The Rails Initialization Process
This guide explains the internals of the initialization process in Rails as of Rails 4. It is an extremely in-depth guide and recommended for advanced Rails developers.
After reading this guide, you will know:
- How to use rails server.
- The timeline of Rails' initialization sequence.
- Where different files are required by the boot sequence.
- How the ::Rails::Server interface is defined and used.
This guide goes through every method call that is
required to boot up the Ruby on Rails stack for a default Rails 4
application, explaining each part in detail along the way. For this
guide, we will be focusing on what happens when you execute rails server
to boot your app.
NOTE: Paths in this guide are relative to Rails or a Rails application unless otherwise specified.
TIP: If you want to follow along while browsing the Rails href="https://github.com/rails/rails">https://github.com/rails/rails source
code, we recommend that you use the t
key binding to open the file finder inside GitHub and find files
quickly.
Launch!
Let's start to boot and initialize the app. A Rails application is usually
started by running rails console or rails server.
railties/bin/rails
The rails in the command rails server is a ruby executable in your load
path. This executable contains the following lines:
version = ">= 0"
load Gem.bin_path('railties', 'rails', version)If you try out this command in a Rails console, you would see that this loads
railties/bin/rails. A part of the file railties/bin/rails.rb has the
following code:
require "rails/cli"The file railties/lib/rails/cli in turn calls
Rails::AppRailsLoader#exec_app_rails.
railties/lib/rails/app_rails_loader.rb
The primary goal of the function exec_app_rails is to execute your app's
bin/rails. If the current directory does not have a bin/rails, it will
navigate upwards until it finds a bin/rails executable. Thus one can invoke a
rails command from anywhere inside a rails application.
For rails server the equivalent of the following command is executed:
$ exec ruby bin/rails server
bin/rails
This file is as follows:
#!/usr/bin/env ruby
APP_PATH = File.('../../config/application', __FILE__)
require_relative '../config/boot'
require 'rails/commands'The APP_PATH constant will be used later in rails/commands. The config/boot file referenced here is the config/boot.rb file in our application which is responsible for loading Bundler and setting it up.
config/boot.rb
config/boot.rb contains:
# Set up gems listed in the Gemfile.
ENV['BUNDLE_GEMFILE'] ||= File.('../../Gemfile', __FILE__)
require 'bundler/setup' if File.exist?(ENV['BUNDLE_GEMFILE'])In a standard Rails application, there's a Gemfile which declares all
dependencies of the application. config/boot.rb sets
ENV['BUNDLE_GEMFILE'] to the location of this file. If the Gemfile
exists, then bundler/setup is required. The require is used by Bundler to
configure the load path for your Gemfile's dependencies.
A standard Rails application depends on several gems, specifically:
- actionmailer
- actionpack
- actionview
- activemodel
- activerecord
- activesupport
- arel
- builder
- bundler
- erubis
- i18n
- mime-types
- rack
- rack-cache
- rack-mount
- rack-test
- rails
- railties
- rake
- sqlite3
- thor
- tzinfo
rails/commands.rb
Once config/boot.rb has finished, the next file that is required is
rails/commands, which helps in expanding aliases. In the current case, the
ARGV array simply contains server which will be passed over:
ARGV << '--help' if ARGV.empty?
aliases = {
  "g"  => "generate",
  "d"  => "destroy",
  "c"  => "console",
  "s"  => "server",
  "db" => "dbconsole",
  "r"  => "runner"
}
command = ARGV.shift
command = aliases[command] || command
require 'rails/commands/commands_tasks'
Rails::CommandsTasks.new(ARGV).run_command!(command)TIP: As you can see, an empty ARGV list will make Rails show the help snippet.
If we had used s rather than server, Rails would have used the aliases
defined here to find the matching command.
rails/commands/command_tasks.rb
When one types an incorrect rails command, the run_command is responsible for
throwing an error message. If the command is valid, a method of the same name
is called.
COMMAND_WHITELIST = %w(plugin generate destroy console server dbconsole application runner new version help)
def run_command!(command)
  command = parse_command(command)
  if COMMAND_WHITELIST.include?(command)
    send(command)
  else
    (command)
  end
endWith the server command, Rails will further run the following code:
def set_application_directory!
  Dir.chdir(File.('../../', APP_PATH)) unless File.exist?(File.("config.ru"))
end
def server
  set_application_directory!
  require_command!("server")
  Rails::Server.new.tap do |server|
    # We need to require application after the server sets environment,
    # otherwise the --environment option given to the server won't propagate.
    require APP_PATH
    Dir.chdir(Rails.application.root)
    server.start
  end
end
def require_command!(command)
  require "rails/commands/#{command}"
endThis file will change into the Rails root directory (a path two directories up
from APP_PATH which points at config/application.rb), but only if the
config.ru file isn't found. This then requires rails/commands/server which
sets up the ::Rails::Server class.
require 'fileutils'
require 'optparse'
require 'action_dispatch'
require 'rails'
module Rails
  class Server < ::Rack::Serverfileutils and optparse are standard Ruby libraries which provide helper functions for working with files and parsing options.
actionpack/lib/action_dispatch.rb
Action Dispatch is the routing component of the Rails framework. It adds functionality like routing, session, and common middlewares.
rails/commands/server.rb
The ::Rails::Server class is defined in this file by inheriting from Rack::Server. When Rails::Server.new is called, this calls the initialize method in rails/commands/server.rb:
def initialize(*)
  super
  set_environment
endFirstly, super is called which calls the initialize method on Rack::Server.
Rack: lib/rack/server.rb
Rack::Server is responsible for providing a common server interface for all Rack-based applications, which Rails is now a part of.
The initialize method in Rack::Server simply sets a couple of variables:
def initialize( = nil)
  @options = 
  @app = [:app] if  && [:app]
endIn this case, options will be nil so nothing happens in this method.
After super has finished in Rack::Server, we jump back to rails/commands/server.rb. At this point, set_environment is called within the context of the ::Rails::Server object and this method doesn't appear to do much at first glance:
def set_environment
  ENV["RAILS_ENV"] ||= [:environment]
endIn fact, the options method here does quite a lot. This method is defined in Rack::Server like this:
def 
  @options ||= (ARGV)
endThen parse_options is defined like this:
def (args)
   = 
  # Don't evaluate CGI ISINDEX parameters.
  # http://www.meb.uni-bonn.de/docs/cgi/cl.html
  args.clear if ENV.include?("REQUEST_METHOD")
  .merge! opt_parser.parse!(args)
  [:config] = ::File.([:config])
  ENV["RACK_ENV"] = [:environment]
  
endWith the default_options set to this:
def 
  environment  = ENV['RACK_ENV'] || 'development'
  default_host = environment == 'development' ? 'localhost' : '0.0.0.0'
  {
    :environment => environment,
    :pid         => nil,
    :Port        => 9292,
    :Host        => default_host,
    :AccessLog   => [],
    :config      => "config.ru"
  }
endThere is no REQUEST_METHOD key in ENV so we can skip over that line. The next line merges in the options from opt_parser which is defined plainly in Rack::Server:
def opt_parser
  Options.new
endThe class is defined in Rack::Server, but is overwritten in ::Rails::Server to take different arguments. Its parse! method begins like this:
def parse!(args)
  args, options = args.dup, {}
  opt_parser = OptionParser.new do |opts|
    opts.banner = "Usage: rails server [mongrel, thin, etc] [options]"
    opts.on("-p", "--port=port", Integer,
            "Runs Rails on the specified port.", "Default: 3000") { |v| options[:Port] = v }
  #...This method will set up keys for the options which Rails will then be
able to use to determine how its server should run. After initialize
has finished, we jump back into rails/server where APP_PATH (which was
set earlier) is required.
config/application
When require APP_PATH is executed, config/application.rb is loaded (recall
that APP_PATH is defined in bin/rails). This file exists in your application
and it's free for you to change based on your needs.
Rails::Server#start
After config/application is loaded, server.start is called. This method is
defined like this:
def start
  print_boot_information
  trap(:INT) { exit }
  create_tmp_directories
  log_to_stdout if [:log_stdout]
  super
  #...
end
private
  def print_boot_information
    #...
    puts "=> Run `rails server -h` for more startup options"
    #...
    puts "=> Ctrl-C to shutdown server" unless [:daemonize]
  end
  def create_tmp_directories
    %w(cache pids sessions sockets).each do |dir_to_make|
      FileUtils.mkdir_p(File.join(Rails.root, 'tmp', dir_to_make))
    end
  end
  def log_to_stdout
    wrapped_app # touch the app so the logger is set up
    console = ActiveSupport::Logger.new($stdout)
    console.formatter = Rails.logger.formatter
    console.level = Rails.logger.level
    Rails.logger.extend(ActiveSupport::Logger.broadcast(console))
  endThis is where the first output of the Rails initialization happens. This
method creates a trap for INT signals, so if you CTRL-C the server,
it will exit the process. As we can see from the code here, it will
create the tmp/cache, tmp/pids, tmp/sessions and tmp/sockets
directories. It then calls wrapped_app which is responsible for
creating the Rack app, before creating and assigning an
instance of ::ActiveSupport::Logger.
The super method will call Rack::Server.start which begins its definition like this:
def start &blk
  if [:warn]
    $-w = true
  end
  if includes = [:include]
    $LOAD_PATH.unshift(*includes)
  end
  if library = [:require]
    require library
  end
  if [:debug]
    $DEBUG = true
    require 'pp'
    p [:server]
    pp wrapped_app
    pp app
  end
  check_pid! if [:pid]
  # Touch the wrapped app, so that the config.ru is loaded before
  # daemonization (i.e. before chdir, etc).
  wrapped_app
  daemonize_app if [:daemonize]
  write_pid if [:pid]
  trap(:INT) do
    if server.respond_to?(:shutdown)
      server.shutdown
    else
      exit
    end
  end
  server.run wrapped_app, , &blk
endThe interesting part for a Rails app is the last line, server.run. Here we encounter the wrapped_app method again, which this time
we're going to explore more (even though it was executed before, and
thus memoized by now).
@wrapped_app ||= build_app appThe app method here is defined like so:
def app
  @app ||= [:builder] ? build_app_from_string : 
end
#...
private
  def 
    if !::File.exist? [:config]
      abort "configuration #{[:config]} not found"
    end
    app,  = Rack::Builder.parse_file(self.[:config], opt_parser)
    self..merge! 
    app
  end
  def build_app_from_string
    Rack::Builder.new_from_string(self.[:builder])
  endThe options[:config] value defaults to config.ru which contains this:
# This file is used by Rack-based servers to start the application.
require ::File.expand_path('../config/environment', __FILE__)
run <%= app_const %>The Rack::Builder.parse_file method here takes the content from this config.ru file and parses it using this code:
app = new_from_string cfgfile, config
#...
def self.new_from_string(builder_script, file="(rackup)")
  eval "Rack::Builder.new {\n" + builder_script + "\n}.to_app",
    TOPLEVEL_BINDING, file, 0
endThe initialize method of Rack::Builder will take the block here and execute it within an instance of Rack::Builder. This is where the majority of the initialization process of Rails happens. The require line for config/environment.rb in config.ru is the first to run:
require ::File.('../config/environment', __FILE__)config/environment.rb
This file is the common file required by config.ru (rails server) and Passenger. This is where these two ways to run the server meet; everything before this point has been Rack and Rails setup.
This file begins with requiring config/application.rb:
require File.('../application', __FILE__)config/application.rb
This file requires config/boot.rb:
require File.('../boot', __FILE__)But only if it hasn't been required before, which would be the case in rails server
but wouldn't be the case with Passenger.
Then the fun begins!
Loading Rails
The next line in config/application.rb is:
require 'rails/all'railties/lib/rails/all.rb
This file is responsible for requiring all the individual frameworks of Rails:
require "rails"
%w(
  active_record
  action_controller
  action_view
  action_mailer
  rails/test_unit
  sprockets
).each do |framework|
  begin
    require "#{framework}/railtie"
  rescue LoadError
  end
endThis is where all the Rails frameworks are loaded and thus made available to the application. We won't go into detail of what happens inside each of those frameworks, but you're encouraged to try and explore them on your own.
For now, just keep in mind that common functionality like Rails engines, I18n and Rails configuration are all being defined here.
Back to config/environment.rb
The rest of config/application.rb defines the configuration for the
::Rails::Application which will be used once the application is fully
initialized. When config/application.rb has finished loading Rails and defined
the application namespace, we go back to config/environment.rb,
where the application is initialized. For example, if the application was called
Blog, here we would find Rails.application.initialize!, which is
defined in rails/application.rb.
railties/lib/rails/application.rb
The initialize! method looks like this:
def initialize!(group=:default) #:nodoc:
  raise "Application has been already initialized." if @initialized
  run_initializers(group, self)
  @initialized = true
  self
endAs you can see, you can only initialize an app once. The initializers are run through
the run_initializers method which is defined in railties/lib/rails/initializable.rb:
def run_initializers(group=:default, *args)
  return if instance_variable_defined?(:@ran)
  initializers.tsort_each do |initializer|
    initializer.run(*args) if initializer.belongs_to?(group)
  end
  @ran = true
endThe run_initializers code itself is tricky. What Rails is doing here is
traversing all the class ancestors looking for those that respond to an
initializers method. It then sorts the ancestors by name, and runs them.
For example, the Engine class will make all the engines available by
providing an initializers method on them.
The ::Rails::Application class, as defined in railties/lib/rails/application.rb
defines bootstrap, railtie, and finisher initializers. The bootstrap initializers
prepare the application (like initializing the logger) while the finisher
initializers (like building the middleware stack) are run last. The railtie
initializers are the initializers which have been defined on the ::Rails::Application
itself and are run between the bootstrap and finishers.
After this is done we go back to Rack::Server.
Rack: lib/rack/server.rb
Last time we left when the app method was being defined:
def app
  @app ||= [:builder] ? build_app_from_string : 
end
#...
private
  def 
    if !::File.exist? [:config]
      abort "configuration #{[:config]} not found"
    end
    app,  = Rack::Builder.parse_file(self.[:config], opt_parser)
    self..merge! 
    app
  end
  def build_app_from_string
    Rack::Builder.new_from_string(self.[:builder])
  endAt this point app is the Rails app itself (a middleware), and what
happens next is Rack will call all the provided middlewares:
def build_app(app)
  middleware[[:environment]].reverse_each do |middleware|
    middleware = middleware.call(self) if middleware.respond_to?(:call)
    next unless middleware
    klass = middleware.shift
    app = klass.new(app, *middleware)
  end
  app
endRemember, build_app was called (by wrapped_app) in the last line of Server#start.
Here's how it looked like when we left:
server.run wrapped_app, , &blkAt this point, the implementation of server.run will depend on the
server you're using. For example, if you were using Puma, here's what
the run method would look like:
#...
DEFAULT_OPTIONS = {
  :Host => '0.0.0.0',
  :Port => 8080,
  :Threads => '0:16',
  :Verbose => false
}
def self.run(app,  = {})
    = DEFAULT_OPTIONS.merge()
  if [:Verbose]
    app = Rack::CommonLogger.new(app, STDOUT)
  end
  if [:environment]
    ENV['RACK_ENV'] = [:environment].to_s
  end
  server   = ::Puma::Server.new(app)
  min, max = [:Threads].split(':', 2)
  puts "Puma #{::Puma::Const::PUMA_VERSION} starting..."
  puts "* Min threads: #{min}, max threads: #{max}"
  puts "* Environment: #{ENV['RACK_ENV']}"
  puts "* Listening on tcp://#{[:Host]}:#{[:Port]}"
  server.add_tcp_listener [:Host], [:Port]
  server.min_threads = min
  server.max_threads = max
  yield server if block_given?
  begin
    server.run.join
  rescue Interrupt
    puts "* Gracefully stopping, waiting for requests to finish"
    server.stop(true)
    puts "* Goodbye!"
  end
endWe won't dig into the server configuration itself, but this is the last piece of our journey in the Rails initialization process.
This high level overview will help you understand when your code is executed and how, and overall become a better Rails developer. If you still want to know more, the Rails source code itself is probably the best place to go next.