Class: Matrix
Relationships & Source Files | |
Namespace Children | |
Classes:
| |
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
Enumerable
|
|
Inherits: | Object |
Defined in: | lib/matrix.rb, lib/matrix/eigenvalue_decomposition.rb, lib/matrix/lup_decomposition.rb |
Overview
The Matrix
class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant).
Method Catalogue
To create a matrix:
-
Matrix
.[](*rows) -
Matrix
.rows(rows, copy = true) -
Matrix
.columns(columns) -
Matrix
.build(row_count, column_count, &block) -
Matrix
.diagonal(*values) -
Matrix
.scalar(n, value) -
Matrix
.identity(n) -
Matrix
.unit(n) -
Matrix
.I(n) -
Matrix
.zero(n) -
Matrix
.row_vector(row) -
Matrix
.column_vector(column) -
Matrix
.empty(row_count, column_count) -
Matrix
.hstack(*matrices) -
Matrix
.vstack(*matrices)
To access Matrix
elements/columns/rows/submatrices/properties:
-
#[](i, j)
-
#row_count (row_size)
-
#column_count (column_size)
-
#row(i)
-
#column(j)
-
#minor(*param)
-
#first_minor(row, column)
-
#cofactor(row, column)
-
#laplace_expansion(row_or_column: num)
-
#cofactor_expansion(row_or_column: num)
Properties of a matrix:
Matrix
arithmetic:
Matrix
functions:
-
#hstack(*matrices)
-
#vstack(*matrices)
Matrix
decompositions:
Complex arithmetic:
-
conj
-
conjugate
-
imag
-
imaginary
-
real
-
rect
-
rectangular
Conversion to other data types:
-
#coerce(other)
String representations:
Constant Summary
-
SELECTORS =
# File 'lib/matrix.rb', line 575{all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
Class Method Summary
-
.[](*rows)
Creates a matrix where each argument is a row.
-
.build(row_count, column_count = row_count)
Creates a matrix of size #row_count x #column_count.
-
.column_vector(column)
Creates a single-column matrix where the values of that column are as given in #column.
-
.columns(columns)
Creates a matrix using
columns
as an array of column vectors. -
.diagonal(*values)
Creates a matrix where the diagonal elements are composed of
values
. -
.empty(row_count = 0, column_count = 0)
Creates a empty matrix of #row_count x #column_count.
-
.hstack(x, *matrices)
Create a matrix by stacking matrices horizontally.
-
I(n)
Alias for .identity.
-
.identity(n)
(also: .unit, .I)
Creates an
n
byn
identity matrix. -
.new(rows, column_count = rows[0].size) ⇒ Matrix
constructor
new
is private; use .rows, columns, [], etc… -
.row_vector(row)
Creates a single-row matrix where the values of that row are as given in #row.
-
.rows(rows, copy = true)
Creates a matrix where
rows
is an array of arrays, each of which is a row of the matrix. -
.scalar(n, value)
Creates an
n
byn
diagonal matrix where each diagonal element isvalue
. -
.unit(n)
Alias for .identity.
-
.vstack(x, *matrices)
Create a matrix by stacking matrices vertically.
-
.zero(row_count, column_count = row_count)
Creates a zero matrix.
Instance Attribute Summary
-
#column_count
(also: #column_size)
readonly
Returns the number of columns.
-
#column_size
readonly
Alias for #column_count.
-
#diagonal? ⇒ Boolean
readonly
Returns
true
if this is a diagonal matrix. -
#empty? ⇒ Boolean
readonly
Returns
true
if this is an empty matrix, i.e. -
#hermitian? ⇒ Boolean
readonly
Returns
true
if this is an hermitian matrix. -
#lower_triangular? ⇒ Boolean
readonly
Returns
true
if this is a lower triangular matrix. -
#normal? ⇒ Boolean
readonly
Returns
true
if this is a normal matrix. -
#orthogonal? ⇒ Boolean
readonly
Returns
true
if this is an orthogonal matrix Raises an error if matrix is not square. -
#permutation? ⇒ Boolean
readonly
Returns
true
if this is a permutation matrix Raises an error if matrix is not square. -
#real? ⇒ Boolean
readonly
Returns
true
if all entries of the matrix are real. -
#regular? ⇒ Boolean
readonly
Returns
true
if this is a regular (i.e. -
#singular? ⇒ Boolean
readonly
Returns
true
if this is a singular matrix. -
#square? ⇒ Boolean
readonly
Returns
true
if this is a square matrix. -
#symmetric? ⇒ Boolean
readonly
Returns
true
if this is a symmetric matrix. -
#unitary? ⇒ Boolean
readonly
Returns
true
if this is a unitary matrix Raises an error if matrix is not square. -
#upper_triangular? ⇒ Boolean
readonly
Returns
true
if this is an upper triangular matrix. -
#zero? ⇒ Boolean
readonly
Returns
true
if this is a matrix with only zero elements. - #rows readonly protected
Instance Method Summary
-
#*(m)
Matrix
multiplication. -
#**(other)
Matrix
exponentiation. -
#+(m)
Matrix
addition. - #+@
-
#-(m)
Matrix
subtraction. - #-@
-
#/(other)
Matrix
division (multiplication by the inverse). -
#==(other)
Returns
true
if and only if the two matrices contain equal elements. -
#[](i, j)
(also: #element, #component)
Returns element (
i
,j
) of the matrix. - #[]=(i, j, v) (also: #set_element, #set_component)
-
#adjugate
Returns the adjugate of the matrix.
-
#clone
Returns a clone of the matrix, so that the contents of each do not reference identical objects.
-
#coerce(other)
The coerce method provides support for Ruby type coercion.
-
#cofactor(row, column)
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
-
#cofactor_expansion(row: nil, column: nil)
Alias for #laplace_expansion.
-
#collect(&block)
(also: #map)
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
-
#column(j)
Returns column vector number
j
of the matrix as a ::Vector (starting at 0 like an array). -
#column_vectors
Returns an array of the column vectors of the matrix.
-
#component(i, j)
Alias for #[].
-
#conj
Alias for #conjugate.
-
#conjugate
(also: #conj)
Returns the conjugate of the matrix.
-
#det
Alias for #determinant.
-
#det_e
Alias for #determinant_e.
-
#determinant
(also: #det)
Returns the determinant of the matrix.
-
#determinant_e
(also: #det_e)
deprecated; use #determinant
-
#each(which = :all)
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given.
-
#each_with_index(which = :all)
Same as #each, but the row index and column index in addition to the element.
-
#eigen
Alias for #eigensystem.
-
#eigensystem
(also: #eigen)
Returns the Eigensystem of the matrix; see EigenvalueDecomposition.
-
#element(i, j)
Alias for #[].
- #elements_to_f
- #elements_to_i
- #elements_to_r
- #eql?(other) ⇒ Boolean
-
#find_index(*args)
Alias for #index.
-
#first_minor(row, column)
Returns the submatrix obtained by deleting the specified row and column.
-
#hash
Returns a hash-code for the matrix.
-
#hstack(*matrices)
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices.
-
#imag
Alias for #imaginary.
-
#imaginary
(also: #imag)
Returns the imaginary part of the matrix.
-
#index(value, selector = :all) ⇒ Array, column
(also: #find_index)
The index method is specialized to return the index as [row, column] It also accepts an optional
selector
argument, see #each for details. -
#inspect
Overrides
Object#inspect
-
#inv
Alias for #inverse.
-
#inverse
(also: #inv)
Returns the inverse of the matrix.
-
#laplace_expansion(row: nil, column: nil)
(also: #cofactor_expansion)
Returns the Laplace expansion along given row or column.
-
#lup
(also: #lup_decomposition)
Returns the LUP decomposition of the matrix; see LUPDecomposition.
-
#lup_decomposition
Alias for #lup.
-
#map(&block)
Alias for #collect.
-
#minor(*param)
Returns a section of the matrix.
-
#rank
Returns the rank of the matrix.
-
#rank_e
deprecated; use #rank
-
#real
readonly
Returns the real part of the matrix.
-
#rect
(also: #rectangular)
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix.
-
#rectangular
Alias for #rect.
-
#round(ndigits = 0)
Returns a matrix with entries rounded to the given precision (see
Float#round
). -
#row(i, &block)
Returns row vector number
i
of the matrix as a ::Vector (starting at 0 like an array). -
#row_count
(also: #row_size)
Returns the number of rows.
-
#row_size
Alias for #row_count.
-
#row_vectors
Returns an array of the row vectors of the matrix.
-
#t
Alias for #transpose.
-
#to_a
Returns an array of arrays that describe the rows of the matrix.
-
#to_s
Overrides
Object#to_s
-
#tr
Alias for #trace.
-
#trace
(also: #tr)
Returns the trace (sum of diagonal elements) of the matrix.
-
#transpose
(also: #t)
Returns the transpose of the matrix.
-
#vstack(*matrices)
Returns a new matrix resulting by stacking vertically the receiver with the given matrices.
-
#determinant_bareiss
private
Private.
-
#set_component(i, j, v)
private
Alias for #[]=.
-
#set_element(i, j, v)
private
Alias for #[]=.
Constructor Details
.new(rows, column_count = rows[0].size) ⇒ Matrix
new
is private; use .rows, columns, [], etc… to create.
# File 'lib/matrix.rb', line 357
def initialize(rows, column_count = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_count must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @rows = rows @column_count = column_count end
Class Method Details
.[](*rows)
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ]
#=> 25 93
-1 66
.build(row_count, column_count = row_count)
Creates a matrix of size #row_count x #column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row }
#=> Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
#=> a 3x3 matrix with random elements
# File 'lib/matrix.rb', line 198
def Matrix.build(row_count, column_count = row_count) row_count = CoercionHelper.coerce_to_int(row_count) column_count = CoercionHelper.coerce_to_int(column_count) raise ArgumentError if row_count < 0 || column_count < 0 return to_enum :build, row_count, column_count unless block_given? rows = Array.new(row_count) do |i| Array.new(column_count) do |j| yield i, j end end new rows, column_count end
.column_vector(column)
Creates a single-column matrix where the values of that column are as given in #column.
Matrix.column_vector([4,5,6])
#=> 4
5
6
.columns(columns)
Creates a matrix using columns
as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]])
#=> 25 -1
93 66
.diagonal(*values)
Creates a matrix where the diagonal elements are composed of values
.
Matrix.diagonal(9, 5, -3)
#=> 9 0 0
0 5 0
0 0 -3
.empty(row_count = 0, column_count = 0)
Creates a empty matrix of #row_count x #column_count. At least one of #row_count or #column_count must be 0.
m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
#=> true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
#=> true
m * n
#=> Matrix[[0, 0, 0], [0, 0, 0]]
# File 'lib/matrix.rb', line 302
def Matrix.empty(row_count = 0, column_count = 0) raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0 raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0 new([[]]*row_count, column_count) end
.hstack(x, *matrices)
Create a matrix by stacking matrices horizontally
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File 'lib/matrix.rb', line 337
def Matrix.hstack(x, *matrices) raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix) result = x.send(:rows).map(&:dup) total_column_count = x.column_count matrices.each do |m| raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix) if m.row_count != x.row_count raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}" end result.each_with_index do |row, i| row.concat m.send(:rows)[i] end total_column_count += m.column_count end new result, total_column_count end
I(n)
Alias for .identity.
# File 'lib/matrix.rb', line 251
alias I identity
.identity(n) Also known as: .unit, .I
Creates an n
by n
identity matrix.
Matrix.identity(2)
#=> 1 0
0 1
# File 'lib/matrix.rb', line 246
def Matrix.identity(n) scalar(n, 1) end
.row_vector(row)
Creates a single-row matrix where the values of that row are as given in #row.
Matrix.row_vector([4,5,6])
#=> 4 5 6
.rows(rows, copy = true)
Creates a matrix where rows
is an array of arrays, each of which is a row of the matrix. If the optional argument copy
is false, use the given arrays as the internal structure of the matrix without copying.
Matrix.rows([[25, 93], [-1, 66]])
#=> 25 93
-1 66
# File 'lib/matrix.rb', line 165
def Matrix.rows(rows, copy = true) rows = convert_to_array(rows, copy) rows.map! do |row| convert_to_array(row, copy) end size = (rows[0] || []).size rows.each do |row| raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size end new rows, size end
.scalar(n, value)
Creates an n
by n
diagonal matrix where each diagonal element is value
.
Matrix.scalar(2, 5)
#=> 5 0
0 5
.unit(n)
Alias for .identity.
# File 'lib/matrix.rb', line 250
alias unit identity
.vstack(x, *matrices)
Create a matrix by stacking matrices vertically
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File 'lib/matrix.rb', line 316
def Matrix.vstack(x, *matrices) raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix) result = x.send(:rows).map(&:dup) matrices.each do |m| raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix) if m.column_count != x.column_count raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}" end result.concat(m.send(:rows)) end new result, x.column_count end
.zero(row_count, column_count = row_count)
Creates a zero matrix.
Matrix.zero(2)
#=> 0 0
0 0
# File 'lib/matrix.rb', line 260
def Matrix.zero(row_count, column_count = row_count) rows = Array.new(row_count){Array.new(column_count, 0)} new rows, column_count end
Instance Attribute Details
#column_count (readonly) Also known as: #column_size
Returns the number of columns.
# File 'lib/matrix.rb', line 397
attr_reader :column_count
#column_size (readonly)
Alias for #column_count.
# File 'lib/matrix.rb', line 398
alias_method :column_size, :column_count
#diagonal? ⇒ Boolean
(readonly)
Returns true
if this is a diagonal matrix. Raises an error if matrix is not square.
#empty? ⇒ Boolean
(readonly)
Returns true
if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
# File 'lib/matrix.rb', line 757
def empty? column_count == 0 || row_count == 0 end
#hermitian? ⇒ Boolean
(readonly)
Returns true
if this is an hermitian matrix. Raises an error if matrix is not square.
#lower_triangular? ⇒ Boolean
(readonly)
Returns true
if this is a lower triangular matrix.
#normal? ⇒ Boolean
(readonly)
Returns true
if this is a normal matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 783
def normal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] end return false unless s == 0 end end true end
#orthogonal? ⇒ Boolean
(readonly)
Returns true
if this is an orthogonal matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 801
def orthogonal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k] * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end
#permutation? ⇒ Boolean
(readonly)
Returns true
if this is a permutation matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 819
def permutation? Matrix.Raise ErrDimensionMismatch unless square? cols = Array.new(column_count) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 return false if found || cols[j] found = cols[j] = true elsif e != 0 return false end end return false unless found end true end
#real? ⇒ Boolean
(readonly)
Returns true
if all entries of the matrix are real.
# File 'lib/matrix.rb', line 840
def real? all?(&:real?) end
#regular? ⇒ Boolean
(readonly)
Returns true
if this is a regular (i.e. non-singular) matrix.
# File 'lib/matrix.rb', line 847
def regular? not singular? end
#rows (readonly, protected)
[ GitHub ]# File 'lib/matrix.rb', line 144
attr_reader :rows
#singular? ⇒ Boolean
(readonly)
Returns true
if this is a singular matrix.
# File 'lib/matrix.rb', line 854
def singular? determinant == 0 end
#square? ⇒ Boolean
(readonly)
Returns true
if this is a square matrix.
# File 'lib/matrix.rb', line 861
def square? column_count == row_count end
#symmetric? ⇒ Boolean
(readonly)
Returns true
if this is a symmetric matrix. Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 869
def symmetric? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:strict_upper) do |e, row, col| return false if e != rows[col][row] end true end
#unitary? ⇒ Boolean
(readonly)
Returns true
if this is a unitary matrix Raises an error if matrix is not square.
# File 'lib/matrix.rb', line 881
def unitary? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k].conj * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end
#upper_triangular? ⇒ Boolean
(readonly)
Returns true
if this is an upper triangular matrix.
#zero? ⇒ Boolean
(readonly)
Returns true
if this is a matrix with only zero elements
# File 'lib/matrix.rb', line 905
def zero? all?(&:zero?) end
Instance Method Details
#*(m)
Matrix
multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2)
#=> 2 4
6 8
# File 'lib/matrix.rb', line 954
def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect {|row| row.collect {|e| e * m } } return new_matrix rows, column_count when Vector m = self.class.column_vector(m) r = self * m return r.column(0) when Matrix Matrix.Raise ErrDimensionMismatch if column_count != m.row_count rows = Array.new(row_count) {|i| Array.new(m.column_count) {|j| (0 ... column_count).inject(0) do |vij, k| vij + self[i, k] * m[k, j] end } } return new_matrix rows, m.column_count else return apply_through_coercion(m, __method__) end end
#**(other)
Matrix
exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2
#=> 67 96
48 99
# File 'lib/matrix.rb', line 1121
def **(other) case other when Integer x = self if other <= 0 x = self.inverse return self.class.identity(self.column_count) if other == 0 other = -other end z = nil loop do z = z ? z * x : x if other[0] == 1 return z if (other >>= 1).zero? x *= x end when Numeric v, d, v_inv = eigensystem v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class end end
#+(m)
Matrix
addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
#=> 6 0
-4 12
# File 'lib/matrix.rb', line 987
def +(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] + m[i, j] } } new_matrix rows, column_count end
#+@
[ GitHub ]# File 'lib/matrix.rb', line 1144
def +@ self end
#-(m)
Matrix
subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
#=> -8 2
8 1
# File 'lib/matrix.rb', line 1014
def -(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] - m[i, j] } } new_matrix rows, column_count end
#-@
[ GitHub ]# File 'lib/matrix.rb', line 1148
def -@ collect {|e| -e } end
#/(other)
Matrix
division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
#=> -7 1
-3 -6
# File 'lib/matrix.rb', line 1041
def /(other) case other when Numeric rows = @rows.collect {|row| row.collect {|e| e / other } } return new_matrix rows, column_count when Matrix return self * other.inverse else return apply_through_coercion(other, __method__) end end
#==(other)
Returns true
if and only if the two matrices contain equal elements.
# File 'lib/matrix.rb', line 916
def ==(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows == other.rows end
#[](i, j) Also known as: #element, #component
Returns element (i
,j
) of the matrix. That is: row i
, column j
.
# File 'lib/matrix.rb', line 373
def [](i, j) @rows.fetch(i){return nil}[j] end
#[]=(i, j, v) Also known as: #set_element, #set_component
[ GitHub ]# File 'lib/matrix.rb', line 379
def []=(i, j, v) @rows[i][j] = v end
#adjugate
Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate
#=> 9 -6
-3 7
#clone
Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.
# File 'lib/matrix.rb', line 933
def clone new_matrix @rows.map(&:dup), column_count end
#coerce(other)
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce
.
#cofactor(row, column)
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
#=> -108
# File 'lib/matrix.rb', line 687
def cofactor(row, column) raise RuntimeError, "cofactor of empty matrix is not defined" if empty? Matrix.Raise ErrDimensionMismatch unless square? det_of_minor = first_minor(row, column).determinant det_of_minor * (-1) ** (row + column) end
#cofactor_expansion(row: nil, column: nil)
Alias for #laplace_expansion.
# File 'lib/matrix.rb', line 737
alias_method :cofactor_expansion, :laplace_expansion
#collect(&block) Also known as: #map
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
#=> 1 4
9 16
# File 'lib/matrix.rb', line 441
def collect(&block) # :yield: e return to_enum(:collect) unless block_given? rows = @rows.collect{|row| row.collect(&block)} new_matrix rows, column_count end
#column(j)
Returns column vector number j
of the matrix as a ::Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
# File 'lib/matrix.rb', line 418
def column(j) # :yield: e if block_given? return self if j >= column_count || j < -column_count row_count.times do |i| yield @rows[i][j] end self else return nil if j >= column_count || j < -column_count col = Array.new(row_count) {|i| @rows[i][j] } Vector.elements(col, false) end end
#column_vectors
Returns an array of the column vectors of the matrix. See Vector.
# File 'lib/matrix.rb', line 1479
def column_vectors Array.new(column_count) {|i| column(i) } end
#component(i, j)
Alias for #[].
# File 'lib/matrix.rb', line 377
alias component []
#conj
Alias for #conjugate.
# File 'lib/matrix.rb', line 1407
alias conj conjugate
#conjugate Also known as: #conj
Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
#=> 1-2i -i 0
1 2 3
# File 'lib/matrix.rb', line 1404
def conjugate collect(&:conjugate) end
#det
Alias for #determinant.
# File 'lib/matrix.rb', line 1204
alias_method :det, :determinant
#det_e
Alias for #determinant_e.
# File 'lib/matrix.rb', line 1252
alias det_e determinant_e
#determinant Also known as: #det
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant
#=> 45
# File 'lib/matrix.rb', line 1166
def determinant Matrix.Raise ErrDimensionMismatch unless square? m = @rows case row_count # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats when 0 +1 when 1 + m[0][0] when 2 + m[0][0] * m[1][1] - m[0][1] * m[1][0] when 3 m0, m1, m2 = m + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \ - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \ + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0] when 4 m0, m1, m2, m3 = m + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \ - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \ + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \ - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \ + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \ - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \ + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \ - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \ + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \ - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \ + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \ - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0] else # For bigger matrices, use an efficient and general algorithm. # Currently, we use the Gauss-Bareiss algorithm end end
#determinant_bareiss (private)
Private. Use #determinant
Returns the determinant of the matrix, using Bareiss' multistep integer-preserving gaussian elimination. It has the same computational cost order O(n^3) as standard Gaussian elimination. Intermediate results are fraction free and of lower complexity. A matrix of Integers will have thus intermediate results that are also Integers, with smaller bignums (if any), while a matrix of Float will usually have intermediate results with better precision.
# File 'lib/matrix.rb', line 1217
def size = row_count last = size - 1 a = to_a no_pivot = Proc.new{ return 0 } sign = +1 pivot = 1 size.times do |k| previous_pivot = pivot if (pivot = a[k][k]) == 0 switch = (k+1 ... size).find(no_pivot) {|row| a[row][k] != 0 } a[switch], a[k] = a[k], a[switch] pivot = a[k][k] sign = -sign end (k+1).upto(last) do |i| ai = a[i] (k+1).upto(last) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot end end end sign * pivot end
#determinant_e Also known as: #det_e
deprecated; use #determinant
# File 'lib/matrix.rb', line 1248
def determinant_e warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant" determinant end
#each(which = :all)
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
-
:all
(default): yields all elements -
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
# File 'lib/matrix.rb', line 464
def each(which = :all) # :yield: e return to_enum :each, which unless block_given? last = column_count - 1 case which when :all block = Proc.new @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self} end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index] unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index] end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index] end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index] end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index] end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end
#each_with_index(which = :all)
# File 'lib/matrix.rb', line 525
def each_with_index(which = :all) # :yield: e, row, column return to_enum :each_with_index, which unless block_given? last = column_count - 1 case which when :all @rows.each_with_index do |row, row_index| row.each_with_index do |e, col_index| yield e, row_index, col_index end end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self}, row_index, row_index end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index], row_index, col_index unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index], row_index, col_index end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index], row_index, col_index end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index], row_index, col_index end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index], row_index, col_index end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end
#eigen
Alias for #eigensystem.
# File 'lib/matrix.rb', line 1374
alias eigen eigensystem
#eigensystem Also known as: #eigen
Returns the Eigensystem of the matrix; see ::Matrix::EigenvalueDecomposition.
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
# File 'lib/matrix.rb', line 1371
def eigensystem EigenvalueDecomposition.new(self) end
#element(i, j)
Alias for #[].
# File 'lib/matrix.rb', line 376
alias element []
#elements_to_f
[ GitHub ]# File 'lib/matrix.rb', line 1492
def elements_to_f warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)" map(&:to_f) end
#elements_to_i
[ GitHub ]# File 'lib/matrix.rb', line 1497
def elements_to_i warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)" map(&:to_i) end
#elements_to_r
[ GitHub ]# File 'lib/matrix.rb', line 1502
def elements_to_r warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)" map(&:to_r) end
#eql?(other) ⇒ Boolean
# File 'lib/matrix.rb', line 922
def eql?(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows.eql? other.rows end
#find_index(*args)
Alias for #index.
# File 'lib/matrix.rb', line 604
alias_method :find_index, :index
#first_minor(row, column)
Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
#=> 9 0 0
0 0 0
0 0 4
# File 'lib/matrix.rb', line 660
def first_minor(row, column) raise RuntimeError, "first_minor of empty matrix is not defined" if empty? unless 0 <= row && row < row_count raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})" end unless 0 <= column && column < column_count raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})" end arrays = to_a arrays.delete_at(row) arrays.each do |array| array.delete_at(column) end new_matrix arrays, column_count - 1 end
#hash
Returns a hash-code for the matrix.
# File 'lib/matrix.rb', line 940
def hash @rows.hash end
#hstack(*matrices)
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File 'lib/matrix.rb', line 1262
def hstack(*matrices) self.class.hstack(self, *matrices) end
#imag
Alias for #imaginary.
# File 'lib/matrix.rb', line 1421
alias imag imaginary
#imaginary Also known as: #imag
Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
#=> 2i i 0
0 0 0
# File 'lib/matrix.rb', line 1418
def imaginary collect(&:imaginary) end
#index(value, selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Enumerator
Also known as: #find_index
Array
, column
#index(selector = :all) ⇒ Array
, column
#index(selector = :all) ⇒ Enumerator
The index method is specialized to return the index as [row, column] It also accepts an optional selector
argument, see #each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
# File 'lib/matrix.rb', line 588
def index(*args) raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2 which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all return to_enum :find_index, which, *args unless block_given? || args.size == 1 if args.size == 1 value = args.first each_with_index(which) do |e, row_index, col_index| return row_index, col_index if e == value end else each_with_index(which) do |e, row_index, col_index| return row_index, col_index if yield e end end nil end
#inspect
Overrides Object#inspect
# File 'lib/matrix.rb', line 1527
def inspect if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}#{@rows.inspect}" end end
#inv
Alias for #inverse.
# File 'lib/matrix.rb', line 1065
alias inv inverse
#inverse Also known as: #inv
Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse
#=> -1 1
0 -1
# File 'lib/matrix.rb', line 1061
def inverse Matrix.Raise ErrDimensionMismatch unless square? self.class.I(row_count).send(:inverse_from, self) end
#laplace_expansion(row: nil, column: nil) Also known as: #cofactor_expansion
# File 'lib/matrix.rb', line 719
def laplace_expansion(row: nil, column: nil) num = row || column if !num || (row && column) raise ArgumentError, "exactly one the row or column arguments must be specified" end Matrix.Raise ErrDimensionMismatch unless square? raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty? unless 0 <= num && num < row_count raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})" end send(row ? :row : :column, num).map.with_index { |e, k| e * cofactor(*(row ? [num, k] : [k,num])) }.inject(:+) end
#lup Also known as: #lup_decomposition
Returns the LUP decomposition of the matrix; see ::Matrix::LUPDecomposition.
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
# File 'lib/matrix.rb', line 1386
def lup LUPDecomposition.new(self) end
#lup_decomposition
Alias for #lup.
# File 'lib/matrix.rb', line 1389
alias lup_decomposition lup
#map(&block)
Alias for #collect.
# File 'lib/matrix.rb', line 446
alias map collect
#minor(*param)
Returns a section of the matrix. The parameters are either:
-
start_row, nrows, start_col, ncols; OR
-
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
#=> 9 0 0
0 5 0
Like Array#[]
, negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
# File 'lib/matrix.rb', line 619
def minor(*param) case param.size when 2 row_range, col_range = param from_row = row_range.first from_row += row_count if from_row < 0 to_row = row_range.end to_row += row_count if to_row < 0 to_row += 1 unless row_range.exclude_end? size_row = to_row - from_row from_col = col_range.first from_col += column_count if from_col < 0 to_col = col_range.end to_col += column_count if to_col < 0 to_col += 1 unless col_range.exclude_end? size_col = to_col - from_col when 4 from_row, size_row, from_col, size_col = param return nil if size_row < 0 || size_col < 0 from_row += row_count if from_row < 0 from_col += column_count if from_col < 0 else raise ArgumentError, param.inspect end return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0 rows = @rows[from_row, size_row].collect{|row| row[from_col, size_col] } new_matrix rows, [column_count - from_col, size_col].min end
#rank
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank
#=> 2
# File 'lib/matrix.rb', line 1275
def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a last_column = column_count - 1 last_row = row_count - 1 pivot_row = 0 previous_pivot = 1 0.upto(last_column) do |k| switch_row = (pivot_row .. last_row).find {|row| a[row][k] != 0 } if switch_row a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row pivot = a[pivot_row][k] (pivot_row+1).upto(last_row) do |i| ai = a[i] (k+1).upto(last_column) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot end end pivot_row += 1 previous_pivot = pivot end end pivot_row end
#rank_e
deprecated; use #rank
# File 'lib/matrix.rb', line 1306
def rank_e warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank" rank end
#real (readonly)
Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
#=> 1 0 0
1 2 3
# File 'lib/matrix.rb', line 1432
def real collect(&:real) end
#rect Also known as: #rectangular
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
#rectangular
Alias for #rect.
# File 'lib/matrix.rb', line 1445
alias rectangular rect
#round(ndigits = 0)
Returns a matrix with entries rounded to the given precision (see Float#round
)
# File 'lib/matrix.rb', line 1314
def round(ndigits=0) map{|e| e.round(ndigits)} end
#row(i, &block)
Returns row vector number i
of the matrix as a ::Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
#row_count Also known as: #row_size
Returns the number of rows.
# File 'lib/matrix.rb', line 389
def row_count @rows.size end
#row_size
Alias for #row_count.
# File 'lib/matrix.rb', line 393
alias_method :row_size, :row_count
#row_vectors
Returns an array of the row vectors of the matrix. See Vector.
#set_component(i, j, v) (private)
Alias for #[]=.
# File 'lib/matrix.rb', line 383
alias set_component []=
#set_element(i, j, v) (private)
Alias for #[]=.
# File 'lib/matrix.rb', line 382
alias set_element []=
#t
Alias for #transpose.
# File 'lib/matrix.rb', line 1345
alias t transpose
#to_a
Returns an array of arrays that describe the rows of the matrix.
# File 'lib/matrix.rb', line 1488
def to_a @rows.collect(&:dup) end
#to_s
Overrides Object#to_s
#tr
Alias for #trace.
# File 'lib/matrix.rb', line 1329
alias tr trace
#trace Also known as: #tr
Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace
#=> 16
# File 'lib/matrix.rb', line 1323
def trace Matrix.Raise ErrDimensionMismatch unless square? (0...column_count).inject(0) do |tr, i| tr + @rows[i][i] end end
#transpose Also known as: #t
Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]]
#=> 1 2
3 4
5 6
Matrix[[1,2], [3,4], [5,6]].transpose
#=> 1 3 5
2 4 6
# File 'lib/matrix.rb', line 1341
def transpose return self.class.empty(column_count, 0) if row_count.zero? new_matrix @rows.transpose, row_count end
#vstack(*matrices)
Returns a new matrix resulting by stacking vertically the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File 'lib/matrix.rb', line 1355
def vstack(*matrices) self.class.vstack(self, *matrices) end