Module: CMath
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Instance Chain:
self,
Math
|
|
Defined in: | lib/cmath.rb |
Overview
Trigonometric and transcendental functions for complex numbers.
CMath
is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.
Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren't interested in complex numbers, and perhaps don't even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.
For more information you can see Complex class.
Usage
To start using this library, simply require cmath library:
require "cmath"
Class Method Summary
-
.acos(z)
mod_func
Returns the arc cosine of
z
-
.acosh(z)
mod_func
returns the inverse hyperbolic cosine of
z
-
.asin(z)
mod_func
Returns the arc sine of
z
-
.asinh(z)
mod_func
returns the inverse hyperbolic sine of
z
-
.atan(z)
mod_func
Returns the arc tangent of
z
-
.atan2(y, x)
mod_func
returns the arc tangent of
y
divided byx
using the signs ofy
andx
to determine the quadrant. -
.atanh(z)
mod_func
returns the inverse hyperbolic tangent of
z
-
.cbrt(z)
mod_func
Returns the principal value of the cube root of
z
-
.cos(z)
mod_func
Returns the cosine of
z
, wherez
is given in radians. -
.cosh(z)
mod_func
Returns the hyperbolic cosine of
z
, wherez
is given in radians. -
.exp(z)
mod_func
Math::E
raised to thez
power. -
.log(z, b = ::Math::E)
mod_func
Returns the natural logarithm of Complex.
-
.log10(z)
mod_func
Returns the base 10 logarithm of
z
-
.log2(z)
mod_func
Returns the base 2 logarithm of
z
-
.sin(z)
mod_func
Returns the sine of
z
, wherez
is given in radians. -
.sinh(z)
mod_func
Returns the hyperbolic sine of
z
, wherez
is given in radians. -
.sqrt(z)
mod_func
Returns the non-negative square root of Complex.
-
.tan(z)
mod_func
Returns the tangent of
z
, wherez
is given in radians. -
.tanh(z)
mod_func
Returns the hyperbolic tangent of
z
, wherez
is given in radians.
Class Method Details
.acos(z) (mod_func)
Returns the arc cosine of z
CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
# File 'lib/cmath.rb', line 281
def acos(z) begin if z.real? and z >= -1 and z <= 1 RealMath.acos(z) else (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end
.acosh(z) (mod_func)
returns the inverse hyperbolic cosine of z
CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
# File 'lib/cmath.rb', line 346
def acosh(z) begin if z.real? and z >= 1 RealMath.acosh(z) else log(z + sqrt(z * z - 1.0)) end rescue NoMethodError handle_no_method_error end end
.asin(z) (mod_func)
Returns the arc sine of z
CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
# File 'lib/cmath.rb', line 265
def asin(z) begin if z.real? and z >= -1 and z <= 1 RealMath.asin(z) else (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end
.asinh(z) (mod_func)
returns the inverse hyperbolic sine of z
CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
# File 'lib/cmath.rb', line 330
def asinh(z) begin if z.real? RealMath.asinh(z) else log(z + sqrt(1.0 + z * z)) end rescue NoMethodError handle_no_method_error end end
.atan(z) (mod_func)
Returns the arc tangent of z
CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
# File 'lib/cmath.rb', line 297
def atan(z) begin if z.real? RealMath.atan(z) else 1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end
.atan2(y, x) (mod_func)
returns the arc tangent of y
divided by x
using the signs of y
and x
to determine the quadrant
CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
# File 'lib/cmath.rb', line 314
def atan2(y,x) begin if y.real? and x.real? RealMath.atan2(y,x) else (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y)) end rescue NoMethodError handle_no_method_error end end
.atanh(z) (mod_func)
returns the inverse hyperbolic tangent of z
CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
# File 'lib/cmath.rb', line 362
def atanh(z) begin if z.real? and z >= -1 and z <= 1 RealMath.atanh(z) else log((1.0 + z) / (1.0 - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end
.cbrt(z) (mod_func)
Returns the principal value of the cube root of z
CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
# File 'lib/cmath.rb', line 157
def cbrt(z) z ** (1.0/3) end
.cos(z) (mod_func)
Returns the cosine of z
, where z
is given in radians
CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
.cosh(z) (mod_func)
Returns the hyperbolic cosine of z
, where z
is given in radians
CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
.exp(z) (mod_func)
Math::E
raised to the z
power
CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
.log(z, b = ::Math::E) (mod_func)
Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.
CMath.log(1 + 4i) #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
# File 'lib/cmath.rb', line 82
def log(z, b=::Math::E) begin if z.real? && z >= 0 && b >= 0 RealMath.log(z, b) else Complex(RealMath.log(z.abs), z.arg) / log(b) end rescue NoMethodError handle_no_method_error end end
.log10(z) (mod_func)
Returns the base 10 logarithm of z
CMath.log10(-1) #=> (0.0+1.3643763538418412i)
# File 'lib/cmath.rb', line 114
def log10(z) begin if z.real? and z >= 0 RealMath.log10(z) else log(z) / RealMath.log(10) end rescue NoMethodError handle_no_method_error end end
.log2(z) (mod_func)
Returns the base 2 logarithm of z
CMath.log2(-1) => (0.0+4.532360141827194i)
# File 'lib/cmath.rb', line 98
def log2(z) begin if z.real? and z >= 0 RealMath.log2(z) else log(z) / RealMath.log(2) end rescue NoMethodError handle_no_method_error end end
.sin(z) (mod_func)
Returns the sine of z
, where z
is given in radians
CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
.sinh(z) (mod_func)
Returns the hyperbolic sine of z
, where z
is given in radians
CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
.sqrt(z) (mod_func)
Returns the non-negative square root of Complex.
CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
# File 'lib/cmath.rb', line 130
def sqrt(z) begin if z.real? if z < 0 Complex(0, RealMath.sqrt(-z)) else RealMath.sqrt(z) end else if z.imag < 0 || (z.imag == 0 && z.imag.to_s[0] == '-') sqrt(z.conjugate).conjugate else r = z.abs x = z.real Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0)) end end rescue NoMethodError handle_no_method_error end end
.tan(z) (mod_func)
Returns the tangent of z
, where z
is given in radians
CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
# File 'lib/cmath.rb', line 199
def tan(z) begin if z.real? RealMath.tan(z) else sin(z) / cos(z) end rescue NoMethodError handle_no_method_error end end
.tanh(z) (mod_func)
Returns the hyperbolic tangent of z
, where z
is given in radians
CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
# File 'lib/cmath.rb', line 249
def tanh(z) begin if z.real? RealMath.tanh(z) else sinh(z) / cosh(z) end rescue NoMethodError handle_no_method_error end end