Class: FFI::Buffer
Relationships & Source Files | |
Super Chains via Extension / Inclusion / Inheritance | |
Class Chain:
self,
AbstractMemory
|
|
Instance Chain:
self,
AbstractMemory
|
|
Inherits: |
FFI::AbstractMemory
|
Defined in: | ext/ffi_c/Buffer.c |
Overview
A Buffer is a function argument type. It should be use with functions playing with C arrays.
Constant Summary
AbstractMemory
- Inherited
Class Method Summary
- .alloc_inout(*args) (also: .alloc_inout, .alloc_out)
-
.alloc_inout(*args)
Alias for .alloc_in.
-
.alloc_inout(*args)
Alias for .alloc_in.
- .new(size, count = 1, clear = false) constructor
Instance Attribute Summary
AbstractMemory
- Inherited
#size_limit? | Return |
Instance Method Summary
- #+(offset)
- #initialize_copy(other)
- #inspect
-
#length
Alias for
total
. -
#order ⇒ :big, :little
Set or get endianness of
Buffer
. - #slice(offset, length)
AbstractMemory
- Inherited
Constructor Details
.new(size, count = 1, clear = false)
.new(instance)
# File 'ext/ffi_c/Buffer.c', line 123
static VALUE buffer_initialize(int argc, VALUE* argv, VALUE self) { VALUE rbSize = Qnil, rbCount = Qnil, rbClear = Qnil; Buffer* p; int nargs; TypedData_Get_Struct(self, Buffer, &buffer_data_type, p); nargs = rb_scan_args(argc, argv, "12", &rbSize, &rbCount, &rbClear); p->memory.typeSize = rbffi_type_size(rbSize); p->memory.size = p->memory.typeSize * (nargs > 1 ? NUM2LONG(rbCount) : 1); if (p->memory.size > BUFFER_EMBED_MAXLEN) { p->data.storage = xmalloc(p->memory.size + 7); if (p->data.storage == NULL) { rb_raise(rb_eNoMemError, "Failed to allocate memory size=%lu bytes", p->memory.size); return Qnil; } /* ensure the memory is aligned on at least a 8 byte boundary */ p->memory.address = (void *) (((uintptr_t) p->data.storage + 0x7) & (uintptr_t) ~0x7ULL); if (p->memory.size > 0 && (nargs < 3 || RTEST(rbClear))) { memset(p->memory.address, 0, p->memory.size); } } else { p->memory.flags |= MEM_EMBED; p->memory.address = (void *) &p->data.embed[0]; } if (rb_block_given_p()) { return rb_ensure(rb_yield, self, buffer_free, self); } return self; }
Class Method Details
.alloc_inout(*args)
.a(new)
Also known as: .alloc_inout, .alloc_out
# File 'ext/ffi_c/Buffer.c', line 194
static VALUE buffer_alloc_inout(int argc, VALUE* argv, VALUE klass) { return buffer_initialize(argc, argv, buffer_allocate(klass)); }
.alloc_inout(*args)
.a(new)
Alias for .alloc_in.
.alloc_inout(*args)
.a(new)
Alias for .alloc_in.
Instance Method Details
#+(offset)
#a(Buffer)
# File 'ext/ffi_c/Buffer.c', line 226
static VALUE buffer_plus(VALUE self, VALUE rbOffset) { Buffer* ptr; long offset = NUM2LONG(rbOffset); TypedData_Get_Struct(self, Buffer, &buffer_data_type, ptr); return slice(self, offset, ptr->memory.size - offset); }
#initialize_copy(other)
NOT(CALL)
# File 'ext/ffi_c/Buffer.c', line 167
static VALUE buffer_initialize_copy(VALUE self, VALUE other) { AbstractMemory* src; Buffer* dst; TypedData_Get_Struct(self, Buffer, &buffer_data_type, dst); src = rbffi_AbstractMemory_Cast(other, &buffer_data_type); if ((dst->memory.flags & MEM_EMBED) == 0 && dst->data.storage != NULL) { xfree(dst->data.storage); } dst->data.storage = xmalloc(src->size + 7); if (dst->data.storage == NULL) { rb_raise(rb_eNoMemError, "failed to allocate memory size=%lu bytes", src->size); return Qnil; } dst->memory.address = (void *) (((uintptr_t) dst->data.storage + 0x7) & (uintptr_t) ~0x7ULL); dst->memory.size = src->size; dst->memory.typeSize = src->typeSize; /* finally, copy the actual buffer contents */ memcpy(dst->memory.address, src->address, src->size); return self; }
#inspect
#a(Buffer)
# File 'ext/ffi_c/Buffer.c', line 255
static VALUE buffer_inspect(VALUE self) { char tmp[100]; Buffer* ptr; TypedData_Get_Struct(self, Buffer, &buffer_data_type, ptr); snprintf(tmp, sizeof(tmp), "#<FFI:Buffer:%p address=%p size=%ld>", ptr, ptr->memory.address, ptr->memory.size); return rb_str_new2(tmp); }
#length
Alias for total
.
#order ⇒ :big
, :little
#order(order) ⇒ self
:big
, :little
#order(order) ⇒ self
Set or get endianness of Buffer
.
# File 'ext/ffi_c/Buffer.c', line 285
static VALUE buffer_order(int argc, VALUE* argv, VALUE self) { Buffer* ptr; TypedData_Get_Struct(self, Buffer, &buffer_data_type, ptr); if (argc == 0) { int order = (ptr->memory.flags & MEM_SWAP) == 0 ? BYTE_ORDER : SWAPPED_ORDER; return order == BIG_ENDIAN ? ID2SYM(rb_intern("big")) : ID2SYM(rb_intern("little")); } else { VALUE rbOrder = Qnil; int order = BYTE_ORDER; if (rb_scan_args(argc, argv, "1", &rbOrder) < 1) { rb_raise(rb_eArgError, "need byte order"); } if (SYMBOL_P(rbOrder)) { ID id = SYM2ID(rbOrder); if (id == rb_intern("little")) { order = LITTLE_ENDIAN; } else if (id == rb_intern("big") || id == rb_intern("network")) { order = BIG_ENDIAN; } } if (order != BYTE_ORDER) { Buffer* p2; VALUE retval = slice(self, 0, ptr->memory.size); TypedData_Get_Struct(retval, Buffer, &buffer_data_type, p2); p2->memory.flags |= MEM_SWAP; return retval; } return self; } }
#slice(offset, length)
#an(existing)
# File 'ext/ffi_c/Buffer.c', line 244
static VALUE buffer_slice(VALUE self, VALUE rbOffset, VALUE rbLength) { return slice(self, NUM2LONG(rbOffset), NUM2LONG(rbLength)); }