123456789_123456789_123456789_123456789_123456789_

Class: Complex

Relationships & Source Files
Super Chains via Extension / Inclusion / Inheritance
Class Chain:
self, ::Numeric
Instance Chain:
Inherits: Numeric
Defined in: complex.c

Overview

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

Complex object can be created as literal, and also by using Kernel.Complex, .rect, .polar or to_c method.

2+1i                 #=> (2+1i)
Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Constant Summary

Class Method Summary

Instance Attribute Summary

::Numeric - Inherited

#integer?

Returns true if num is an ::Integer (including ::Fixnum and ::Bignum).

#negative?

Returns true if num is less than 0.

#nonzero?

Returns self if num is not zero, nil otherwise.

#positive?

Returns true if num is greater than 0.

#real

Returns self.

#real?

Returns true if num is a Real number.

#zero?

Returns true if num has a zero value.

Instance Method Summary

::Numeric - Inherited

#%

x.modulo(y) means x-y*(x/y).floor.

#+@

Unary Plus—Returns the receiver's value.

#-@

Unary Minus—Returns the receiver's value, negated.

#<=>

Returns zero if number equals other, otherwise nil is returned if the two values are incomparable.

#abs

Returns the absolute value of num.

#abs2

Returns square of self.

#angle

Alias for Numeric#arg.

#arg

Returns 0 if the value is positive, pi otherwise.

#ceil

Returns the smallest possible ::Integer that is greater than or equal to num.

#coerce

If a numeric is the same type as num, returns an array containing numeric and num.

#conj

Returns self.

#conjugate

Alias for Numeric#conj.

#denominator

Returns the denominator (always positive).

#div

Uses #/ to perform division, then converts the result to an integer.

#divmod

Returns an array containing the quotient and modulus obtained by dividing num by numeric.

#eql?

Returns true if num and numeric are the same type and have equal values.

#fdiv

Returns float division.

#floor

Returns the largest integer less than or equal to num.

#i

Returns the corresponding imaginary number.

#imag

Returns zero.

#imaginary

Alias for Numeric#imag.

#initialize_copy

Numerics are immutable values, which should not be copied.

#magnitude

Alias for Numeric#abs.

#modulo

Alias for Numeric#%.

#numerator

Returns the numerator.

#phase

Alias for Numeric#arg.

#polar

Returns an array; [num.abs, num.arg].

#quo

Returns most exact division (rational for integers, float for floats).

#rect

Returns an array; [num, 0].

#rectangular

Alias for Numeric#rect.

#remainder

x.remainder(y) means x-y*(x/y).truncate.

#round

Rounds num to a given precision in decimal digits (default 0 digits).

#singleton_method_added

Trap attempts to add methods to ::Numeric objects.

#step

Invokes the given block with the sequence of numbers starting at num, incremented by step (defaulted to 1) on each call.

#to_c

Returns the value as a complex.

#to_int

Invokes the child class's #to_i method to convert num to an integer.

#truncate

Returns num truncated to an ::Integer.

::Comparable - Included

#<

Compares two objects based on the receiver's <=> method, returning true if it returns -1.

#<=

Compares two objects based on the receiver's <=> method, returning true if it returns -1 or 0.

#==

Compares two objects based on the receiver's <=> method, returning true if it returns 0.

#>

Compares two objects based on the receiver's <=> method, returning true if it returns 1.

#>=

Compares two objects based on the receiver's <=> method, returning true if it returns 0 or 1.

#between?

Returns false if obj <=> min is less than zero or if anObject <=> max is greater than zero, true otherwise.

Class Method Details

.polar(abs[, arg]) ⇒ Complex

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)

.rect(real[, imag]) ⇒ Complex .rectangular(real[, imag]) ⇒ Complex
Also known as: .rectangular

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

.rect(real[, imag]) ⇒ Complex .rectangular(real[, imag]) ⇒ Complex

Alias for .rect.

Instance Attribute Details

#realNumeric (readonly)

Returns the real part.

Complex(7).real      #=> 7
Complex(9, -4).real  #=> 9

#real?Boolean (readonly)

Returns false.

Instance Method Details

#*(numeric) ⇒ Complex

Performs multiplication.

Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
Complex(900)   * Complex(1)      #=> (900+0i)
Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
Complex(9, 8)  * 4               #=> (36+32i)
Complex(20, 9) * 9.8             #=> (196.0+88.2i)

#**(numeric) ⇒ Complex

Performs exponentiation.

Complex('i') ** 2              #=> (-1+0i)
Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)

#+(numeric) ⇒ Complex

Performs addition.

Complex(2, 3)  + Complex(2, 3)   #=> (4+6i)
Complex(900)   + Complex(1)      #=> (901+0i)
Complex(-2, 9) + Complex(-9, 2)  #=> (-11+11i)
Complex(9, 8)  + 4               #=> (13+8i)
Complex(20, 9) + 9.8             #=> (29.8+9i)

#-(numeric) ⇒ Complex

Performs subtraction.

Complex(2, 3)  - Complex(2, 3)   #=> (0+0i)
Complex(900)   - Complex(1)      #=> (899+0i)
Complex(-2, 9) - Complex(-9, 2)  #=> (7+7i)
Complex(9, 8)  - 4               #=> (5+8i)
Complex(20, 9) - 9.8             #=> (10.2+9i)

#-Complex

Returns negation of the value.

-Complex(1, 2)  #=> (-1-2i)

#/(numeric) ⇒ Complex #quo(numeric) ⇒ Complex

Performs division.

Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)

#==(object) ⇒ Boolean

Returns true if cmp equals object numerically.

Complex(2, 3)  == Complex(2, 3)   #=> true
Complex(5)     == 5               #=> true
Complex(0)     == 0.0             #=> true
Complex('1/3') == 0.33            #=> false
Complex('1/2') == '1/2'           #=> false

#absNumeric #magnitudeNumeric
Also known as: #magnitude

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0

#abs2Numeric

Returns square of the absolute value.

Complex(-1).abs2         #=> 1
Complex(3.0, -4.0).abs2  #=> 25.0

#argFloat #angleFloat #phaseFloat

Alias for #arg.

#argFloat #angleFloat #phaseFloat
Also known as: #angle, #phase

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

#conjComplex #conjugateComplex

Alias for #~.

#conjComplex #conjugateComplex

Alias for #~.

#denominatorInteger

Returns the denominator (lcm of both denominator - real and imag).

See numerator.

#fdiv(numeric) ⇒ Complex

Performs division as each part is a float, never returns a float.

Complex(11, 22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)

#imagNumeric #imaginaryNumeric
Also known as: #imaginary

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

#imagNumeric #imaginaryNumeric

Alias for #imag.

#inspectString

Returns the value as a string for inspection.

Complex(2).inspect                       #=> "(2+0i)"
Complex('-8/6').inspect                  #=> "((-4/3)+0i)"
Complex('1/2i').inspect                  #=> "(0+(1/2)*i)"
Complex(0, Float::INFINITY).inspect      #=> "(0+Infinity*i)"
Complex(Float::NAN, Float::NAN).inspect  #=> "(NaN+NaN*i)"

#absNumeric #magnitudeNumeric

Alias for #abs.

#numeratorNumeric

Returns the numerator.

1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

#argFloat #angleFloat #phaseFloat

Alias for #arg.

#polarArray

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

#quo

#rationalize([eps]) ⇒ Rational

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1.0/3, 0).rationalize  #=> (1/3)
Complex(1, 0.0).rationalize    # RangeError
Complex(1, 2).rationalize      # RangeError

See to_r.

#rectArray #rectangularArray
Also known as: #rectangular

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

#rectArray #rectangularArray

Alias for #rect.

#to_cself

Returns self.

Complex(2).to_c      #=> (2+0i)
Complex(-8, 6).to_c  #=> (-8+6i)

#to_fFloat

Returns the value as a float if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_f    #=> 1.0
Complex(1, 0.0).to_f  # RangeError
Complex(1, 2).to_f    # RangeError

#to_iInteger

Returns the value as an integer if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_i    #=> 1
Complex(1, 0.0).to_i  # RangeError
Complex(1, 2).to_i    # RangeError

#to_rRational

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_r    #=> (1/1)
Complex(1, 0.0).to_r  # RangeError
Complex(1, 2).to_r    # RangeError

See rationalize.

#to_sString

Returns the value as a string.

Complex(2).to_s                       #=> "2+0i"
Complex('-8/6').to_s                  #=> "-4/3+0i"
Complex('1/2i').to_s                  #=> "0+1/2i"
Complex(0, Float::INFINITY).to_s      #=> "0+Infinity*i"
Complex(Float::NAN, Float::NAN).to_s  #=> "NaN+NaN*i"

#conjComplex #conjugateComplex
Also known as: #conjugate, #conj

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)