Class: BigDecimal
| Relationships & Source Files | |
| Super Chains via Extension / Inclusion / Inheritance | |
| Class Chain: 
          self,
          ::Numeric
         | |
| Instance Chain: 
          self,
          ::Numeric
         | |
| Inherits: | Numeric 
 | 
| Defined in: | ext/bigdecimal/bigdecimal.c, ext/bigdecimal/bigdecimal.c, ext/bigdecimal/lib/bigdecimal/util.rb | 
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13  #=>   1265437718438866624512BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal.new("0")
10_000.times do
  sum = sum + BigDecimal.new("0.0001")
end
print sum #=> 0.1E1Similarly:
(BigDecimal.new("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true
(1.2 - 1.0) == 0.2 #=> falseSpecial features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal.new("1.0") / BigDecimal.new("0.0")  #=> Infinity
BigDecimal.new("-1.0") / BigDecimal.new("0.0")  #=> -InfinityYou can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for 'not a number') is returned.
Example:
BigDecimal.new("0.0") / BigDecimal.new("0.0") #=> NaNYou can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal.new('NaN')
n == 0.0 #=> false
n == n #=> falsePositive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal.new("1.0") / BigDecimal.new("-Infinity") #=> -0.0If the value is positive, a value of positive zero is returned.
BigDecimal.new("1.0") / BigDecimal.new("Infinity") #=> 0.0(See .mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native ::Integer, ::Float, ::Rational, and ::String classes:
require 'bigdecimal/util'
42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0License
Copyright (C) 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <mrkn@mrkn.jp> and ruby-core members.
Documented by zzak <zachary@zacharyscott.net>, mathew <meta@pobox.com>, and many other contributors.
Constant Summary
- 
    BASE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3283Base value used in internal calculations. On a 32 bit system, BASEis 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't guarantee that two groups could always be multiplied together without overflow.)INT2FIX((SIGNED_VALUE)VpBaseVal()) 
- 
    EXCEPTION_ALL =
    # File 'ext/bigdecimal/bigdecimal.c', line 3291Determines whether overflow, underflow or zero divide result in an exception being thrown. See .mode. 0xff
- 
    EXCEPTION_INFINITY =
    # File 'ext/bigdecimal/bigdecimal.c', line 3303Determines what happens when the result of a computation is infinity. See .mode. 0x01
- 
    EXCEPTION_NaN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3297Determines what happens when the result of a computation is not a number (NaN). See .mode. 0x02
- 
    EXCEPTION_OVERFLOW =
    # File 'ext/bigdecimal/bigdecimal.c', line 3315Determines what happens when the result of a computation is an overflow (a result too large to be represented). See .mode. 0x01
- 
    EXCEPTION_UNDERFLOW =
    # File 'ext/bigdecimal/bigdecimal.c', line 3309Determines what happens when the result of a computation is an underflow (a result too small to be represented). See .mode. 0x04
- 
    EXCEPTION_ZERODIVIDE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3321Determines what happens when a division by zero is performed. See .mode. 0x10
- 
    INFINITY =
    # File 'ext/bigdecimal/bigdecimal.c', line 3380Positive infinity value. BigDecimal_global_new(1, &arg, rb_cBigDecimal) 
- 
    NAN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3383'Not a Number' value. BigDecimal_global_new(1, &arg, rb_cBigDecimal) 
- 
    ROUND_CEILING =
    # File 'ext/bigdecimal/bigdecimal.c', line 3349Round towards +Infinity. See .mode. 5
- 
    ROUND_DOWN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3338Indicates that values should be rounded towards zero. See .mode. 2
- 
    ROUND_FLOOR =
    # File 'ext/bigdecimal/bigdecimal.c', line 3352Round towards -Infinity. See .mode. 6
- 
    ROUND_HALF_DOWN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3347Indicates that digits >= 6 should be rounded up, others rounded down. See .mode. 4
- 
    ROUND_HALF_EVEN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3355Round towards the even neighbor. See .mode. 7
- 
    ROUND_HALF_UP =
    # File 'ext/bigdecimal/bigdecimal.c', line 3342Indicates that digits >= 5 should be rounded up, others rounded down. See .mode. 3
- 
    ROUND_MODE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3328Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See .mode. 0x100
- 
    ROUND_UP =
    # File 'ext/bigdecimal/bigdecimal.c', line 3333Indicates that values should be rounded away from zero. See .mode. 1
- 
    SIGN_NEGATIVE_FINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3370Indicates that a value is negative and finite. See #sign. -2 
- 
    SIGN_NEGATIVE_INFINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3376Indicates that a value is negative and infinite. See #sign. -3 
- 
    SIGN_NEGATIVE_ZERO =
    # File 'ext/bigdecimal/bigdecimal.c', line 3364Indicates that a value is -0. See #sign. -1 
- 
    SIGN_NaN =
    # File 'ext/bigdecimal/bigdecimal.c', line 3358Indicates that a value is not a number. See #sign. 0
- 
    SIGN_POSITIVE_FINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3367Indicates that a value is positive and finite. See #sign. 2
- 
    SIGN_POSITIVE_INFINITE =
    # File 'ext/bigdecimal/bigdecimal.c', line 3373Indicates that a value is positive and infinite. See #sign. 3
- 
    SIGN_POSITIVE_ZERO =
    # File 'ext/bigdecimal/bigdecimal.c', line 3361Indicates that a value is +0. See #sign. 1
Class Method Summary
- 
    
      ._load(str)  
    
    Internal method used to provide marshalling support. 
- 
    
      .double_fig  
    
    The double_figclass method returns the number of digits a ::Float number is allowed to have.
- 
    
      .limit(digits)  
    
    Limit the number of significant digits in newly created BigDecimalnumbers to the specified value.
- 
    
      .mode(mode, value)  
    
    Controls handling of arithmetic exceptions and rounding. 
- 
    
      .new(initial, digits)  
    
    constructor
    Create a new BigDecimalobject.
- 
    
      .save_exception_mode  
    
    Execute the provided block, but preserve the exception mode. 
- 
    
      .save_limit  
    
    Execute the provided block, but preserve the precision limit. 
- 
    
      .save_rounding_mode  
    
    Execute the provided block, but preserve the rounding mode. 
- 
    
      .ver  
    
    Returns the BigDecimalversion number.
Instance Attribute Summary
- 
    
      #finite?  ⇒ Boolean 
    
    readonly
    Returns True if the value is finite (not NaN or infinite). 
- 
    
      #infinite?  ⇒ Boolean 
    
    readonly
    Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity. 
- 
    
      #nan?  ⇒ Boolean 
    
    readonly
    Returns True if the value is Not a Number. 
- 
    
      #nonzero?  ⇒ Boolean 
    
    readonly
    Returns self if the value is non-zero, nil otherwise. 
- 
    
      #zero?  ⇒ Boolean 
    
    readonly
    Returns True if the value is zero. 
Instance Method Summary
- #%
- 
    
      #mult(value, digits)  
    
    Multiply by the specified value. 
- 
    
      #**(n)  ⇒ BigDecimal 
    
    Returns the value raised to the power of n. 
- 
    
      #add(value, digits)  
    
    Add the specified value. 
- 
    
      #+  ⇒ big_decimal 
    
    Return self. 
- 
    
      #-(b)  ⇒ BigDecimal 
    
    Subtract the specified value. 
- 
    
      #-  ⇒ big_decimal 
    
    Return the negation of self. 
- #/
- 
    
      #<(b)  
    
    Returns true if a is less than b. 
- 
    
      #<=(b)  
    
    Returns true if a is less than or equal to b. 
- 
    
      #<=>(r)  
    
    The comparison operator. 
- 
    
      #==(r)  
      (also: #===, #eql?)
    
    Tests for value equality; returns true if the values are equal. 
- 
    
      #===(r)  
    
    Alias for #==. 
- 
    
      #>(b)  
    
    Returns true if a is greater than b. 
- 
    
      #>=(b)  
    
    Returns true if a is greater than or equal to b. 
- 
    
      #_dump  
    
    Method used to provide marshalling support. 
- 
    
      #abs  ⇒ big_decimal 
    
    Returns the absolute value, as a BigDecimal.
- 
    
      #add(value, digits)  
    
    Add the specified value. 
- 
    
      #ceil(n)  
    
    Return the smallest integer greater than or equal to the value, as a BigDecimal.
- 
    
      #coerce(other)  
    
    The coerce method provides support for Ruby type coercion. 
- 
    
      #div(value, digits)  ⇒ BigDecimal, Integer 
    
    Divide by the specified value. 
- 
    
      #divmod(value)  
    
    Divides by the specified value, and returns the quotient and modulus as BigDecimalnumbers.
- 
    
      #eql?(r)  
    
    Alias for #==. 
- 
    
      #exponent  
    
    Returns the exponent of the BigDecimalnumber, as an ::Integer.
- 
    
      #fix  
    
    Return the integer part of the number, as a BigDecimal.
- 
    
      #floor(n)  
    
    Return the largest integer less than or equal to the value, as a BigDecimal.
- 
    
      #frac  
    
    Return the fractional part of the number, as a BigDecimal.
- 
    
      #hash  
    
    Creates a hash for this BigDecimal.
- 
    
      #inspect  
    
    Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #: 
- #modulo
- 
    
      #mult(value, digits)  
    
    Multiply by the specified value. 
- 
    
      #power(n)  
    
    Returns the value raised to the power of n. 
- 
    
      #precs  ⇒ Array 
    
    Returns an Array of two ::Integer values. 
- #quo
- #remainder
- 
    
      #round(n, mode)  
    
    Round to the nearest integer (by default), returning the result as a BigDecimal.
- 
    
      #sign  
    
    Returns the sign of the value. 
- 
    
      #split  
    
    Splits a BigDecimalnumber into four parts, returned as an array of values.
- 
    
      #sqrt(n)  
    
    Returns the square root of the value. 
- 
    
      #sub(value, digits)  ⇒ BigDecimal 
    
    Subtract the specified value. 
- 
    
      #to_d  ⇒ BigDecimal 
    
    Returns self. 
- 
    
      #to_digits  ⇒ String 
    
    Converts a BigDecimalto a ::String of the form “nnnnnn.mmm”.
- 
    
      #to_f  
    
    Returns a new ::Float object having approximately the same value as the BigDecimalnumber.
- 
    
      #to_i  
      (also: #to_int)
    
    Returns the value as an ::Integer. 
- 
    
      #to_int  
    
    Alias for #to_i. 
- 
    
      #to_r  
    
    Converts a BigDecimalto a ::Rational.
- 
    
      #to_s(s)  ⇒ ? 
    
    Converts the value to a string. 
- 
    
      #truncate(n)  
    
    Truncate to the nearest integer (by default), returning the result as a BigDecimal.
Constructor Details
.new(initial, digits)
Create a new BigDecimal object.
- initial
- 
The initial value, as an ::Integer, a ::Float, a ::Rational, a BigDecimal, or a String. If it is a String, spaces are ignored and unrecognized characters terminate the value. 
- digits
- 
The number of significant digits, as an ::Integer. If omitted or 0, the number of significant digits is determined from the initial value. 
The actual number of significant digits used in computation is usually larger than the specified number.
Exceptions
- TypeError
- 
If the initialtype is neither ::Integer, ::Float, Rational, nor BigDecimal, this exception is raised.
- TypeError
- 
If the digitsis not an ::Integer, this exception is raised.
- ArgumentError
- 
If initialis a ::Float, and thedigitsis larger than Float::DIG + 1, this exception is raised.
- ArgumentError
- 
If the initialis a ::Float or ::Rational, and thedigitsvalue is omitted, this exception is raised.
Class Method Details
._load(str)
Internal method used to provide marshalling support. See the Marshal module.
.double_fig
The double_fig class method returns the number of digits a ::Float number is allowed to have. The result depends upon the CPU and OS in use.
.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by .mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
EXCEPTION_NaN EXCEPTION_INFINITY EXCEPTION_UNDERFLOW EXCEPTION_OVERFLOW EXCEPTION_ZERODIVIDE EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
- 
NaN 
- EXCEPTION_INFINITY
- 
+Infinity or -Infinity 
- EXCEPTION_UNDERFLOW
- 
0 
- EXCEPTION_OVERFLOW
- 
+Infinity or -Infinity 
- EXCEPTION_ZERODIVIDE
- 
+Infinity or -Infinity 
One value of the mode parameter controls the rounding of numeric values: ROUND_MODE. The values it can take are:
- ROUND_UP, :up
- 
round away from zero 
- ROUND_DOWN, :down, :truncate
- 
round towards zero (truncate) 
- ROUND_HALF_UP, :half_up, :default
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default) 
- ROUND_HALF_DOWN, :half_down
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero. 
- ROUND_HALF_EVEN, :half_even, :banker
- 
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding) 
- ROUND_CEILING, :ceiling, :ceil
- 
round towards positive infinity (ceil) 
- ROUND_FLOOR, :floor
- 
round towards negative infinity (floor) 
.save_exception_mode
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
  BigDecimal.new(BigDecimal('Infinity'))
  BigDecimal.new(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal.new('NaN'))
endFor use with the BigDecimal::EXCEPTION_*
See .mode
.save_limit
.save_rounding_mode
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
endFor use with the BigDecimal::ROUND_*
See .mode
.ver
Returns the BigDecimal version number.
Instance Attribute Details
    #finite?  ⇒ Boolean  (readonly)
  
Returns True if the value is finite (not NaN or infinite).
    #infinite?  ⇒ Boolean  (readonly)
  
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
    #nan?  ⇒ Boolean  (readonly)
  
Returns True if the value is Not a Number.
    #nonzero?  ⇒ Boolean  (readonly)
  
Returns self if the value is non-zero, nil otherwise.
    #zero?  ⇒ Boolean  (readonly)
  
Returns True if the value is zero.
Instance Method Details
#%
#mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
    #**(n)  ⇒ BigDecimal   
Returns the value raised to the power of n.
See #power.
#add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
    #+  ⇒ big_decimal   
Return self.
+BigDecimal('5')  #=> 0.5e1
    #-(b)  ⇒ BigDecimal   
Subtract the specified value.
e.g.
c = a - bThe precision of the result value depends on the type of b.
If b is a ::Float, the precision of the result is Float::DIG+1.
If b is a BigDecimal, the precision of the result is b's precision of internal representation from platform. So, it's return value is platform dependent.
    #-  ⇒ big_decimal   
Return the negation of self.
-BigDecimal('5')  #=> -0.5e1#/
#<(b)
Returns true if a is less than b.
Values may be coerced to perform the comparison (see ==, #coerce).
#<=(b)
Returns true if a is less than or equal to b.
Values may be coerced to perform the comparison (see ==, #coerce).
#<=>(r)
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
#==(r) Also known as: #===, #eql?
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0  #=> true#===(r)
Alias for #==.
#>(b)
Returns true if a is greater than b.
Values may be coerced to perform the comparison (see ==, #coerce).
#>=(b)
Returns true if a is greater than or equal to b.
Values may be coerced to perform the comparison (see ==, #coerce)
#_dump
    #abs  ⇒ big_decimal   
Returns the absolute value, as a BigDecimal.
BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1#add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
#ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').ceil #=> 4
BigDecimal('-9.1').ceil #=> -9If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').ceil(3) #=> 3.142
BigDecimal('13345.234').ceil(-2) #=> 13400.0#coerce(other)
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal.new("1.0")
b = a / 2.0 #=> 0.5Note that coercing a ::String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
    #div(value, digits)  ⇒ BigDecimal, Integer   
Divide by the specified value.
- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. If digits is 0, the result is the same as for the / operator or #quo. If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod. 
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3)  # => 0.133e1
a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1
a.div(b)     # => 1#divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal.new("42")
b = BigDecimal.new("9")
q, m = a.divmod(b)
c = q * b + m
a == c  #=> trueThe quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
#eql?(r)
Alias for #==.
#exponent
Returns the exponent of the BigDecimal number, as an ::Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
#fix
Return the integer part of the number, as a BigDecimal.
#floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').floor #=> 3
BigDecimal('-9.1').floor #=> -10If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').floor(3) #=> 3.141
BigDecimal('13345.234').floor(-2) #=> 13300.0#frac
Return the fractional part of the number, as a BigDecimal.
#hash
Creates a hash for this BigDecimal.
Two BigDecimals with equal sign, fractional part and exponent have the same hash.
#inspect
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:
BigDecimal.new("1234.5678").inspect
  #=> "0.12345678e4"The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.
#modulo
#mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
    
      #power(n)  
      #power(n, prec)  
    
  
Returns the value raised to the power of n.
Note that n must be an ::Integer.
Also available as the operator **.
    #precs  ⇒ Array   
Returns an Array of two ::Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
BigDecimal('5').precs #=> [9, 18]#quo
#remainder
#round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').round #=> 3
BigDecimal('8.7').round #=> 9
BigDecimal('-9.9').round #=> -10If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').round(3) #=> 3.142
BigDecimal('13345.234').round(-2) #=> 13300.0The value of the optional mode argument can be used to determine how rounding is performed; see .mode.
#sign
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
- 
value is Not a Number 
- BigDecimal::SIGN_POSITIVE_ZERO
- 
value is +0 
- BigDecimal::SIGN_NEGATIVE_ZERO
- 
value is -0 
- BigDecimal::SIGN_POSITIVE_INFINITE
- 
value is +Infinity 
- BigDecimal::SIGN_NEGATIVE_INFINITE
- 
value is -Infinity 
- BigDecimal::SIGN_POSITIVE_FINITE
- 
value is positive 
- BigDecimal::SIGN_NEGATIVE_FINITE
- 
value is negative 
#split
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an ::Integer.
The fourth value is an ::Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a ::Float.)
#sqrt(n)
Returns the square root of the value.
Result has at least n significant digits.
    #sub(value, digits)  ⇒ BigDecimal   
Subtract the specified value.
e.g.
c = a.sub(b,n)- digits
- 
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. 
    #to_d  ⇒ BigDecimal   
Returns self.
require 'bigdecimal/util'
d = BigDecimal.new("3.14")
d.to_d                       # => 0.314e1# File 'ext/bigdecimal/lib/bigdecimal/util.rb', line 109
def to_d self end
#to_digits ⇒ String
#to_f
#to_i Also known as: #to_int
Returns the value as an ::Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
#to_int
Alias for #to_i.
#to_r
Converts a BigDecimal to a ::Rational.
#to_s(s) ⇒ ?
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional '+' or ' ', followed by an optional number, followed by an optional 'E' or 'F'.
If there is a '+' at the start of s, positive values are returned with a leading '+'.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an 'E', engineering notation (0.xxxxEnn) is used.
If s ends with an 'F', conventional floating point notation is used.
Examples:
BigDecimal.new('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'
BigDecimal.new('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'
BigDecimal.new('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'#truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').truncate #=> 3
BigDecimal('8.7').truncate #=> 8
BigDecimal('-9.9').truncate #=> -9If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').truncate(3) #=> 3.141
BigDecimal('13345.234').truncate(-2) #=> 13300.0