Module: OpenSSL
Overview
OpenSSL
provides SSL
, TLS and general purpose cryptography. It wraps the OpenSSL library.
Examples
All examples assume you have loaded OpenSSL
with:
require 'openssl'
These examples build atop each other. For example the key created in the next is used in throughout these examples.
Keys
Creating a Key
This example creates a 2048 bit RSA keypair and writes it to the current directory.
key = OpenSSL::PKey::RSA.new 2048
File.write 'private_key.pem', key.private_to_pem
File.write 'public_key.pem', key.public_to_pem
Exporting a Key
Keys saved to disk without encryption are not secure as anyone who gets ahold of the key may use it unless it is encrypted. In order to securely export a key you may export it with a password.
cipher = OpenSSL::Cipher.new 'aes-256-cbc'
password = 'my secure password goes here'
key_secure = key.private_to_pem cipher, password
File.write 'private.secure.pem', key_secure
Cipher.ciphers returns a list of available ciphers.
Loading a Key
A key can also be loaded from a file.
key2 = OpenSSL::PKey.read File.read 'private_key.pem'
key2.public? # => true
key2.private? # => true
or
key3 = OpenSSL::PKey.read File.read 'public_key.pem'
key3.public? # => true
key3.private? # => false
Loading an Encrypted Key
OpenSSL
will prompt you for your password when loading an encrypted key. If you will not be able to type in the password you may provide it when loading the key:
key4_pem = File.read 'private.secure.pem'
password = 'my secure password goes here'
key4 = OpenSSL::PKey.read key4_pem, password
RSA Encryption
RSA provides encryption and decryption using the public and private keys. You can use a variety of padding methods depending upon the intended use of encrypted data.
Encryption & Decryption
Asymmetric public/private key encryption is slow and victim to attack in cases where it is used without padding or directly to encrypt larger chunks of data. Typical use cases for RSA encryption involve “wrapping” a symmetric key with the public key of the recipient who would “unwrap” that symmetric key again using their private key. The following illustrates a simplified example of such a key transport scheme. It shouldn’t be used in practice, though, standardized protocols should always be preferred.
wrapped_key = key.public_encrypt key
A symmetric key encrypted with the public key can only be decrypted with the corresponding private key of the recipient.
original_key = key.private_decrypt wrapped_key
By default PKCS#1
padding will be used, but it is also possible to use other forms of padding, see ::OpenSSL::PKey::RSA
for further details.
Signatures
Using “private_encrypt” to encrypt some data with the private key is equivalent to applying a digital signature to the data. A verifying party may validate the signature by comparing the result of decrypting the signature with “public_decrypt” to the original data. However, PKey
already has methods “sign” and “verify” that handle digital signatures in a standardized way - “private_encrypt” and “public_decrypt” shouldn’t be used in practice.
To sign a document, a cryptographically secure hash of the document is computed first, which is then signed using the private key.
signature = key.sign 'SHA256', document
To validate the signature, again a hash of the document is computed and the signature is decrypted using the public key. The result is then compared to the hash just computed, if they are equal the signature was valid.
if key.verify 'SHA256', signature, document
puts 'Valid'
else
puts 'Invalid'
end
PBKDF2 Password-based Encryption
If supported by the underlying OpenSSL
version used, Password-based Encryption should use the features of PKCS5
. If not supported or if required by legacy applications, the older, less secure methods specified in RFC 2898 are also supported (see below).
PKCS5
supports PBKDF2 as it was specified in PKCS#5
v2.0. It still uses a password, a salt, and additionally a number of iterations that will slow the key derivation process down. The slower this is, the more work it requires being able to brute-force the resulting key.
Encryption
The strategy is to first instantiate a Cipher
for encryption, and then to generate a random IV plus a key derived from the password using PBKDF2. PKCS #5 v2.0 recommends at least 8 bytes for the salt, the number of iterations largely depends on the hardware being used.
cipher = OpenSSL::Cipher.new 'aes-256-cbc'
cipher.encrypt
iv = cipher.random_iv
pwd = 'some hopefully not to easily guessable password'
salt = OpenSSL::Random.random_bytes 16
iter = 20000
key_len = cipher.key_len
digest = OpenSSL::Digest.new('SHA256')
key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
cipher.key = key
Now encrypt the data:
encrypted = cipher.update document
encrypted << cipher.final
Decryption
Use the same steps as before to derive the symmetric AES key, this time setting the Cipher
up for decryption.
cipher = OpenSSL::Cipher.new 'aes-256-cbc'
cipher.decrypt
cipher.iv = iv # the one generated with #random_iv
pwd = 'some hopefully not to easily guessable password'
salt = ... # the one generated above
iter = 20000
key_len = cipher.key_len
digest = OpenSSL::Digest.new('SHA256')
key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
cipher.key = key
Now decrypt the data:
decrypted = cipher.update encrypted
decrypted << cipher.final
X509 Certificates
Creating a Certificate
This example creates a self-signed certificate using an RSA key and a SHA1 signature.
key = OpenSSL::PKey::RSA.new 2048
name = OpenSSL::X509::Name.parse '/CN=nobody/DC=example'
cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 0
cert.not_before = Time.now
cert.not_after = Time.now + 3600
cert.public_key = key.public_key
cert.subject = name
Certificate Extensions
You can add extensions to the certificate with OpenSSL::SSL::ExtensionFactory
to indicate the purpose of the certificate.
extension_factory = OpenSSL::X509::ExtensionFactory.new nil, cert
cert.add_extension \
extension_factory.create_extension('basicConstraints', 'CA:FALSE', true)
cert.add_extension \
extension_factory.create_extension(
'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')
cert.add_extension \
extension_factory.create_extension('subjectKeyIdentifier', 'hash')
The list of supported extensions (and in some cases their possible values) can be derived from the “objects.h” file in the OpenSSL
source code.
Signing a Certificate
To sign a certificate set the issuer and use X509::Certificate#sign with a digest algorithm. This creates a self-signed cert because we’re using the same name and key to sign the certificate as was used to create the certificate.
cert.issuer = name
cert.sign key, OpenSSL::Digest.new('SHA1')
open 'certificate.pem', 'w' do |io| io.write cert.to_pem end
Loading a Certificate
Like a key, a cert can also be loaded from a file.
cert2 = OpenSSL::X509::Certificate.new File.read 'certificate.pem'
Verifying a Certificate
Certificate#verify
will return true when a certificate was signed with the given public key.
raise 'certificate can not be verified' unless cert2.verify key
Certificate Authority
A certificate authority (CA) is a trusted third party that allows you to verify the ownership of unknown certificates. The CA issues key signatures that indicate it trusts the user of that key. A user encountering the key can verify the signature by using the CA’s public key.
CA Key
CA keys are valuable, so we encrypt and save it to disk and make sure it is not readable by other users.
ca_key = OpenSSL::PKey::RSA.new 2048
password = 'my secure password goes here'
cipher = 'aes-256-cbc'
open 'ca_key.pem', 'w', 0400 do |io|
io.write ca_key.private_to_pem(cipher, password)
end
CA Certificate
A CA certificate is created the same way we created a certificate above, but with different extensions.
ca_name = OpenSSL::X509::Name.parse '/CN=ca/DC=example'
ca_cert = OpenSSL::X509::Certificate.new
ca_cert.serial = 0
ca_cert.version = 2
ca_cert.not_before = Time.now
ca_cert.not_after = Time.now + 86400
ca_cert.public_key = ca_key.public_key
ca_cert.subject = ca_name
ca_cert.issuer = ca_name
extension_factory = OpenSSL::X509::ExtensionFactory.new
extension_factory.subject_certificate = ca_cert
extension_factory.issuer_certificate = ca_cert
ca_cert.add_extension \
extension_factory.create_extension('subjectKeyIdentifier', 'hash')
This extension indicates the CA’s key may be used as a CA.
ca_cert.add_extension \
extension_factory.create_extension('basicConstraints', 'CA:TRUE', true)
This extension indicates the CA’s key may be used to verify signatures on both certificates and certificate revocations.
ca_cert.add_extension \
extension_factory.create_extension(
'keyUsage', 'cRLSign,keyCertSign', true)
Root CA certificates are self-signed.
ca_cert.sign ca_key, OpenSSL::Digest.new('SHA1')
The CA certificate is saved to disk so it may be distributed to all the users of the keys this CA will sign.
open 'ca_cert.pem', 'w' do |io|
io.write ca_cert.to_pem
end
Certificate Signing Request
The CA signs keys through a Certificate Signing Request (CSR). The CSR contains the information necessary to identify the key.
csr = OpenSSL::X509::Request.new
csr.version = 0
csr.subject = name
csr.public_key = key.public_key
csr.sign key, OpenSSL::Digest.new('SHA1')
A CSR is saved to disk and sent to the CA for signing.
open 'csr.pem', 'w' do |io|
io.write csr.to_pem
end
Creating a Certificate from a CSR
Upon receiving a CSR the CA will verify it before signing it. A minimal verification would be to check the CSR’s signature.
csr = OpenSSL::X509::Request.new File.read 'csr.pem'
raise 'CSR can not be verified' unless csr.verify csr.public_key
After verification a certificate is created, marked for various usages, signed with the CA key and returned to the requester.
csr_cert = OpenSSL::X509::Certificate.new
csr_cert.serial = 0
csr_cert.version = 2
csr_cert.not_before = Time.now
csr_cert.not_after = Time.now + 600
csr_cert.subject = csr.subject
csr_cert.public_key = csr.public_key
csr_cert.issuer = ca_cert.subject
extension_factory = OpenSSL::X509::ExtensionFactory.new
extension_factory.subject_certificate = csr_cert
extension_factory.issuer_certificate = ca_cert
csr_cert.add_extension \
extension_factory.create_extension('basicConstraints', 'CA:FALSE')
csr_cert.add_extension \
extension_factory.create_extension(
'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')
csr_cert.add_extension \
extension_factory.create_extension('subjectKeyIdentifier', 'hash')
csr_cert.sign ca_key, OpenSSL::Digest.new('SHA1')
open 'csr_cert.pem', 'w' do |io|
io.write csr_cert.to_pem
end
SSL and TLS Connections
Using our created key and certificate we can create an SSL
or TLS connection. An SSLContext is used to set up an SSL
session.
context = OpenSSL::SSL::SSLContext.new
SSL Server
An SSL server requires the certificate and private key to communicate securely with its clients:
context.cert = cert
context.key = key
Then create an SSLServer with a TCP server socket and the context. Use the SSLServer like an ordinary TCP server.
require 'socket'
tcp_server = TCPServer.new 5000
ssl_server = OpenSSL::SSL::SSLServer.new tcp_server, context
loop do
ssl_connection = ssl_server.accept
data = ssl_connection.gets
response = "I got #{data.dump}"
puts response
ssl_connection.puts "I got #{data.dump}"
ssl_connection.close
end
SSL client
An SSL client is created with a TCP socket and the context. SSLSocket#connect
must be called to initiate the SSL
handshake and start encryption. A key and certificate are not required for the client socket.
Note that SSLSocket#close
doesn’t close the underlying socket by default. Set SSLSocket#sync_close
to true if you want.
require 'socket'
tcp_socket = TCPSocket.new 'localhost', 5000
ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context
ssl_client.sync_close = true
ssl_client.connect
ssl_client.puts "hello server!"
puts ssl_client.gets
ssl_client.close # shutdown the TLS connection and close tcp_socket
Peer Verification
An unverified SSL
connection does not provide much security. For enhanced security the client or server can verify the certificate of its peer.
The client can be modified to verify the server’s certificate against the certificate authority’s certificate:
context.ca_file = 'ca_cert.pem'
context.verify_mode = OpenSSL::SSL::VERIFY_PEER
require 'socket'
tcp_socket = TCPSocket.new 'localhost', 5000
ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context
ssl_client.connect
ssl_client.puts "hello server!"
puts ssl_client.gets
If the server certificate is invalid or context.ca_file
is not set when verifying peers an ::OpenSSL::SSL::SSLError
will be raised.
Constant Summary
-
LIBRESSL_VERSION_NUMBER =
Version number of LibreSSL the ruby
OpenSSL
extension was built with (base 16). The format is0xMNNFF00f (major minor fix 00 status)
. This constant is only defined in LibreSSL cases.See also the man page LIBRESSL_VERSION_NUMBER(3).
INT2NUM(LIBRESSL_VERSION_NUMBER)
-
OPENSSL_FIPS =
# File 'ext/openssl/ossl.c', line 1110/* OpenSSL 3 is FIPS-capable even when it is installed without fips option */ #if OSSL_OPENSSL_PREREQ(3, 0, 0) Qtrue #elif defined(OPENSSL_FIPS) Qtrue #else Qfalse #endif
-
OPENSSL_LIBRARY_VERSION =
# File 'ext/openssl/ossl.c', line 1079rb_str_new2(OpenSSL_version(OPENSSL_VERSION))
-
OPENSSL_VERSION =
Version of
OpenSSL
the rubyOpenSSL
extension was built withrb_str_new2(OPENSSL_VERSION_TEXT)
-
OPENSSL_VERSION_NUMBER =
Version number of
OpenSSL
the rubyOpenSSL
extension was built with (base 16). The formats are below.- OpenSSL 3
-
0xMNN00PP0 (major minor 00 patch 0)
- OpenSSL before 3
-
0xMNNFFPPS (major minor fix patch status)
- LibreSSL
-
0x20000000 (fixed value)
See also the man page OPENSSL_VERSION_NUMBER(3).
INT2NUM(OPENSSL_VERSION_NUMBER)
-
VERSION =
# File 'ext/openssl/lib/openssl/version.rb', line 4"3.2.0"
Class Attribute Summary
- .debug ⇒ Boolean rw mod_func
-
.debug=(boolean) ⇒ Boolean
rw
mod_func
Turns on or off debug mode.
- .fips_mode ⇒ Boolean rw mod_func
-
.fips_mode=(boolean) ⇒ Boolean
rw
mod_func
Turns FIPS mode on or off.
Class Method Summary
-
.fixed_length_secure_compare(string, string) ⇒ Boolean
Constant time memory comparison for fixed length strings, such as results of
HMAC
calculations. -
.secure_compare(string, string) ⇒ Boolean
Constant time memory comparison.
-
Digest(name)
mod_func
Returns a
Digest
subclass by name. - .errors mod_func
Class Attribute Details
.debug ⇒ Boolean
(rw, mod_func)
[ GitHub ]
# File 'ext/openssl/ossl.c', line 381
static VALUE ossl_debug_get(VALUE self) { return dOSSL; }
.debug=(boolean) ⇒ Boolean
(rw, mod_func)
Turns on or off debug mode. With debug mode, all errors added to the OpenSSL
error queue will be printed to stderr.
# File 'ext/openssl/ossl.c', line 394
static VALUE ossl_debug_set(VALUE self, VALUE val) { dOSSL = RTEST(val) ? Qtrue : Qfalse; return val; }
.fips_mode ⇒ Boolean
(rw, mod_func)
[ GitHub ]
# File 'ext/openssl/ossl.c', line 406
static VALUE ossl_fips_mode_get(VALUE self) { #if OSSL_OPENSSL_PREREQ(3, 0, 0) VALUE enabled; enabled = EVP_default_properties_is_fips_enabled(NULL) ? Qtrue : Qfalse; return enabled; #elif defined(OPENSSL_FIPS) VALUE enabled; enabled = FIPS_mode() ? Qtrue : Qfalse; return enabled; #else return Qfalse; #endif }
.fips_mode=(boolean) ⇒ Boolean
(rw, mod_func)
# File 'ext/openssl/ossl.c', line 435
static VALUE ossl_fips_mode_set(VALUE self, VALUE enabled) { #if OSSL_OPENSSL_PREREQ(3, 0, 0) if (RTEST(enabled)) { if (!EVP_default_properties_enable_fips(NULL, 1)) { ossl_raise(eOSSLError, "Turning on FIPS mode failed"); } } else { if (!EVP_default_properties_enable_fips(NULL, 0)) { ossl_raise(eOSSLError, "Turning off FIPS mode failed"); } } return enabled; #elif defined(OPENSSL_FIPS) if (RTEST(enabled)) { int mode = FIPS_mode(); if(!mode && !FIPS_mode_set(1)) /* turning on twice leads to an error */ ossl_raise(eOSSLError, "Turning on FIPS mode failed"); } else { if(!FIPS_mode_set(0)) /* turning off twice is OK */ ossl_raise(eOSSLError, "Turning off FIPS mode failed"); } return enabled; #else if (RTEST(enabled)) ossl_raise(eOSSLError, "This version of OpenSSL does not support FIPS mode"); return enabled; #endif }
Class Method Details
Digest(name) (mod_func)
Returns a ::OpenSSL::Digest
subclass by name
require 'openssl'
OpenSSL::Digest("MD5")
# => OpenSSL::Digest::MD5
Digest("Foo")
# => NameError: wrong constant name Foo
.errors (mod_func)
[ GitHub ]
.fixed_length_secure_compare(string, string) ⇒ Boolean
Constant time memory comparison for fixed length strings, such as results of ::OpenSSL::HMAC
calculations.
Returns true
if the strings are identical, false
if they are of the same length but not identical. If the length is different, ArgumentError
is raised.
# File 'ext/openssl/ossl.c', line 568
static VALUE ossl_crypto_fixed_length_secure_compare(VALUE dummy, VALUE str1, VALUE str2) { const unsigned char *p1 = (const unsigned char *)StringValuePtr(str1); const unsigned char *p2 = (const unsigned char *)StringValuePtr(str2); long len1 = RSTRING_LEN(str1); long len2 = RSTRING_LEN(str2); if (len1 != len2) { ossl_raise(rb_eArgError, "inputs must be of equal length"); } switch (CRYPTO_memcmp(p1, p2, len1)) { case 0: return Qtrue; default: return Qfalse; } }
.secure_compare(string, string) ⇒ Boolean
Constant time memory comparison. Inputs are hashed using SHA-256 to mask the length of the secret. Returns true
if the strings are identical, false
otherwise.
# File 'ext/openssl/lib/openssl.rb', line 33
def self.secure_compare(a, b) hashed_a = OpenSSL::Digest.digest('SHA256', a) hashed_b = OpenSSL::Digest.digest('SHA256', b) OpenSSL.fixed_length_secure_compare(hashed_a, hashed_b) && a == b end