALUE(num);

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    return dbl2ival(f);
}

#to_iInteger #to_intInteger

Alias for #to_i.

#to_rRational

Returns the value as a rational.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)
0.3.to_r    #=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn't so.

0.3.to_r   == 3/10r  #=> false
"0.3".to_r == 3/10r  #=> true

See also #rationalize.

[ GitHub ]

  
# File 'rational.c', line 2231

static VALUE
float_to_r(VALUE self)
{
    VALUE f, n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    {
	long ln = FIX2LONG(n);

	if (ln == 0)
	    return rb_rational_new1(f);
	if (ln > 0)
	    return rb_rational_new1(rb_int_lshift(f, n));
	ln = -ln;
	return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(ln)));
    }
#else
    f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
    if (RB_TYPE_P(f, T_RATIONAL))
	return f;
    return rb_rational_new1(f);
#endif
}

#to_sString Also known as: #inspect

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

[ GitHub ]

  
# File 'numeric.c', line 896

static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value)) {
	static const char minf[] = "-Infinity";
	const int pos = (value > 0); /* skip "-" */
	return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
    }
    else if (isnan(value))
	return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
	if (decpt < digs) {
	    memmove(buf + decpt + 1, buf + decpt, digs - decpt);
	    buf[decpt] = '.';
	    rb_str_cat(s, buf, digs + 1);
	}
	else if (decpt <= DBL_DIG) {
	    long len;
	    char *ptr;
	    rb_str_cat(s, buf, digs);
	    rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
	    ptr = RSTRING_PTR(s) + len;
	    if (decpt > digs) {
		memset(ptr, '0', decpt - digs);
		ptr += decpt - digs;
	    }
	    memcpy(ptr, ".0", 2);
	}
	else {
	    goto exp;
	}
    }
    else if (decpt > -4) {
	long len;
	char *ptr;
	rb_str_cat(s, "0.", 2);
	rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
	ptr = RSTRING_PTR(s);
	memset(ptr += len, '0', -decpt);
	memcpy(ptr -= decpt, buf, digs);
    }
    else {
      exp:
	if (digs > 1) {
	    memmove(buf + 2, buf + 1, digs - 1);
	}
	else {
	    buf[2] = '0';
	    digs++;
	}
	buf[1] = '.';
	rb_str_cat(s, buf, digs + 1);
	rb_str_catf(s, "e%+03d", decpt - 1);
    }
    return s;
}

#truncate([ndigits]) ⇒ Integer, Float

Returns float truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

2.8.truncate           #=> 2
(-2.8).truncate        #=> -2
1.234567.truncate(2)   #=> 1.23
34567.89.truncate(-2)  #=> 34500

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).truncate  #=> 2 (!)
[ GitHub ]

  
# File 'numeric.c', line 2335

static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
    if (signbit(RFLOAT_VALUE(num)))
	return flo_ceil(argc, argv, num);
    else
	return flo_floor(argc, argv, num);
}