123456789_123456789_123456789_123456789_123456789_

Module: CMath

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Instance Chain:
self, Math
Defined in: lib/cmath.rb

Overview

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren't interested in complex numbers, and perhaps don't even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.

Usage

To start using this library, simply require cmath library:

require "cmath"

And after call any CMath function. For example:

CMath.sqrt(-9)          #=> 0+3.0i
CMath.exp(0 + 0i)       #=> 1.0+0.0i
CMath.log10(-5.to_c)    #=> (0.6989700043360187+1.3643763538418412i)

For more information you can see Complec class.

Class Method Summary

  • .acos(z) mod_func

    returns the arc cosine of z

  • .acos! mod_func
  • .acosh(z) mod_func

    returns the inverse hyperbolic cosine of z

  • .acosh! mod_func
  • .asin(z) mod_func

    returns the arc sine of z

  • .asin! mod_func
  • .asinh(z) mod_func

    returns the inverse hyperbolic sine of z

  • .asinh! mod_func
  • .atan(z) mod_func

    returns the arc tangent of z

  • .atan! mod_func
  • .atan2(y, x) mod_func

    returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant.

  • .atan2! mod_func
  • .atanh(z) mod_func

    returns the inverse hyperbolic tangent of z

  • .atanh! mod_func
  • .cbrt(z) mod_func

    returns the principal value of the cube root of z

  • .cbrt! mod_func
  • .cos(z) mod_func

    returns the cosine of z, where z is given in radians.

  • .cos! mod_func
  • .cosh(z) mod_func

    returns the hyperbolic cosine of z, where z is given in radians.

  • .cosh! mod_func
  • .exp(z) mod_func

    Math::E raised to the z power.

  • .exp! mod_func
  • .log(*args) mod_func

    Returns the natural logarithm of Complex.

  • .log! mod_func
  • .log10(z) mod_func

    returns the base 10 logarithm of z

  • .log10! mod_func
  • .log2(z) mod_func

    returns the base 2 logarithm of z

  • .log2! mod_func
  • .sin(z) mod_func

    returns the sine of z, where z is given in radians.

  • .sin! mod_func
  • .sinh(z) mod_func

    returns the hyperbolic sine of z, where z is given in radians.

  • .sinh! mod_func
  • .sqrt(z) mod_func

    Returns the non-negative square root of Complex.

  • .sqrt! mod_func
  • .tan(z) mod_func

    returns the tangent of z, where z is given in radians.

  • .tan! mod_func
  • .tanh(z) mod_func

    returns the hyperbolic tangent of z, where z is given in radians.

  • .tanh! mod_func

Class Method Details

.acos(z) (mod_func)

returns the arc cosine of z

CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 288
def acos(z)
  begin
    if z.real? and z >= -1 and z <= 1
      acos!(z)
    else
      (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.acos! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 49
alias acos! acos

.acosh(z) (mod_func)

returns the inverse hyperbolic cosine of z

CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 353
def acosh(z)
  begin
    if z.real? and z >= 1
      acosh!(z)
    else
      log(z + sqrt(z * z - 1.0))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.acosh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 54
alias acosh! acosh

.asin(z) (mod_func)

returns the arc sine of z

CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 272
def asin(z)
  begin
    if z.real? and z >= -1 and z <= 1
      asin!(z)
    else
      (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.asin! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 48
alias asin! asin

.asinh(z) (mod_func)

returns the inverse hyperbolic sine of z

CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 337
def asinh(z)
  begin
    if z.real?
      asinh!(z)
    else
      log(z + sqrt(1.0 + z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.asinh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 53
alias asinh! asinh

.atan(z) (mod_func)

returns the arc tangent of z

CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 304
def atan(z)
  begin
    if z.real?
      atan!(z)
    else
      1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atan! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 50
alias atan! atan

.atan2(y, x) (mod_func)

returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant

CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 321
def atan2(y,x)
  begin
    if y.real? and x.real?
      atan2!(y,x)
    else
      (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atan2! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 51
alias atan2! atan2

.atanh(z) (mod_func)

returns the inverse hyperbolic tangent of z

CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 369
def atanh(z)
  begin
    if z.real? and z >= -1 and z <= 1
      atanh!(z)
    else
      log((1.0 + z) / (1.0 - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atanh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 55
alias atanh! atanh

.cbrt(z) (mod_func)

returns the principal value of the cube root of z

CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 164
def cbrt(z)
  z ** (1.0/3)
end

.cbrt! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 38
alias cbrt! cbrt

.cos(z) (mod_func)

returns the cosine of z, where z is given in radians

CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 189
def cos(z)
  begin
    if z.real?
      cos!(z)
    else
      Complex(cos!(z.real) * cosh!(z.imag),
              -sin!(z.real) * sinh!(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.cos! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 41
alias cos! cos

.cosh(z) (mod_func)

returns the hyperbolic cosine of z, where z is given in radians

CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 239
def cosh(z)
  begin
    if z.real?
      cosh!(z)
    else
      Complex(cosh!(z.real) * cos!(z.imag),
              sinh!(z.real) * sin!(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.cosh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 45
alias cosh! cosh

.exp(z) (mod_func)

Math::E raised to the z power

CMath.exp(2i) #=> (-0.4161468365471424+0.9092974268256817i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 61
def exp(z)
  begin
    if z.real?
      exp!(z)
    else
      ere = exp!(z.real)
      Complex(ere * cos!(z.imag),
              ere * sin!(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.exp! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 33
alias exp! exp

.log(*args) (mod_func)

Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.

CMath.log(1 + 4i)     #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 81
def log(*args)
  begin
    z, b = args
    unless b.nil? || b.kind_of?(Numeric)
      raise TypeError,  "Numeric Number required"
    end
    if z.real? and z >= 0 and (b.nil? or b >= 0)
      log!(*args)
    else
      a = Complex(log!(z.abs), z.arg)
      if b
        a /= log(b)
      end
      a
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 34
alias log! log

.log10(z) (mod_func)

returns the base 10 logarithm of z

CMath.log10(-1) #=> (0.0+1.3643763538418412i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 121
def log10(z)
  begin
    if z.real? and z >= 0
      log10!(z)
    else
      log(z) / log!(10)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log10! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 36
alias log10! log10

.log2(z) (mod_func)

returns the base 2 logarithm of z

CMath.log2(-1) => (0.0+4.532360141827194i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 105
def log2(z)
  begin
    if z.real? and z >= 0
      log2!(z)
    else
      log(z) / log!(2)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log2! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 35
alias log2! log2

.sin(z) (mod_func)

returns the sine of z, where z is given in radians

CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 172
def sin(z)
  begin
    if z.real?
      sin!(z)
    else
      Complex(sin!(z.real) * cosh!(z.imag),
              cos!(z.real) * sinh!(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sin! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 40
alias sin! sin

.sinh(z) (mod_func)

returns the hyperbolic sine of z, where z is given in radians

CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 222
def sinh(z)
  begin
    if z.real?
      sinh!(z)
    else
      Complex(sinh!(z.real) * cos!(z.imag),
              cosh!(z.real) * sin!(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sinh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 44
alias sinh! sinh

.sqrt(z) (mod_func)

Returns the non-negative square root of Complex.

CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
[ GitHub ]

  
# File 'lib/cmath.rb', line 137
def sqrt(z)
  begin
    if z.real?
      if z < 0
        Complex(0, sqrt!(-z))
      else
        sqrt!(z)
      end
    else
      if z.imag < 0 ||
          (z.imag == 0 && z.imag.to_s[0] == '-')
        sqrt(z.conjugate).conjugate
      else
        r = z.abs
        x = z.real
        Complex(sqrt!((r + x) / 2.0), sqrt!((r - x) / 2.0))
      end
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sqrt! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 37
alias sqrt! sqrt

.tan(z) (mod_func)

returns the tangent of z, where z is given in radians

CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 206
def tan(z)
  begin
    if z.real?
      tan!(z)
    else
      sin(z) / cos(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.tan! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 42
alias tan! tan

.tanh(z) (mod_func)

returns the hyperbolic tangent of z, where z is given in radians

CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
[ GitHub ]

  
# File 'lib/cmath.rb', line 256
def tanh(z)
  begin
    if z.real?
      tanh!(z)
    else
      sinh(z) / cosh(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.tanh! (mod_func)

[ GitHub ]

  
# File 'lib/cmath.rb', line 46
alias tanh! tanh